![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1799185
¼¼°èÀÇ ·Îº¿ ¿þÀÌÅÍ ½ÃÀåRobot Waiters |
¼¼°èÀÇ ·Îº¿ ¿þÀÌÅÍ ½ÃÀåÀº 2030³â±îÁö 37¾ï ´Þ·¯¿¡ À̸¦ Àü¸Á
2024³â¿¡ 6¾ï 3,870¸¸ ´Þ·¯·Î ÃßÁ¤µÇ´Â ·Îº¿ ¿þÀÌÅÍ ¼¼°è ½ÃÀåÀº ºÐ¼® ±â°£ÀÎ 2024-2030³â CAGR 33.8%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 37¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. º» º¸°í¼¿¡¼ ºÐ¼®ÇÑ ºÎ¹® Áß ÇϳªÀÎ 20 Kg¹Ì¸¸Àº CAGR29.5%¸¦ ³ªÅ¸³»°í, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 18¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. 20-40 Kg ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£Áß CAGR39.7%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 1¾ï 6,790¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 32.2%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹Ãø
¹Ì±¹ÀÇ ·Îº¿ ¿þÀÌÅÍ ½ÃÀåÀº 2024³â¿¡ 1¾ï 6,790¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ °æÁ¦´ë±¹ÀÎ Áß±¹Àº ºÐ¼® ±â°£ÀÎ 2024-2030³â°£ CAGR 32.2%·Î 2030³â±îÁö 5¾ï 5,370¸¸ ´Þ·¯ ±Ô¸ð¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇØ¾ß ÇÒ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£Áß CAGRÀº °¢°¢ 30.3%¿Í 29.6%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 23.9%¸¦ º¸ÀÏ Àü¸ÁÀÔ´Ï´Ù.
¼¼°èÀÇ ·Îº¿ ¿þÀÌÅÍ ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Áö´ÉÇü ³»ºñ°ÔÀ̼ǰú Àΰ£°ú ·Îº¿ÀÇ »óÈ£ÀÛ¿ëÀº ¾î¶»°Ô ´ÙÀÌ´× °æÇèÀ» À籸¼ºÇϰí Àִ°¡?
·Îº¿ ¿þÀÌÅÍ´Â ´õ ÀÌ»ó »õ·Î¿î °ÍÀÌ ¾Æ´Ï¸ç, ÀΰøÁö´É, ÄÄÇ»ÅÍ ºñÀü, ÀÚÀ² À̵¿ ½Ã½ºÅÛÀÇ Å« ¹ßÀüÀ¸·Î ÀÎÇØ ÁÖ·ù Á¢°´ »ýŰ迡 ÅëÇյǰí ÀÖ½À´Ï´Ù. ÀÌ ·Îº¿µéÀº ÇöÀç SLAM(Simultaneous Localization and Mapping) ¾Ë°í¸®Áò, LiDAR ¼¾¼, AI ±â¹Ý °æ·Î °èȹ ±â´ÉÀ» »ç¿ëÇÏ¿© È¥ÀâÇÏ°í ¿ªµ¿ÀûÀÎ ·¹½ºÅä¶û ȯ°æÀ» ¿øÈ°ÇÏ°Ô Á¶Á¾Çϰí ÀÖ½À´Ï´Ù. »çÀü Á¤ÀÇµÈ Æ®·¢ ±â¹ÝÀÇ ¿òÁ÷ÀÓ¿¡ ÀÇÁ¸Çß´ø ÀÌÀü ¹öÀü°ú ´Þ¸®, ¿À´Ã³¯ÀÇ ¼ºñ½º ·Îº¿Àº ½Ç½Ã°£ ¸ÅÇÎ ¹× Àå¾Ö¹° °¨Áö¸¦ ±â¹ÝÀ¸·Î µ¿ÀûÀ¸·Î °æ·Î¸¦ Á¶Á¤ÇÏ¿© ÀÛ¾÷ÀÇ ¹Îø¼ºÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. À½¼º ´ëÈ ¸ðµâ, ¾ó±¼ ÀÎ½Ä ½Ã½ºÅÛ µî Çõ½ÅÀûÀÎ ±â¼úÀ» ÅëÇØ ·Îº¿Àº ¹®¸ÆÀ» ÀνÄÇÏ°í ¼Õ´Ô°ú ¼ÒÅëÇÒ ¼ö ÀÖ°Ô µÇ¾úÀ¸¸ç, ÀÌÀü¿¡´Â ÈÆ·ÃµÈ Àΰ£ Á÷¿øÀÌ ÇÊ¿äÇß´ø °³ÀÎÈµÈ °æÇèÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
