![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1791657
¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¿Âº¸µå ÃæÀü±â(OBC) ½ÃÀåElectric Vehicle On-Board Charger |
¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¿Âº¸µå ÃæÀü±â(OBC) ½ÃÀåÀº 2030³â±îÁö 768¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 267¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â Àü±âÀÚµ¿Â÷ ¿Âº¸µå ÃæÀü±â(OBC) ¼¼°è ½ÃÀåÀº 2024-2030³â°£ CAGR 19.3%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 768¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ ¹èÅ͸® Àü±âÀÚµ¿Â÷ ÃßÁøÀº CAGR18.1%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 460¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷ ÃßÁø ºÐ¾ßÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR20.9%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 70¾ï ´Þ·¯, Áß±¹Àº CAGR 18.3%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø
¹Ì±¹ÀÇ Àü±âÀÚµ¿Â÷ ¿Âº¸µå ÃæÀü±â(OBC) ½ÃÀåÀº 2024³â¿¡ 70¾ï ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2030³â±îÁö 118¾ï ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGRÀº 18.3%·Î ÃßÁ¤µË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 17.6%¿Í 16.8%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 14.3%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ Àü±âÀÚµ¿Â÷ ¿Âº¸µå ÃæÀü±â(OBC) ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Â÷·®¿ë ÃæÀü±â´Â Àü±âÂ÷ ÃæÀü °æÇèÀ» ¾î¶»°Ô Çü¼ºÇϰí Àִ°¡?
¿Âº¸µå ÃæÀü±â(OBC)´Â Àü±âÀÚµ¿Â÷(EV) ÃæÀü °úÁ¤¿¡¼ Áß¿äÇÑ ±¸¼º ¿ä¼Ò·Î, ÃæÀü¼ÒÀÇ ±³·ù(AC)¸¦ EVÀÇ ¹èÅ͸® ÃæÀü¿¡ ÇÊ¿äÇÑ Á÷·ù(DC)·Î º¯È¯ÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿¬·á Àü´ÞÀ» ¿ÜºÎ ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ ³»¿¬±â°ü Â÷·®°ú ´Þ¸® Àü±âÀÚµ¿Â÷´Â OBC¿Í °°Àº ÅëÇÕ ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏ¿© ¿øÈ°Çϰí È¿À²ÀûÀÎ ¿¡³ÊÁö Àü´ÞÀ» º¸ÀåÇÕ´Ï´Ù. OBC´Â ÀϹÝÀûÀ¸·Î Â÷·® ³»ºÎ¿¡ ¼³Ä¡µÇ¾î ÃæÀü ¼Óµµ¸¦ Á¶Á¤ÇÏ°í ¹èÅ͸®°¡ ¾ÈÀüÇϰí È¿À²ÀûÀ¸·Î ÀûÀýÇÑ ¾çÀÇ ÃæÀüÀ» ¹ÞÀ» ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. OBCÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÃæÀü ½Ã°£ ´ÜÃà, ¿¡³ÊÁö È¿À² Çâ»ó, ¼ÒÇüȸ¦ ½ÇÇöÇÏ¿© ¼ºÀåÇÏ´Â Àü±âÂ÷ ½ÃÀå¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸î ³â µ¿¾È, ¼º´É¿¡ ´ëÇÑ Å¸Çù ¾øÀÌ º¸´Ù ÄÄÆÑÆ®ÇÏ°í °¡º¿î OBC ¼³°è·Î ÀüȯÇÏ´Â °ÍÀÌ Å« Ãß¼¼ÀÔ´Ï´Ù. ´õ ºü¸£°í È¿À²ÀûÀÎ ÃæÀü¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ¿ä±¸°¡ ³ô¾ÆÁü¿¡ µû¶ó Ãʰí¼Ó ÃæÀüÀÌ °¡´ÉÇÑ °íÃâ·Â OBCÀÇ °³¹ßÀÌ °¡¼ÓȵǾî Àü±âÀÚµ¿Â÷ÀÇ ÆíÀǼº°ú ¸Å·Âµµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¾÷°è°¡ ²÷±è ¾ø´Â »ç¿ëÀÚ °æÇèÀ» ÃÖ¿ì¼±½ÃÇÏ´Â °¡¿îµ¥, OBC´Â EV°¡ ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃæÀü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ³ôÀº ±â´ëÄ¡¸¦ ÃæÁ·½ÃŰ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
´õ ºü¸¥ ÃæÀüÀ» À§ÇÑ Â÷·®¿ë ÃæÀü±âÀÇ ±â¼ú Çõ½ÅÀº ¾î¶»°Ô ÁøÇàµÇ°í ÀÖÀ»±î?
