![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1758923
¼¼°èÀÇ ÀÚÀ² ±º¿ë ¹«±â ½ÃÀåAutonomous Military Weapons |
ÀÚÀ² ±º¿ë ¹«±â ¼¼°è ½ÃÀåÀº 2030³â±îÁö 237¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 145¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ÀÚÀ² ±º¿ë ¹«±â ¼¼°è ½ÃÀåÀº 2024³âºÎÅÍ 2030³â±îÁö CAGR 8.6%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 237¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ÀÚÀ² ±º¿ë ¹Ì»çÀÏÀº CAGR 7.3%¸¦ ±â·ÏÇÏ¸ç ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 72¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÚÀ² ±º¿ë ź¾à ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ µ¿¾È CAGR 10.7%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 38¾ï ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.4%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ÀÚÀ² ±º¿ë ¹«±â ½ÃÀåÀº 2024³â¿¡ 38¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦ ´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 38¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 8.4%¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖ°í, ºÐ¼® ±â°£ µ¿¾È CAGRÀº °¢°¢ 7.7%¿Í 7.4%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 7.1%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ ÀÚÀ² ±º¿ë ¹«±â ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
ÀÚÀ² ±º¿ë ¹«±â°¡ Çö´ë ÀüÀï ±³¸®¿Í ±¹¹æ Àü·«À» À籸¼ºÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
ÀÚÀ² ±º¿ë ¹«±â´Â ÀüÀï°ú ±¹¹æÀÇ º»ÁúÀ» ±Ùº»ÀûÀ¸·Î º¯È½Ã۰í ÀÖÀ¸¸ç, Àΰ£ÀÇ ÅëÁ¦¿¡ Å©°Ô ÀÇÁ¸ÇÏ´Â ÀüÅëÀûÀÎ ÀüÅõ ½Ã½ºÅÛ¿¡¼ Å©°Ô ¹þ¾î³ª°í ÀÖ½À´Ï´Ù. ¹«ÀÎÇ×°ø±â(UAV)¿Í ÀÚÀ² Áö»ó ·Îº¿¿¡¼ Áö´ÉÇü ¹Ì»çÀÏ ½Ã½ºÅÛ°ú ÇØ±º µå·Ð¿¡ À̸£±â±îÁö ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀΰøÁö´É(AI), ÷´Ü ¼¾¼, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ Ȱ¿ëÇÏ¿© ´Üµ¶ ¶Ç´Â ¹Ýµ¶¸³ÀûÀ¸·Î ÀÛµ¿Çϵµ·Ï ¼³°èµÇ¾î ÀÖ½À´Ï´Ù. ÀÚÀ² ¹«±âÀÇ ¹èÄ¡°¡ ÁøÇàµÊ¿¡ µû¶ó ±º»ç µ¶Æ®¸°ÀÌ À籸¼ºµÇ°í ÀÖÀ¸¸ç, À§ÇùÀÌ ³ôÀº ȯ°æ¿¡¼ ¼Óµµ, Á¤È®¼º, ÀÎÀû À§ÇèÀÇ ÃÖ¼ÒÈ¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÀÚÀ² ¹«±â´Â ±ºÀÎÀÌ ÀüÅõ Áö¿ª¿¡ ¹°¸®ÀûÀ¸·Î Á¸ÀçÇÒ Çʿ伺À» ÁÙ¿© ±º´ë°¡ ´õ ÀûÀº »ç»óÀÚ¿Í ´õ ³ôÀº ÀÛÀü È¿À²·Î ÀÛÀü¿¡ Âü¿©ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÚÀ² ¹«±â´Â ¹Ð¸®ÃÊ ´ÜÀ§·Î ¹æ´ëÇÑ ÀüÀå µ¥ÀÌÅ͸¦ ó¸®Çϰí Àΰ£ ¿î¿µÀÚº¸´Ù ´õ ºü¸£°Ô ÀÇ»ç°áÁ¤À» ³»¸± ¼ö Àֱ⠶§¹®¿¡ Çö´ëÀÇ ±Þº¯ÇÏ´Â ºÐÀï ½Ã³ª¸®¿À¿¡¼ Áß¿äÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÈÇÐ ÀüÀå, ½ÉÇØ Á¤Âû ÀÓ¹«, »çÀ̹ö ¹°¸®Àü µî Àΰ£ÀÌ Á¢±ÙÇϱ⿡´Â ³Ê¹« À§ÇèÇϰųª Á¢±ÙÀÌ ºÒ°¡´ÉÇÑ È¯°æ¿¡¼µµ Ȱµ¿ÇÒ ¼ö ÀÖ½À´Ï´Ù. ³×Æ®¿öÅ© Á᫐ ÀüÀï ½Ã½ºÅÛ¿¡ ÅëÇÕµÇ¾î ´Ù¸¥ ±º»ç ÀÚ»ê(À¯ÀÎ ¶Ç´Â ¹«ÀÎ)°úÀÇ ¿øÈ°ÇÑ Çù·ÂÀÌ °¡´ÉÇØÁ® °øµ¿ÀÇ ¸ÖƼ µµ¸ÞÀÎ ÀÛÀüÀ» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÁöÁ¤ÇÐÀû ±äÀå°ú ºñ´ëĪÀû À§ÇùÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °¢±¹ÀÌ ±¹¹æ ´É·ÂÀÇ Çö´ëȸ¦ Ãß±¸ÇÏ´Â °¡¿îµ¥, ÀÚÀ² ¹«±â´Â Àü·« ¼ö¸³°ú º´·Â ±¸¼ºÀÇ Áß½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù. Àü ¼¼°è ¹æ»ê¾÷°è´Â ºü¸£°Ô ÀûÀÀÇϰí, 21¼¼±â ÀüÅõ ±³ÀüÀÇ °³³ä ÀÚü¸¦ ÀçÁ¤ÀÇÇÒ ¼ö ÀÖ´Â º¸´Ù Áö´ÉÀûÀ̰í ÀÚ±ÞÀÚÁ·ÇÒ ¼ö ÀÖ´Â ÀÓ¹« ÀûÀÀÇü ½Ã½ºÅÛÀ» °³¹ßÇϱâ À§ÇØ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.
AI, ·Îº¿°øÇÐ, ¼¾¼ ±â¼úÀº ÀÚÀ² ¹«±â ½Ã½ºÅÛ °³¹ßÀ» ¾î¶»°Ô ÃËÁøÇϰí Àִ°¡?
ÀÚÀ² ±º¿ë ¹«±âÀÇ ºÎ»óÀº ÀΰøÁö´É, ·Îº¿ °øÇÐ, ¼¾¼ ÅëÇÕ, ÀÚÀ² Ç×¹ý ½Ã½ºÅÛÀÇ ±Þ¼ÓÇÑ ¹ßÀü¿¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹«±âÀÇ ÇÙ½ÉÀº Àΰ£ÀÇ °¨½Ã¸¦ ÃÖ¼ÒÈÇÏ¸é¼ Ç¥Àû ½Äº°, À§Çù ºÐ·ù, ±³Àü °áÁ¤À» ³»¸± ¼ö ÀÖ´Â AI ¾Ë°í¸®ÁòÀÔ´Ï´Ù. ±â°è ÇнÀ ¸ðµ¨À» ÅëÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °ú°Å ÀÓ¹«¿Í ½Ã¹Ä·¹À̼ÇÀ» ÅëÇØ ÇнÀÇÏ°í »õ·Î¿î ÀüÀå »óȲ¿¡ ÀûÀÀÇϱâ À§ÇØ ÀÇ»ç°áÁ¤ ³í¸®¸¦ Áö¼ÓÀûÀ¸·Î °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ·¹ÀÌ´õ, Àû¿Ü¼±, LiDAR, À½Ç⠽ýºÅÛÀ» Æ÷ÇÔÇÑ Á¤±³ÇÑ ¸ÖƼ¸ð´Þ ¼¾¼´Â 360µµ »óȲ ÀνÄÀ» Á¦°øÇÏ¿© ÀÚÀ² ½Ã½ºÅÛÀÌ ´Ù¾çÇÏ°í ¿¹ÃøÇÒ ¼ö ¾ø´Â ȯ°æ¿¡¼ Ç¥ÀûÀ» ŽÁö, ÃßÀû ¹× ±³ÀüÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ·Îº¿ ±â¼úµµ Å©°Ô ¹ßÀüÇÏ¿© ¾ÇõÈÄ¿¡µµ µµ½ÃºÎÅÍ »ê¾ÇÁö´ë±îÁö ´Ù¾çÇÑ ÁöÇü¿¡¼ ±âµ¿¼ºÀ» ¹ßÈÖÇÒ ¼ö ÀÖ´Â °ß°íÇÑ Ç÷§ÆûÀÌ µîÀåÇϰí ÀÖÀ¸¸ç, GPS, °ü¼º À¯µµ, ½Ç½Ã°£ ¸ÅÇÎ ±â´ÉÀ» °®Ãá ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀº ÀÚÀ² Á¶Á¾, Àå¾Ö¹° ȸÇÇ, ÀÓ¹« °æ·Î ÀçÁ¶Á¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °æ·Î ÀçÁ¶Á¤À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. Åë½Å ¹× µ¥ÀÌÅÍ ¸µÅ© ±â¼úÀº ÀÚÀ² ½Ã½ºÅÛÀÌ ÁöÈÖ ¼¾ÅÍ ¹× ±âŸ ÀÚ»ê°ú ½Ç½Ã°£À¸·Î »óÈ£ ÀÛ¿ëÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇϸç, Á¾Á¾ ¾ÏÈ£È µÈ ¹æÇØ ÀüÆÄ ¹æÁö ä³ÎÀ» »ç¿ëÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº ÇöÀå¿¡¼ÀÇ µ¥ÀÌÅÍ Ã³¸® ¼Óµµ¸¦ ³ôÀÌ°í ¿ø°Ý ¼¹ö¿ÍÀÇ »ó½Ã ¿¬°á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·ÃãÀ¸·Î½á ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ´õ¿í °ÈÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû À¶ÇÕÀº Àΰ£ÀÌ Á÷Á¢ °³ÀÔÇÏÁö ¾Ê°íµµ ¿ªµ¿ÀûÀÎ ±³ÀüÀÌ °¡´ÉÇÑ ºÎÀ¯½Ä ź¾à, ¹«¸®Áö¾î ºñÇàÇÏ´Â µå·Ð, ÀÚÀ² Æ÷žÀÇ °³¹ß·Î À̾îÁö°í ÀÖ½À´Ï´Ù. »çÀ̹ö ÀüÀï ´É·Â°ú ÅëÇÕÇÏ¿© ÀϺΠÀÚÀ² ½Ã½ºÅÛÀº ¹°¸®Àû ¸ñÇ¥¹°À» °ø°ÝÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ÀûÀÇ ³×Æ®¿öÅ©¿Í Åë½ÅÀ» ¹æÇØÇÒ ¼öµµ ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀÌ ÁøÇàµÊ¿¡ µû¶ó ÀÌ·¯ÇÑ ±â¼úÀº ±º»ç·ÂÀÇ »õ·Î¿î ½Ã´ë¸¦ À§ÇÑ ¹«´ë¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù. Áö´ÉÇü ½Ã½ºÅÛÀÌ º¹ÀâÇÑ ÀÓ¹«¸¦ ÃÖ¼ÒÇÑÀÇ Áö¿¬°ú Àü·Ê ¾ø´Â Á¤È®µµ·Î ¼öÇàÇÒ ¼ö ÀÖ´Â ½Ã´ë°¡ ¿¸®°í ÀÖ½À´Ï´Ù.
