![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791557
¼¼°èÀÇ Á¤À¯¼Ò³» ¼ö¼Ò Á¦Á¶ ½ÃÀåCaptive Petroleum Refinery Hydrogen Generation |
¼¼°èÀÇ Á¤À¯¼Ò³» ¼ö¼Ò Á¦Á¶ ½ÃÀåÀº 2030³â±îÁö 778¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 542¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ Á¤À¯¼Ò³» ¼ö¼Ò Á¦Á¶ ½ÃÀåÀº 2024-2030³â¿¡ CAGR 6.2%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 778¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¼öÁõ±â °³Áú ÇÁ·Î¼¼½º´Â CAGR 6.8%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 496¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀüÇØ ÇÁ·Î¼¼½º ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£ Áß CAGR 5.5%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº ÃßÁ¤ 143¾ï ´Þ·¯, Áß±¹Àº CAGR 6.0%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ Á¤À¯¼Ò³» ¼ö¼Ò Á¦Á¶ ½ÃÀåÀº 2024³â¿¡ 143¾ï ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 125¾ï ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³âÀÇ CAGRÀº 6.0%ÀÔ´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 5.8%¿Í 5.2%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR 4.9%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ Á¤À¯¼Ò³» ¼ö¼Ò Á¦Á¶ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Á¤À¯¼Ò¿¡¼ÀÇ Ä¸Æ¼ºê ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
Á¤À¯¼Ò¿¡¼ÀÇ ¼ö¼Ò »ý»ê ¼¼°è ½ÃÀåÀº Á¤Á¦ °øÁ¤ÀÇ ¼ö¼Ò ¼ö¿ä Áõ°¡·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â Á¤À¯¿¡¼ ÁÖ·Î ¼ö¼ÒÈ ºÐÇØ ¹× ŻȲ °øÁ¤¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, ÀÌ´Â ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¿¡ ºÎÇÕÇϴ ûÁ¤ ¿¬·á¸¦ »ý»êÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ¼¼°è °¢±¹ Á¤ºÎ°¡ ÈÖ¹ßÀ¯¿Í µðÁ©ÀÇ È² ÇÔ·® °¨¼Ò¸¦ Àǹ«ÈÇÔ¿¡ µû¶ó Á¤À¯»çµéÀº ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϰí Á¦Ç°ÀÇ Ç°ÁúÀ» À¯ÁöÇϱâ À§ÇØ ¼ö¼Ò »ý»ê ´É·ÂÀ» È®´ëÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. ¶ÇÇÑ ¿øÀ¯ Àüȯ È¿À²À» Çâ»ó½Ã۱â À§ÇØ Á¤Á¦ °øÁ¤¿¡¼ ¼ö¼Ò¸¦ »ç¿ëÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, Á¤À¯¼Ò´Â ¼öÀ²°ú ¼öÀͼºÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ĸƼºê ¼ö¼Ò »ý»êÀ» ÅëÇØ Á¤À¯»ç´Â ¾ÈÁ¤ÀûÀÎ ¼ö¼Ò °ø±ÞÀ» Áö¼ÓÀûÀ¸·Î È®º¸ÇÒ ¼ö ÀÖÀ¸¸ç, ¿ÜºÎ °ø±Þ¾÷ü¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß°í ¼ö¼Ò °¡°Ý º¯µ¿°ú °ø±Þ¸Á È¥¶õ¿¡ µû¸¥ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¿î¿µ È¿À²¼º°ú ºñ¿ë °ü¸®¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼ Á¤À¯¼ÒÀÇ ÇöÀå ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
±â¼ú ¹ßÀüÀÌ Á¤À¯¼ÒÀÇ ¼ö¼Ò »ý»êÀ» ¾î¶»°Ô °ÈÇϰí Àִ°¡?
±â¼úÀÇ ¹ßÀüÀº Á¤À¯¼Ò¿¡¼ÀÇ ¼ö¼Ò »ý»êÀÇ È¿À²¼º, Áö¼Ó°¡´É¼º, ºñ¿ë È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. ½ºÆÀ ¸Þź °³Áú(SMR)Àº ³ôÀº È¿À²°ú È®À强À» Á¦°øÇϸç, Á¤À¯¼Ò¿¡¼ ¼ö¼Ò »ý»ê¿¡ °¡Àå ³Î¸® »ç¿ëµÇ´Â ¹æ¹ýÀÔ´Ï´Ù. ±×·¯³ª ȯ°æ ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ ÃֽŠSMR ±â¼ú¿¡´Â ºÎ»ê¹°ÀÎ CO2¸¦ ȸ¼ö ¹× ÀúÀåÇÏ¿© ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̴ ź¼Ò Æ÷Áý ¹× ÀúÀå(CCS) ½Ã½ºÅÛÀÌ ³»ÀåµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú Çõ½ÅÀº Àü ¼¼°èÀÇ Å»Åº¼ÒÈ ³ë·Â°ú ÀÏÄ¡Çϸç, ¼ö¼Ò »ý¼ºÀ» º¸´Ù ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÏ°Ô ¸¸µé°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ Á¤À¯»çµéÀº ¿¡³ÊÁö È¿À²À» °³¼±ÇÏ°í ¿ø·á ¼±ÅÃÀÇ À¯¿¬¼ºÀ» Á¦°øÇÏ´Â ÀÚ°¡¿°³Áú(ATR), ºÎºÐ»êÈ(POX) µî ´ëü ¼ö¼Ò »ý»ê ±â¼úÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ž籤 ¹× dz·Â¹ßÀü°ú °°Àº Àç»ý¿¡³ÊÁö¸¦ ¼ö¼Ò »ý»ê °øÁ¤¿¡ ÅëÇÕÇÏ´Â °Íµµ Á¤Á¦ »ç¾÷ÀÇ ÀÌ»êÈź¼Ò ¹èÃâ·®À» ´õ¿í ÁÙÀ̱â À§ÇØ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿È ¹× µðÁöÅÐ ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î ¼ö¼Ò »ý»êÀÇ ½Ç½Ã°£ ÃÖÀûȰ¡ °¡´ÉÇØÁ® Æó±â¹°À» ÃÖ¼ÒÈÇÏ°í ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ¸ç ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû °³¼±À¸·Î ÀÎÇØ ĸƼºê ¼ö¼Ò »ý»êÀº È¿À²¼º, ºñ¿ë, ȯ°æ ±ÔÁ¦ Áؼö »çÀÌÀÇ ±ÕÇüÀ» Ãß±¸ÇÏ´Â ÃֽŠÁ¤À¯»çµé¿¡°Ô ´õ¿í ¸Å·ÂÀûÀÎ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
ÁÖ¿ä Á¤Á¦ Áö¿ª¿¡¼ ½ÃÀåÀÌ ¼ºÀåÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀΰ¡?
Á¤À¯¼Ò¿¡¼ÀÇ ¼ö¼Ò »ý»ê ½ÃÀåÀº ƯÈ÷ ºÏ¹Ì, ¾Æ½Ã¾ÆÅÂÆò¾ç, Áßµ¿ µî Á¤Á¦ Ȱµ¿ÀÌ È°¹ßÇÑ Áö¿ª¿¡¼ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù·Î ´ëÇ¥µÇ´Â ºÏ¹Ì¿¡¼´Â ¹è±â°¡½º ±ÔÁ¦°¡ °ÈµÇ°í ûÁ¤ ¿¬·á »ý»ê¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ¼ö¼Ò ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Á¤À¯»çµéÀº ¿î¿µÀÇ À¯¿¬¼ºÀ» À¯ÁöÇÏ¸é¼ È² ÇÔÀ¯·® ±ÔÁ¦¿¡ ´ëÀÀÇϱâ À§ÇØ ¿Â»çÀÌÆ® ¼ö¼Ò »ý»ê¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¼ÎÀÏ ¿ÀÀÏ Á¤Á¦ÀÇ ºÎ»óÀ¸·Î ºñÀüÅë ¿øÀ¯¸¦ ó¸®ÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¼ö¼ÒÀÇ Çʿ伺ÀÌ Áõ°¡ÇÏ¿© ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¾Æ½Ã¾ÆÅÂÆò¾ç, ƯÈ÷ Áß±¹°ú Àεµ´Â Á¤À¯¼Ò¿¡¼ÀÇ Ä¸Æ¼ºê ¼ö¼Ò »ý»êÀÇ ÁÖ¿ä ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â ±Þ¼ÓÇÑ »ê¾÷È¿Í ¿¡³ÊÁö ¼ö¿ä Áõ°¡·Î ÀÎÇØ Á¤Á¦ ´É·ÂÀÌ Å©°Ô È®´ëµÇ°í ÀÖ½À´Ï´Ù. ´ë±â¿À¿° °¨¼Ò¿Í ûÁ¤¿¬·á º¸±ÞÀ» À§ÇÑ Á¤ºÎ Á¤Ã¥À¸·Î ÀÎÇØ Á¤À¯»ç¾÷¿¡¼ ¼ö¼ÒÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ Àú·ÅÇÑ Ãµ¿¬°¡½º °ø±ÞÀº SMRÀ» ÅëÇÑ ¼ö¼Ò »ý»êÀÇ Å¸´ç¼ºÀ» ³ôÀ̰í, Á¤À¯»ç¿¡°Ô ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