Â÷·®¿ë ÃæÀü±â(OBC)ÀÇ °³¹ßÀº ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º, ¿ °ü¸®, ¹èÅ͸® ÈÇÐÀÇ ±â¼ú Çõ½Å°ú ¹ÐÁ¢ÇÑ °ü·ÃÀÌ ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀÌ Á¾ÇÕÀûÀ¸·Î EV ÃæÀüÀÇ °í¼ÓÈ, ¾ÈÀü¼º, È¿À²¼º Çâ»ó¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áß¿äÇÑ ±â¼ú ¹ßÀü Áß Çϳª´Â ½Ç¸®ÄÜ Ä«¹ÙÀ̵å(SiC)¿Í ÁúȰ¥·ý(GaN) ¹ÝµµÃ¼¸¦ OBC ¼³°è¿¡ ÅëÇÕÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±¤´ë¿ª °¸ ¹ÝµµÃ¼´Â ´õ ³ôÀº È¿À²°ú ´õ ºü¸¥ ½ºÀ§Äª ¼Óµµ¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ¿¡³ÊÁö ¼Õ½ÇÀ» ÁÙÀ̰í ÃæÀü ÀåÄ¡ÀÇ ¼ÒÇüÈ ¹× °æ·®È¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±× °á°ú, SiC ¹× GaN ±â¹Ý OBC¸¦ žÀçÇÑ EV´Â Àüü ½Ã½ºÅÛ È¿À²À» ³ôÀÌ¸é¼ ´õ ºü¸¥ ÃæÀüÀÌ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ, ¿ °ü¸® ±â¼úÀÇ ¹ßÀüÀº °í¼Ó ÃæÀü Áß OBC¸¦ Àú¿ÂÀ¸·Î À¯ÁöÇÏ¿© °ú¿À» ¹æÁöÇϰí ÃæÀü±â¿Í Â÷·® ¹èÅ͸®ÀÇ ¼ö¸íÀ» º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¹èÅ͸® »óÅÂ, ÃæÀü »óÅÂ, ¿ÜºÎ ¿Âµµ µîÀÇ ¿äÀο¡ µû¶ó ÃæÀü °úÁ¤À» ÃÖÀûÈÇÏ´Â »õ·Î¿î ¼ÒÇÁÆ®¿þ¾î ¾Ë°í¸®Áòµµ ¹èÅ͸® ¼Õ»óÀ» ¹æÁöÇϰí ÃæÀü ¼Óµµ¸¦ Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¶ÇÇÑ, ¾ç¹æÇâ ÃæÀü ±â¼úÀÇ Çõ½ÅÀ¸·Î OBC°¡ ¾ç¹æÇâÀ¸·Î ¿¡³ÊÁö¸¦ Èê·Áº¸³¾ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °³¹ßÀº OBCÀÇ ±â´ÉÀ» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àü·Â¸ÁÀÇ È¿À²¼º°ú Áö¼Ó°¡´É¼º¿¡ ±â¿©ÇÏ´Â V2G(Vehicle to Grid) ±â´ÉÀÇ ¹Ì·¡·Î °¡´Â ±æÀ» ¿¾îÁÙ °ÍÀÔ´Ï´Ù.
Â÷·®¿ë ÃæÀü±â ½ÃÀåÀ» ÁÖµµÇÏ´Â ±ÔÁ¦ ¹× ¾÷°è Ç¥ÁØÀº ¹«¾ùÀΰ¡?