ÀÚÀ²¹«±â¿¡ ´ëÇÑ Àü ¼¼°è ÅõÀÚ°¡ ¼±Áø±¹°ú ½ÅÈï ±º»ç °±¹¿¡¼ Áõ°¡ÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
ÁÖ¿ä ±º»ç °´ë±¹°ú ½ÅÈï ±º»ç °´ë±¹ ¸ðµÎ ±â¼ú ¿ìÀ§¿Í ±¹°¡ ¾Èº¸ À¯ÁöÀÇ Àü·«Àû Á߿伺À» ÀνÄÇÏ¸é¼ ÀÚÀ² ±º¿ë ¹«±â¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÅõÀÚ°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹, Áß±¹, ·¯½Ã¾Æ, À̽º¶ó¿¤, ¿µ±¹ µî ÁÖ¿ä ±¹¹æºñ ÁöÃâ ±¹°¡µéÀº ±¹¹æ ¿¹»êÀÇ »ó´ç ºÎºÐÀ» À°, ÇØ, °ø, »çÀ̹ö ¿µ¿ª¿¡ °ÉÄ£ ÀÚÀ² ½Ã½ºÅÛ °³¹ß ¹× ¹èÄ¡¿¡ ÇÒ´çÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅõÀÚÀÇ ¹è°æ¿¡´Â Á¡Á¡ ´õ º¹ÀâÇØÁö°í ºü¸£°Ô ÁøÈÇÏ´Â ºÐÀï ȯ°æ¿¡¼ °áÁ¤ÀûÀÎ ¿ìÀ§¸¦ À¯ÁöÇØ¾ß ÇÒ Çʿ伺ÀÌ ÀÖ½À´Ï´Ù. µå·Ð ÀüÀï, »çÀ̹ö À§Çù, ÀüÀÚÀû ´ëÀÀ ¼ö´ÜÀÇ È®»êÀº ±âÁ¸ ¹«±â ü°èÀÇ ÇѰ踦 ÀÔÁõÇϰí ÀÚÀ² Ç÷§ÆûÀÌ Á¦°øÇÏ´Â Àü·«Àû ¿ìÀ§¸¦ ºÎ°¢½ÃÄ×½À´Ï´Ù. Àεµ, Æ¢¸£Å°¿¹, Çѱ¹, À̶õ°ú °°Àº ½ÅÈï±¹µéµµ ¾ïÁö·ÂÀ» °ÈÇÏ°í ¿Ü±¹ ±¹¹æ ±â¼ú¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß±â À§ÇØ ÀÌ ºÐ¾ßÀÇ °³¹ßÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ² ½Ã½ºÅÛ(ƯÈ÷ ¹«ÀÎÇ×°ø±â)ÀÇ ¿î¿µ ºñ¿ëÀº À¯ÀÎ Ç÷§Æû¿¡ ºñÇØ »ó´ëÀûÀ¸·Î ³·±â ¶§¹®¿¡ ¿¹»êÀÌ ºÎÁ·ÇÑ Áß°ß±¹ ±º´ë¿¡°Ôµµ ¸Å·ÂÀûÀÔ´Ï´Ù. ¶ÇÇÑ ÀÚÀ² ½Ã½ºÅÛÀ» ½Å¼ÓÇÏ°Ô È®ÀåÇϰí, ´ë·® ¹èÄ¡Çϰí, ´Ù¾çÇÑ ÀÓ¹« ÇÁ·ÎÇÊ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Â ´É·ÂÀº ±º´ëÀÇ À¯¿¬¼º°ú Áï°¢ÀûÀÎ ´ëÀÀ·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹æÀ§ °ü·Ã ±â¾÷, R&D ±â°ü, Á¤ºÎ Áö¿ø ±â¼ú Çõ½Å ±â°üÀº ÀÌ·¯ÇÑ ±â¼úÀÇ »ó¿ëÈ¿Í ½ÇÀü ¹èÄ¡¸¦ ½Å¼ÓÇÏ°Ô ÁøÇàÇϱâ À§ÇØ Àû±ØÀûÀ¸·Î Çù·ÂÇϰí ÀÖ½À´Ï´Ù. ¼öÃâ °¡´É¼ºÀº ¶Ç ´Ù¸¥ ¿øµ¿·ÂÀ̸ç, °¢±¹Àº AI ´ëÀÀ ¹«±â·Î ÀÎÇØ Çü¼ºµÇ´Â »õ·Î¿î ¹«±â ±³¿ª »óȲ¿¡¼ ¸®´õ°¡ µÇ°íÀÚ ÇÕ´Ï´Ù. ´ÙÀÚ°£ ±äÀå, ±ººñ °æÀï, µ¿¸Í °ü°èÀÇ º¯È´Â °¢±¹ÀÌ ÀηÂÀ» À§Çè¿¡ ºü¶ß¸®Áö ¾Ê°í ¾ïÁ¦·Â°ú ÀüÅõ ż¼¸¦ Á¦°øÇÏ´Â ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼¼°è ¾Èº¸ Á¤¼¼°¡ ´õ¿í ºÒ¾ÈÁ¤ÇØÁü¿¡ µû¶ó, Àü·« ¿ìÀ§¿Í ÀÛÀü ¿¬¼Ó¼ºÀ» º¸ÀåÇÏ´Â µ¥ ÇʼöÀûÀÎ ¿ä¼Ò·Î °£Áֵǰí ÀÖ½À´Ï´Ù.
¼¼°è ÀÚÀ² ±º¿ë ¹«±â ½ÃÀåÀÇ ±Þ°ÝÇÑ ¼ºÀåÀ» ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀϱî?
¼¼°è ÀÚÀ² ±º¿ë ¹«±â ½ÃÀåÀÇ ¼ºÀåÀº ÁøÈÇÏ´Â ÀüÀï ÆÐ·¯´ÙÀÓ, ÁöÁ¤ÇÐÀû °¥µî, ±â¼úÀû ¼º¼÷µµ, ±¹¹æ Çö´ëÈ Àü·« µî ¿©·¯ °¡Áö º¹ÇÕÀûÀÎ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ÀüÅëÀûÀÎ Àη Áý¾àÇü ÀÛÀü¿¡¼ ÇÏÀÌÅ×Å©, µ¥ÀÌÅÍ ±â¹Ý, ÀúÀ§Çè ÀüÅõ Àü·«À¸·ÎÀÇ ÀüȯÀÌ ÀÌ ½ÃÀåÀÇ ±âº»ÀûÀÎ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ºñ´ëĪ ÀüÀï, ¹Ý¶õ ÀÛÀü, ºñ±¹°¡ ÁÖü¿¡ ÀÇÇÑ À§ÇùÀº Á¤¹ÐÇϰí Áö¼ÓÀûÀÎ °¨½Ã ¹× °ø°Ý ´É·ÂÀ» ÇÊ¿ä·Î Çϸç, ÀÚÀ² ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ ¿ä±¸¸¦ ¸Å¿ì Àß