ÇÑÆí, Áßµ¿Àº ÁÖ¿ä »êÀ¯±¹µéÀÌ Á¤À¯¼Ò Çö´ëÈ ÇÁ·ÎÁ§Æ®¿¡ ÅõÀÚÇÏ¸é¼ Á¤À¯ ºÎ¹®ÀÇ Áö¹èÀûÀÎ ±â¾÷À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ¼ö¼Ò´Â ÀÌ Áö¿ªÀÇ ÀϹÝÀûÀÎ ÁßÁú ¿øÀ¯¸¦ ó¸®ÇÏ´Â µ¥ ÇʼöÀûÀ̸ç, Æ÷·Î ¼ö¼Ò »ý¼ºÀ» ÅëÇØ Á¤À¯¼Ò´Â ºñ¿ë È¿À²¼ºÀ» À¯ÁöÇÏ¸é¼ Ã³¸® ´É·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Áßµ¿ÀÌ ¿¡³ÊÁö Æ÷Æ®Æú¸®¿À ´Ù°¢È¿Í ûÁ¤ Á¤Á¦ ±â¼ú µµÀÔ¿¡ ÁÖ·ÂÇϰí ÀÖ´Â ¸¸Å, ¼ö¼Ò ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ´Â Áö¼ÓÀûÀ¸·Î È®´ëµÉ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
Á¤À¯¼Ò ¼ö¼Ò »ý»ê ½ÃÀåÀÇ ¼ºÀåÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖ½À´Ï´Ù. ûÁ¤ ¿¬·á¿¡ ´ëÇÑ ¼¼°è ¼ö¿ä Áõ°¡´Â °¢±¹ Á¤ºÎ°¡ ¿î¼Û ¹× »ê¾÷ Ȱµ¿¿¡¼ ¹èÃâµÇ´Â ¿À¿°¹°ÁúÀ» ÁÙÀ̱â À§ÇØ ´õ¿í ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖ´Â °ÍÀÌ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¼ö¼Ò´Â Á¤À¯¼Ò°¡ ÀÌ·¯ÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÃæÁ·Çϰí ÁøÈÇÏ´Â ¿¬·á ǰÁú Ç¥ÁØÀ» ÁؼöÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ Á¤À¯»ç¿¡°Ô ÀÖÀ¸¸ç, ºñ¿ë ÃÖÀûÈ´Â Å« ¿øµ¿·ÂÀÔ´Ï´Ù. ¿ÜºÎ ¼ö¼Ò °ø±Þ¾÷ü¿¡ ÀÇÁ¸ÇÒ °æ¿ì °¡°Ý º¯µ¿°ú ¹°·ù ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö Àֱ⠶§¹®ÀÔ´Ï´Ù. ÇöÀå¿¡¼ ¼ö¼Ò¸¦ »ý»êÇÔÀ¸·Î½á Á¤À¯¼Ò´Â ºñ¿ë°ú »ý»ê ÀÏÁ¤À» º¸´Ù ¼¼¹ÐÇÏ°Ô °ü¸®ÇÒ ¼ö ÀÖÀ¸¸ç, Àü¹ÝÀûÀÎ È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. µðÁöÅÐ ¸ð´ÏÅ͸µ°ú AI ±â¹Ý ¿¹Ãø ºÐ¼®ÀÇ ÅëÇÕÀ¸·Î ½Ç½Ã°£ °øÁ¤ ÃÖÀûÈ ¹× »çÀü À¯Áöº¸¼ö°¡ °¡´ÉÇØÁ® ĸƼºê ¼ö¼Ò »ý»êÀÇ ¿î¿µ»óÀÇ ÀÌÁ¡À» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ Á¤Á¦ °üÇà°ú ź¼Ò Á߸³ °³³äÀ¸·ÎÀÇ ÀüȯÀº ´õ Ŭ¸° ¼ö¼Ò »ý»ê ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¸¹Àº Á¤À¯¼ÒµéÀº ¼ö¼Ò »ý»êÀ» º¸´Ù ģȯ°æÀûÀ¸·Î ¸¸µé±â À§ÇØ Åº¼Ò Æ÷Áý ¼Ö·ç¼Ç°ú Àç»ý¿¡³ÊÁöÀÇ ÅëÇÕÀ» ¸ð»öÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·ÂÀº Àü ¼¼°è Żź¼ÒÈ ¸ñÇ¥¿¡ ºÎÇÕÇϸç, ¿¡³ÊÁö Àüȯ Àü·«ÀÇ ÇÙ½É ¿ä¼Ò·Î¼ ¼ö¼ÒÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
Á¤Á¦ »ê¾÷ÀÌ °è¼Ó ÁøÈÇÏ´Â °¡¿îµ¥, È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀ̸ç ȯ°æÀûÀ¸·Î Áö¼Ó°¡´ÉÇÑ ¼ö¼Ò »ý»ê ¼Ö·ç¼ÇÀÇ Çʿ伺Àº ¾ÕÀ¸·Îµµ °è¼Ó ¿ì¼±¼øÀ§°¡ µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ĸƼºê ¼ö¼Ò »ý»êÀº Á¤À¯¼ÒÀÇ ¾ÈÁ¤ÀûÀÎ °ø±ÞÀ» º¸ÀåÇÒ »Ó¸¸ ¾Æ´Ï¶ó, ±ÔÁ¦ ȯ°æÀÇ º¯È ¹× ±â¼ú ¹ßÀü¿¡ ´ëÀÀÇÏ¿© Àå±âÀûÀÎ ½ÃÀå ¼ºÀå°ú °æÀï·ÂÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ºÎ¹®
ÇÁ·Î¼¼½º(¼öÁõ±â °³Áú ÇÁ·Î¼¼½º, ÀüÇØ ÇÁ·Î¼¼½º, ±âŸ ÇÁ·Î¼¼½º)
AI ÅëÇÕ
°ËÁõµÈ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AI Åø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇÕ´Ï´Ù.
Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â °ÍÀÌ ¾Æ´Ï¶ó, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾ç ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÔ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Captive Petroleum Refinery Hydrogen Generation Market to Reach US$77.8 Billion by 2030
The global market for Captive Petroleum Refinery Hydrogen Generation estimated at US$54.2 Billion in the year 2024, is expected to reach US$77.8 Billion by 2030, growing at a CAGR of 6.2% over the analysis period 2024-2030. Steam Reformer Process, one of the segments analyzed in the report, is expected to record a 6.8% CAGR and reach US$49.6 Billion by the end of the analysis period. Growth in the Electrolysis Process segment is estimated at 5.5% CAGR over the analysis period.
The U.S. Market is Estimated at US$14.3 Billion While China is Forecast to Grow at 6.0% CAGR
The Captive Petroleum Refinery Hydrogen Generation market in the U.S. is estimated at US$14.3 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$12.5 Billion by the year 2030 trailing a CAGR of 6.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 5.8% and 5.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 4.9% CAGR.
Global Captive Petroleum Refinery Hydrogen Generation Market: Key Trends & Drivers Summarized
What Is Fueling the Demand for Captive Hydrogen Generation in Petroleum Refineries?
The global captive petroleum refinery hydrogen generation market is witnessing significant growth, driven by the increasing demand for hydrogen in refining processes. Hydrogen plays a crucial role in petroleum refining, primarily in hydrocracking and desulfurization processes, which are essential for producing cleaner fuels that comply with stringent environmental regulations. With governments worldwide enforcing lower sulfur content in gasoline and diesel, refineries are compelled to expand their hydrogen production capacity to meet regulatory requirements and maintain product quality. Additionally, hydrogen is increasingly being used in refining processes to improve crude oil conversion efficiency, enabling refineries to optimize yield and profitability. By adopting captive hydrogen generation, refineries can ensure a reliable and continuous supply of hydrogen, reducing dependency on external suppliers and mitigating risks associated with fluctuating hydrogen prices and supply chain disruptions. The growing need for operational efficiency and cost control further drives the demand for on-site hydrogen generation in refineries.