Àü±âÀÚµ¿Â÷°¡ ÁÖ·ù°¡ µÇ¸é¼ ±ÔÁ¦ Ç¥Áذú ¾÷°è ÀÎÁõÀº Â÷·®¿ë ÃæÀü±â(OBC)ÀÇ ¼³°è¿Í ±â´ÉÀ» Çü¼ºÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ¾ÈÀü Ç¥Áذú ¼º´É Ç¥ÁØÀº OBCÀÇ ½Å·Ú¼º°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀ̸ç, ƯÈ÷ ÃæÀü°ú °ü·ÃµÈ °íÀü¾Ð°ú Àü·ÂÀ» °í·ÁÇØ¾ß ÇÕ´Ï´Ù. ±¹Á¦Àü±âÇ¥ÁØÈ¸ÀÇ(IEC)¿Í ¹Ì±¹ÀÚµ¿Â÷°øÇÐȸ(SAE)´Â ÀüÀÚ±â ȣȯ¼º(EMC), Àý¿¬, °úÀü·ù º¸È£¿¡ ´ëÇÑ ¿ä±¸»çÇ×À» Æ÷ÇÔÇÏ¿© OBC °³¹ß¿¡ ´ëÇØ ³Î¸® ¹Þ¾Æµé¿©Áö´Â Ç¥ÁØÀ» Á¦Á¤Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ç¥ÁØÀº OBC°¡ ´Ù¾çÇÑ Á¶°Ç¿¡¼ ¾ÈÀüÇÏ°Ô ÀÛµ¿ÇÏ°í °ú¿ ¹× Àü±âÀû °£¼·°ú °°Àº ¹®Á¦¸¦ ¹æÁöÇÒ ¼ö ÀÖµµ·Ï º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ Á¤ºÎ ±ÔÁ¦µµ OBC ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯·´ ¿¬ÇÕÀÇ ¿¡ÄÚ µðÀÚÀÎ ÁöħÀº OBC¸¦ Æ÷ÇÔÇÑ Àü±â Á¦Ç°ÀÇ ¿¡³ÊÁö È¿À² ¿ä°ÇÀ» Àǹ«ÈÇÏ¿© Á¦Á¶¾÷ü°¡ Àú¼Õ½Ç, °íÈ¿À² ÃæÀü ÀåÄ¡¸¦ °³¹ßÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ Á¦Á¶¾÷üµéÀº ¿¡³ÊÁö È¿À²»Ó¸¸ ¾Æ´Ï¶ó ģȯ°æ ¼ÒÀç¿Í ºÎǰÀ» »ç¿ëÇÏ¿© OBC¸¦ ¼³°èÇÒ °ÍÀ» ¿ä±¸¹Þ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ¹× ±ÔÁ¦ ±â°üÀÌ ¹èÃâ°¡½º ¹× ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ ±âÁØÀ» °è¼Ó °ÈÇÔ¿¡ µû¶ó OBC´Â ÀÌ·¯ÇÑ »õ·Î¿î ¿ä±¸ »çÇ×À» ÃæÁ·Çϵµ·Ï ÁøÈÇØ¾ß Çϸç, ÀÌ´Â ½ÃÀå¿¡¼ ´õ ¸¹Àº Çõ½ÅÀ» ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.
Àü±âÂ÷ Â÷·®¿ë ÃæÀü±â ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ¹«¾ùÀΰ¡?
Àü±âÂ÷ Â÷·®¿ë ÃæÀü±â(OBC) ½ÃÀåÀÇ ¼ºÀåÀº ±â¼ú ¹ßÀü, ½ÃÀå ¼ö¿ä, ±ÔÁ¦ ¾Ð·Â°ú °ü·ÃµÈ ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÁÖµµµË´Ï´Ù. ù°, Àü ¼¼°è Àü±âÂ÷ º¸±Þ È®´ë°¡ Å« ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ´õ ¸¹Àº ¼ÒºñÀÚ¿Í ±â¾÷ÀÌ EV¸¦ ¼±ÅÃÇÔ¿¡ µû¶ó ´õ ºü¸£°í È¿À²ÀûÀÌ¸ç ½Å·ÚÇÒ ¼ö ÀÖ´Â OBC¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. µÑ°, Ãʰí¼Ó ÃæÀü ±â´É ¹× ¹èÅ͸® °ü¸® ½Ã½ºÅÛ(BMS)ÀÇ °³¼±À» Æ÷ÇÔÇÑ ÃæÀü ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ¹èÅ͸®ÀÇ °ÇÀü¼ºÀ» ¼Õ»ó½ÃŰÁö ¾Ê°í ´õ ³ôÀº ÃæÀü ¼Óµµ¸¦ Áö¿øÇÒ ¼ö ÀÖ´Â ´õ ³ôÀº ¼öÁØÀÇ OBCÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼Â°, ÀÎÇÁ¶ó°¡ ¼·Î ´Ù¸¥ Áö¿ª °£ Àü±âÂ÷ º¸±ÞÀÌ È®´ëµÊ¿¡ µû¶ó Ç¥ÁØÈµÇ°í »óÈ£ ¿î¿ë °¡´ÉÇÑ OBCÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¸¹Àº ½ÅÈï±¹ ½ÃÀåÀÌ º¸ÆíÀû ÀÎ ÃæÀü Ç¥ÁØÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼·Î ´Ù¸¥ ÃæÀü ³×Æ®¿öÅ©¿¡¼ ÀÛµ¿Çϴ ǥÁØÈ µÈ OBCÀÇ °³¹ßÀÌ ¸Å¿ì Áß¿äÇÏ´Ù´Â °ÍÀ» ÀǹÌÇÕ´Ï´Ù. ¶ÇÇÑ, °ø°ø ¹× ¹Î°£ ÃæÀü ÀÎÇÁ¶óÀÇ °³¹ßÀº EV ÃæÀü¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» °ÈÇÏ¿© °í±Þ OBC¿¡ ´ëÇÑ ¼ö¿ä¸¦ ´õ¿í ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. ³Ý°, ÀÌ»êÈź¼Ò ¹èÃâ·® °¨Ãà°ú ûÁ¤¿¡³ÊÁö ÃßÁøÀ» ¸ñÇ¥·Î ÇÏ´Â ±ÔÁ¦ Á¤Ã¥Àº Àü±âÂ÷ µµÀÔ¿¡ À¯¸®ÇÑ Á¶°ÇÀ» Á¶¼ºÇϰí ÀÖÀ¸¸ç, ±³ÅëÀÇ Àü±âȸ¦ ÇâÇÑ ±¤¹üÀ§ÇÑ º¯ÈÀÇ ÀÏȯÀ¸·Î OBC ¼ö¿ä¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¹è¼Û Â÷·®, ¹ö½º, Æ®·°°ú °°Àº Àü±âÀÚµ¿Â÷ Â÷·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Â÷·® »ç¾÷ÀÚµéÀÌ Â÷·®¿¡ ´ëÇÑ ½Å·ÚÇÒ ¼ö ÀÖ°í È¿À²ÀûÀÎ ÃæÀü ¼Ö·ç¼ÇÀ» ã°í ÀÖ´Â °Íµµ OBC ¼ö¿ä Áõ°¡¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀÌ Áö¼ÓÀûÀ¸·Î ÀÏÄ¡ÇÔ¿¡ µû¶ó, OBC ½ÃÀåÀº Àü±â À̵¿¼ºÀ¸·ÎÀÇ ±¤¹üÀ§ÇÑ Àüȯ°ú ÃæÀü ±â¼ú Çõ½ÅÀÇ Áö¼ÓÀûÀÎ ÃßÁøÀ¸·Î Áö¼ÓÀûÀÎ ¼ºÀåÀÌ ¿¹»óµË´Ï´Ù.