ÃæÁ·½Ãŵ´Ï´Ù. ¶ÇÇÑ µ¿À¯·´, ³²Áß±¹ÇØ, Áßµ¿ µîÀÇ Áö¿ª¿¡¼ ÁøÇà ÁßÀÎ ¼¼°è ºÐÀï°ú ±º»çÀû ±äÀåÀÌ °íÁ¶µÇ¸é¼ ÀÚÀ² ¹× ¿ø°Ý Á¶Á¾ ¹«±âÀÇ ±ä±Þ Á¶´Þ¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ¼ºÀå ¿äÀÎÀº Àΰ£-±â°è ÆÀ°ú Àΰ£¿¡ ÀÇÇÑ ¾Æ¿ô¿Àºê-·çÇÁ(out-of-loop) ÀÛÀüÀÌ ¹Þ¾Æµé¿©Áö°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. Á¤ºÎ ±¹¹æ °èȹÀÇ Áö¼ÓÀûÀÎ ÀÚ±Ý Áö¿ø°ú ±â¹Ð ÇÁ·ÎÁ§Æ® ¹× ¾ÏÈæ ¿¹»ê ÇÁ·ÎÁ§Æ®ÀÇ Áö¿øÀº ±â¼ú Çõ½Å°ú ¹èÄ¡ ¼Óµµ¸¦ °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. ±¹Á¦ °æÀï°ú ÀÚÀ² »ì»ó ½Ã½ºÅÛ¿¡ ´ëÇÑ ±¸¼Ó·Â ÀÖ´Â ±ÔÁ¦°¡ ¾ø´Â °Íµµ Å« ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, °¢±¹Àº ¹ýÀû Á¦¾à ¾øÀÌ Àû±ØÀûÀ¸·Î °³¹ßÀ» ÁøÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ƯÈ÷ AI º¥Ã³±â¾÷, ·Îº¿ ±â¾÷, ´ëÇü ÇÏÀÌÅ×Å© ±â¾÷ µî »ó¾÷ ºÎ¹®ÀÇ ±â¿©·Î ¹Î°£ÀÇ Çõ½ÅÀÌ ±º»ç ºÐ¾ß¿¡ µµÀÔµÇ¾î °³¹ß ÁֱⰡ ´ÜÃàµÇ°í ´É·ÂÀÌ È®´ëµÇ°í ÀÖÀ¸¸ç, 5G, IoT, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ°ú ±¹¹æ ±â¼úÀÇ À¶ÇÕÀ» ÅëÇØ ¹æ´ëÇÑ ÀÛÀü Áö¿ª Àüü¿¡ °ÉÃÄ ÀÚÀ²ÀûÀÎ Ç÷§ÆûÀÇ ½Ç½Ã°£ Á¶Á¤ÀÌ °¡´ÉÇØÁý´Ï´Ù. ¼¼°è °´ë±¹µéÀÌ ¾ïÁö·ÂÀ» ÀçÁ¤ÀÇÇÏ°í ¹Ì·¡ ÀüÀå¿¡¼ ¾ÐµµÀûÀÎ Àü·ÂÀ» ±¸ÇöÇϱâ À§ÇØ ³ë·ÂÇÏ´Â °¡¿îµ¥, ±â¼úÀû ¿ª·®, Àü·«Àû Çʿ伺, °æÀïÀû ±ä±Þ¼ºÀÌ °·ÂÇÏ°Ô °áÇյǾî ÀÚÀ² ±º¿ë ¹«±â ½ÃÀåÀº ºñ¾àÀûÀÎ ¼ºÀåÀ» ÀÌ·ê °ÍÀÔ´Ï´Ù.