How Are Technological Advancements Enhancing Hydrogen Generation in Refineries?
Technological advancements have significantly improved the efficiency, sustainability, and cost-effectiveness of hydrogen generation in petroleum refineries. Steam Methane Reforming (SMR) remains the most widely used method for hydrogen production in refineries, offering high efficiency and scalability. However, to address environmental concerns, modern SMR technologies are now incorporating Carbon Capture and Storage (CCS) systems, which help reduce greenhouse gas emissions by capturing and storing CO2 byproducts. This innovation aligns with global decarbonization efforts and makes hydrogen generation more environmentally sustainable.
Additionally, refineries are exploring alternative hydrogen production technologies such as Autothermal Reforming (ATR) and Partial Oxidation (POX), which offer improved energy efficiency and flexibility in feedstock selection. The integration of renewable energy sources, such as solar and wind power, into hydrogen production processes is also being considered to further reduce the carbon footprint of refining operations. Furthermore, advancements in automation and digital monitoring systems enable real-time optimization of hydrogen production, minimizing waste, enhancing safety, and reducing operational costs. These technological improvements make captive hydrogen generation a more attractive option for modern refineries seeking to balance efficiency, cost, and environmental compliance.
Why Is the Market Growing in Key Refining Regions?
The captive petroleum refinery hydrogen generation market is expanding rapidly in regions with a strong presence of refining activities, particularly in North America, Asia-Pacific, and the Middle East. North America, led by the United States and Canada, is experiencing increased demand for hydrogen due to stricter emissions regulations and a growing emphasis on cleaner fuel production. Refineries in the region are investing in on-site hydrogen generation to comply with sulfur content mandates while maintaining operational flexibility. Additionally, the rise of shale oil refining has increased the need for hydrogen in processing unconventional crude oil, further boosting market growth.
Asia-Pacific, particularly China and India, is emerging as a key market for captive hydrogen generation in refineries. Rapid industrialization and growing energy demands in these countries have led to significant expansion in refining capacity. Government policies aimed at reducing air pollution and promoting cleaner fuels have accelerated hydrogen adoption in refining operations. The availability of low-cost natural gas in the region also supports the feasibility of hydrogen production through SMR, making it a cost-effective solution for refineries.
Meanwhile, the Middle East remains a dominant player in the refining sector, with major oil-producing nations investing in refinery modernization projects. Hydrogen is essential for processing heavy crude oils common in the region, and captive hydrogen generation allows refineries to enhance their processing capabilities while maintaining cost efficiency. With the Middle East's focus on diversifying energy portfolios and adopting cleaner refining technologies, investments in hydrogen infrastructure are expected to continue growing.
What Factors Are Propelling Market Growth?
The growth in the captive petroleum refinery hydrogen generation market is driven by several critical factors. The increasing global demand for cleaner fuels is a primary catalyst, as governments enforce stricter environmental regulations to reduce emissions from transportation and industrial activities. Hydrogen plays a key role in helping refineries meet these regulatory requirements, ensuring compliance with evolving fuel quality standards.
Additionally, cost optimization is a major driver for refineries, as reliance on external hydrogen suppliers can result in price fluctuations and logistical challenges. By generating hydrogen on-site, refineries can achieve greater control over costs and production schedules, improving overall efficiency. The growing integration of digital monitoring and AI-based predictive analytics further enhances the operational benefits of captive hydrogen generation by enabling real-time process optimization and proactive maintenance.
Furthermore, the shift toward sustainable refining practices and carbon-neutral initiatives is fueling investment in cleaner hydrogen production technologies. Many refineries are exploring carbon capture solutions and renewable energy integration to make hydrogen production more environmentally friendly. These sustainability efforts align with global decarbonization targets and encourage the adoption of hydrogen as a key component of energy transition strategies.
As the refining industry continues to evolve, the need for efficient, cost-effective, and environmentally sustainable hydrogen generation solutions will remain a priority. Captive hydrogen generation not only ensures a stable supply for refineries but also positions them to adapt to the changing regulatory landscape and technological advancements, ensuring long-term growth and competitiveness in the market.
SCOPE OF STUDY:
The report analyzes the Captive Petroleum Refinery Hydrogen Generation market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Process (Steam Reformer Process, Electrolysis Process, Other Processes)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 32 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.