ºÎ¹®
ÃßÁø·Â(¹èÅ͸® Àü±âÀÚµ¿Â÷ ÃßÁø·Â, Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷ ÃßÁø·Â, ±âŸ ÃßÁø·Â), Á¤°Ý(11kW Á¤°Ý, 11kW-22kW Á¤°Ý, 22kW Á¤°Ý ÀÌ»ó)
AI ÅëÇÕ
Global Industry Analysts´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ¼, ½ÃÀå°ú °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â LLM³ª ¾÷°è °íÀ¯ SLM¸¦ Á¶È¸ÇÏ´Â ÀϹÝÀûÀÎ ±Ô¹ü¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ¹æ´ëÇÑ ¾çÀÇ ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Electric Vehicle On-Board Charger Market to Reach US$76.8 Billion by 2030
The global market for Electric Vehicle On-Board Charger estimated at US$26.7 Billion in the year 2024, is expected to reach US$76.8 Billion by 2030, growing at a CAGR of 19.3% over the analysis period 2024-2030. Battery Electric Vehicle Propulsion, one of the segments analyzed in the report, is expected to record a 18.1% CAGR and reach US$46.0 Billion by the end of the analysis period. Growth in the Plug-In Hybrid Electric Vehicle Propulsion segment is estimated at 20.9% CAGR over the analysis period.
The U.S. Market is Estimated at US$7.0 Billion While China is Forecast to Grow at 18.3% CAGR
The Electric Vehicle On-Board Charger market in the U.S. is estimated at US$7.0 Billion in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$11.8 Billion by the year 2030 trailing a CAGR of 18.3% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 17.6% and 16.8% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 14.3% CAGR.
Global Electric Vehicle On-Board Charger Market - Key Trends & Drivers Summarized
How Is the On-Board Charger Shaping the Charging Experience for Electric Vehicles?
The on-board charger (OBC) is a key component in the electric vehicle (EV) charging process, enabling the conversion of alternating current (AC) from a charging station into the direct current (DC) needed to charge an EV's battery. Unlike conventional internal combustion engine vehicles, which rely on external systems for fuel transfer, electric vehicles depend on integrated systems like the OBC to ensure a smooth and efficient energy transfer. The OBC is typically housed within the vehicle and regulates the charging speed, ensuring that the battery receives the appropriate amount of charge safely and efficiently. Technological advancements in OBCs have led to faster charging times, improved energy efficiency, and greater compactness, making them an integral part of the growing EV market. In recent years, the shift towards more compact and lightweight OBC designs, which do not compromise on performance, has been a significant trend. As consumer demand for quicker and more efficient charging grows, the development of high-power OBCs capable of supporting ultra-fast charging is gaining momentum, thereby enhancing the convenience and appeal of electric vehicles. As the industry continues to prioritize seamless user experiences, OBCs will play a pivotal role in ensuring that EVs meet the growing expectations for fast, reliable, and accessible charging solutions.