ºÎ¹®
Á¦Ç°(ÀÚÀ² ±º¿ë ¹Ì»çÀÏ, ÀÚÀ² ±º¿ë ź¾à, ÀÚÀ² ±º¿ë À¯µµ ·ÎÄÏ, ÀÚÀ² ±º¿ë À¯µµ ¹ß»çü, ÀÚÀ² ±º¿ë ±ØÃÊÀ½¼Ó ¹«±â, ±âŸ Á¦Ç°), Ç÷§Æû(À°»ó Ç÷§Æû, °øÁß Ç÷§Æû, ÇØ±º Ç÷§Æû)
AI ÅëÇÕ
¿ì¸®´Â °ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI ÅøÀ» ÅëÇØ ½ÃÀå°ú °æÀï Á¤º¸¸¦ Çõ½ÅÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM ¹× ¾÷°è °íÀ¯ÀÇ SLMÀ» Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»çÀÇ ±¹°¡, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±â¹ÝÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¸ÅÃâ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº °¨¼Ò, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû ¹× °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Global Autonomous Military Weapons Market to Reach US$23.7 Billion by 2030
The global market for Autonomous Military Weapons estimated at US$14.5 Billion in the year 2024, is expected to reach US$23.7 Billion by 2030, growing at a CAGR of 8.6% over the analysis period 2024-2030. Autonomous Military Missiles, one of the segments analyzed in the report, is expected to record a 7.3% CAGR and reach US$7.2 Billion by the end of the analysis period. Growth in the Autonomous Military Munitions segment is estimated at 10.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$3.8 Billion While China is Forecast to Grow at 8.4% CAGR
The Autonomous Military Weapons market in the U.S. is estimated at US$3.8 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$3.8 Billion by the year 2030 trailing a CAGR of 8.4% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 7.7% and 7.4% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.1% CAGR.
Global Autonomous Military Weapons Market - Key Trends & Drivers Summarized
Why Are Autonomous Military Weapons Reshaping Modern Warfare Doctrines and Defense Strategies?
Autonomous military weapons are fundamentally transforming the nature of warfare and national defense, marking a significant departure from traditional combat systems that rely heavily on human control. These systems, which range from unmanned aerial vehicles (UAVs) and autonomous ground robots to intelligent missile systems and naval drones, are designed to operate independently or semi-independently by leveraging artificial intelligence (AI), advanced sensors, and real-time data processing. Their growing deployment is reshaping military doctrines, emphasizing speed, precision, and minimal human risk in high-threat environments. Autonomous weapons reduce the need for soldiers to be physically present in combat zones, allowing militaries to engage in operations with lower casualties and higher operational efficiency. They can process vast amounts of battlefield data in milliseconds and execute decisions faster than human operators, providing a critical edge in modern high-tempo conflict scenarios. Furthermore, these systems can operate in environments deemed too dangerous or inaccessible for humans, such as chemical warfare zones, deep-sea reconnaissance missions, or cyber-physical warfare arenas. Their integration into network-centric warfare systems allows seamless coordination with other military assets-manned or unmanned-enabling joint, multi-domain operations. As nations seek to modernize their defense capabilities amid rising geopolitical tensions and asymmetrical threats, autonomous weapons are becoming central to strategic planning and force structuring. The global defense industry is adapting quickly, investing in R&D to produce more intelligent, self-sufficient, and mission-adaptive systems that can redefine the very concept of combat engagement in the 21st century.
How Are AI, Robotics, and Sensor Technologies Powering the Development of Autonomous Weapon Systems?
The rise of autonomous military weapons is being powered by rapid advancements in artificial intelligence, robotics, sensor integration, and autonomous navigation systems. At the core of these weapons are AI algorithms capable of target identification, threat classification, and engagement decision-making with minimal human oversight. Machine learning models enable these systems to learn from past missions and simulations, continuously refining their decision-making logic to adapt to new battlefield conditions. Sophisticated multi-modal sensors-including radar, infrared, LiDAR, and acoustic systems-provide 360-degree situational awareness, enabling autonomous systems to detect, track, and engage targets in diverse and unpredictable environments. Robotics technology has also evolved significantly, with ruggedized platforms that offer mobility across terrains ranging from urban streets to mountainous landscapes, even under adverse weather conditions. Navigation systems equipped with GPS, inertial guidance, and real-time mapping allow for autonomous maneuvering, obstacle avoidance, and mission path recalibration. Communications and data-link technologies ensure that autonomous systems can interact with command centers and other assets in real-time, often with encrypted, jam-resistant channels. Edge computing further empowers these systems by enabling faster data processing on-site, reducing reliance on constant connectivity with remote servers. This technological convergence is leading to the development of loitering munitions, swarming drones, and autonomous turrets-all capable of dynamic engagement without direct human intervention. Integration with cyberwarfare capabilities allows some autonomous systems to not only engage physical targets but also disrupt enemy networks and communications. As innovation continues, these technologies are setting the stage for a new era in military power-where intelligent systems can execute complex missions with minimal delay and unprecedented precision.