How Are Technological Innovations Advancing On-Board Chargers for Faster Charging?
The development of on-board chargers (OBCs) is closely linked to innovations in power electronics, thermal management, and battery chemistry, which collectively contribute to faster, safer, and more efficient EV charging. One of the key technological advancements is the integration of silicon carbide (SiC) and gallium nitride (GaN) semiconductors into OBC designs. These wide-bandgap semiconductors enable higher efficiency and faster switching speeds, reducing energy loss and allowing for smaller and lighter charging units. As a result, EVs equipped with SiC or GaN-based OBCs are able to charge more quickly while also increasing overall system efficiency. Additionally, advances in thermal management techniques are helping to keep OBCs cool during high-speed charging, preventing overheating and ensuring the longevity of both the charger and the vehicle's battery. New software algorithms that optimize the charging process based on factors like battery health, state of charge, and external temperature are also playing a crucial role in improving charging speeds while protecting the battery from damage. Furthermore, innovations in bidirectional charging technology are enabling OBCs to allow energy to flow in both directions-allowing the vehicle’s battery to discharge power back into the grid or to other devices. These developments not only enhance the functionality of OBCs but also pave the way for the future of vehicle-to-grid (V2G) capabilities, which will contribute to the grid's efficiency and sustainability.
What Regulatory and Industry Standards Are Driving the On-Board Charger Market?
As electric vehicles become more mainstream, regulatory standards and industry certifications are playing an important role in shaping the design and functionality of on-board chargers (OBCs). Safety and performance standards are critical for ensuring the reliability and safety of OBCs, particularly given the high voltage and power involved in charging. The International Electrotechnical Commission (IEC) and the Society of Automotive Engineers (SAE) have established widely accepted standards for the development of OBCs, including requirements for electromagnetic compatibility (EMC), insulation, and overcurrent protection. These standards ensure that OBCs operate safely under a variety of conditions and prevent issues such as overheating or electrical interference. Additionally, government regulations related to energy efficiency are also impacting the OBC market. For example, the European Union’s Ecodesign Directive mandates energy efficiency requirements for electrical products, including OBCs, which encourages manufacturers to develop low-loss, high-efficiency charging units. Furthermore, the growing emphasis on sustainability is pushing manufacturers to design OBCs that are not only energy-efficient but also use eco-friendly materials and components. As governments and regulatory bodies continue to enforce stricter emissions and energy efficiency standards, OBCs will need to evolve to meet these new requirements, driving further innovation in the market.
What Are the Key Drivers Behind the Growth of the Electric Vehicle On-Board Charger Market?
The growth in the electric vehicle on-board charger (OBC) market is driven by several key factors related to technological advancements, market demand, and regulatory pressures. First, the increasing adoption of electric vehicles worldwide is a significant driver. As more consumers and businesses opt for EVs, the demand for faster, more efficient, and more reliable OBCs grows. Second, advancements in charging technology, including ultra-fast charging capabilities and improvements in battery management systems (BMS), are pushing the need for more advanced OBCs that can handle higher charging rates without compromising battery health. Third, as EV adoption expands across regions with varying infrastructure readiness, the need for standardized and interoperable OBCs is increasing. Many markets are moving toward universal charging standards, which means that the development of standardized OBCs that can work across different charging networks is crucial. Additionally, the development of public and private charging infrastructure is enhancing access to EV charging, further stimulating the demand for advanced OBCs. Fourth, regulatory policies targeting the reduction of carbon emissions and the promotion of clean energy are creating favorable conditions for EV adoption, directly impacting the demand for OBCs as part of the broader shift toward electrified transport. Lastly, the growth of electric fleets, including delivery vehicles, buses, and trucks, is contributing to the rise of OBC demand, as fleet operators look for reliable and efficient charging solutions for their vehicles. As these factors continue to align, the OBC market is set for sustained growth, driven by the broader transition to electric mobility and the continuous push for innovation in charging technology.
SCOPE OF STUDY:
The report analyzes the Electric Vehicle On-Board Charger market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Propulsion (Battery Electric Vehicle Propulsion, Plug-In Hybrid Electric Vehicle Propulsion, Other Propulsions); Rating (11 kW Rating, 11 kW - 22 kW Rating, Above 22 kW Rating)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 36 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.