Why Is Global Investment in Autonomous Weapons Rising Among Leading and Emerging Military Powers?
Global investment in autonomous military weapons is surging as both leading and emerging military powers recognize their strategic importance in maintaining technological superiority and national security. Major defense spenders such as the United States, China, Russia, Israel, and the United Kingdom are allocating significant portions of their defense budgets to develop and deploy autonomous systems across land, sea, air, and cyber domains. These investments are driven by the need to maintain a decisive edge in increasingly complex and rapidly evolving conflict environments. The proliferation of drone warfare, cyber threats, and electronic countermeasures has demonstrated the limitations of conventional weapon systems and highlighted the strategic advantage offered by autonomous platforms. Emerging powers such as India, Turkey, South Korea, and Iran are also accelerating development in this domain to strengthen deterrence capabilities and reduce reliance on foreign defense technology. The relatively lower operating costs of autonomous systems-especially drones-compared to manned platforms make them attractive even for mid-tier militaries with constrained budgets. Additionally, the ability to rapidly scale, mass-deploy, and adapt autonomous systems to different mission profiles enhances military flexibility and responsiveness. Defense contractors, R&D institutes, and government-backed innovation agencies are actively partnering to fast-track the commercialization and fielding of these technologies. Export potential is another driver, as countries seek to become leaders in the emerging arms trade landscape shaped by AI-enabled weaponry. Multilateral tensions, arms races, and shifting alliances are further propelling nations to invest in systems that offer deterrence and combat readiness without endangering personnel. As the global security landscape becomes more volatile, autonomous military weapons are viewed as indispensable to ensuring strategic dominance and operational continuity.
What Factors Are Fueling the Rapid Growth of the Global Autonomous Military Weapons Market?
The growth in the global autonomous military weapons market is driven by several interlinked factors, including evolving warfare paradigms, geopolitical conflicts, technological maturity, and defense modernization strategies. The shift from conventional, manpower-intensive operations to high-tech, data-driven, and low-risk combat strategies is a fundamental driver of this market. Asymmetric warfare, insurgency operations, and the threat of non-state actors have necessitated precise and persistent surveillance and strike capabilities-needs that autonomous systems fulfill exceptionally well. Furthermore, ongoing global conflicts and escalating military tensions in regions such as Eastern Europe, the South China Sea, and the Middle East have spurred urgent procurement of autonomous and remotely operated weaponry. Another growth factor is the increasing acceptance of man-machine teaming and human-out-of-the-loop operations, which allow for faster mission execution while reducing response times and casualties. Continuous funding from government defense programs, along with support from classified and black-budget projects, is accelerating the pace of innovation and deployment. International competition and the absence of binding regulations governing autonomous lethal systems also play a significant role, enabling countries to aggressively pursue development without legal constraints. Additionally, commercial sector contributions, particularly from AI startups, robotics firms, and big tech players, are bringing civilian innovations into military applications, shortening development cycles and expanding capabilities. The convergence of 5G, IoT, and cloud computing with defense technologies enables real-time coordination of autonomous platforms across vast operational theaters. As global powers seek to redefine deterrence and achieve overmatch in future battlefields, the autonomous military weapons market is set for exponential growth, supported by a potent mix of technological capability, strategic necessity, and competitive urgency.
SCOPE OF STUDY:
The report analyzes the Autonomous Military Weapons market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Product (Autonomous Military Missiles, Autonomous Military Munitions, Autonomous Military Guided Rockets, Autonomous Military Guided Projectiles, Autonomous Military Hypersonic Weapons, Other Products); Platform (Land Platform, Airborne Platform, Naval Platform)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 36 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.