±â¼úÀû ÁøÈ¿Í ´õºÒ¾î ·Îº¿ ¿þÀÌÅÍ´Â Áö´ÉÇü ·¹½ºÅä¶ûÀÇ »ýŰ迡 ÀÓº£µðµåµÇ°í ÀÖ½À´Ï´Ù. POS ½Ã½ºÅÛ, Űģ µð½ºÇ÷¹ÀÌ ½Ã½ºÅÛ(KDS), °í°´ °ü¸® ¼ÒÇÁÆ®¿þ¾î¿ÍÀÇ ÅëÇÕÀ» ÅëÇØ ¹é¿£µå¿Í ÇÁ·ÐÆ®¿£µå ¿î¿µÀÌ µ¿±âÈµÈ ¿öÅ©Ç÷ο찡 °¡´ÉÇØÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Å×À̺íÀÌ ÁöÁ¤µÇ°í ÁÖ¹®ÀÌ µé¾î¿À¸é ·Îº¿Àº Áֹ濡¼ ÁöÁ¤µÈ Å×À̺í·Î ÀÚÀ²ÀûÀ¸·Î À½½ÄÀ» ¿î¹ÝÇÒ ¼ö ÀÖ¾î ÇÇũŸÀÓÀÇ Áö¿¬À» ÃÖ¼ÒÈÇÏ°í ¼¹ö¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãâ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀº ¼Óµµ, Á¤È®¼º, ¾ÈÀü¼ºÀÌ ÃÖ¿ì¼±½ÃµÇ´Â ǪµåÄÚÆ®, Å׸¶ÆÄÅ© ½Ä´ç, Äü¼ºñ½º ·¹½ºÅä¶û(QSR)°ú °°ÀÌ À¯µ¿Àα¸°¡ ¸¹Àº ȯ°æ¿¡¼ ƯÈ÷ °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ·Îº¿ ½Ã½ºÅÛÀº ¶ÇÇÑ ´Ù±¹¾î ÁÖ¹®, ½Ä»ç ¿äû, ¾Ë·¹¸£°Õ °æ°í °ü¸® ´É·Â¿¡ ´ëÇÑ Å×½ºÆ®°¡ ÁøÇàµÇ¾î ÀÚµ¿ ¼ºñ½º ¿¡ÀÌÀüÆ®ÀÇ ±â´É ¹üÀ§°¡ È®´ëµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.
·¹½ºÅä¶û üÀÎÀ̳ª È£ÅÚÀÌ ·Îº¿ ¼¹ö¸¦ Àû±ØÀûÀ¸·Î ½Ã¹ü µµÀÔÇÏ´Â ÀÌÀ¯´Â ¹«¾ùÀϱî?
·Îº¿ ¿þÀÌÅÍ µµÀÔÀÇ °¡Àå µÎµå·¯Áø ¿øµ¿·Â Áß Çϳª´Â Á¢°´ »ê¾÷ÀÇ ±¸Á¶ÀûÀÎ Àη ºÎÁ·ÀÔ´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ Àη ºÎÁ·, ÀÓ±Ý »ó½Â, °èÀý¿¡ µû¸¥ Á÷¿ø °¡µ¿·ü º¯µ¿À¸·Î ÀÎÇØ ·¹½ºÅä¶û ¿î¿µÀÚµéÀÌ ¾ÈÁ¤ÀûÀÎ ¼ºñ½º ¼öÁØÀ» À¯ÁöÇÏ´Â °ÍÀÌ Á¡Á¡ ´õ ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. µû¶ó¼ ·Îº¿ ¿þÀÌÅʹ ƯÈ÷ ÀϺ», Çѱ¹, Áß±¹, Áß±¹, À¯·´ ÀϺΠÁö¿ª°ú °°ÀÌ ¼ºñ½º °æÁ¦¿¡ ´ëÇÑ Àα¸Åë°èÇÐÀû ¾Ð·ÂÀÌ ½É°¢ÇÑ Áö¿ª¿¡¼ Àå±âÀûÀÎ ³ëµ¿·Â ¾ÈÁ¤È Àü·«À¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. ÇöÀç ÀϺΠÆÐ½ºÆ® ijÁÖ¾ó ¹× Ç® ¼ºñ½º üÀÎÀº Á¡½É°ú Àú³á ·¯½Ã¾Æ¿ö¿¡ Àΰ£ ¼¹ö¸¦ ·Îº¿À¸·Î ´ëüÇϰųª È®ÀåÇÏ´Â ÆÄÀÏ·µ ÇÁ·Î±×·¥À» ½Ç½ÃÇÏ¿© ¿î¿µ ºñ¿ëÀ» ¾ïÁ¦ÇÏ¸é¼ Ã³¸® ´É·ÂÀ» À¯ÁöÇÏ¸é¼ Ã³¸® ´É·ÂÀ» À¯ÁöÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ, ¼ÒºñÀÚ °æÇèÀÇ °üÁ¡µµ ·Îº¿ ¿þÀÌÅÍ¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÌ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ƯÈ÷ µµ½Ã ÷´Ü±â¼ú ¼±Áø½ÃÀå°ú Z¼¼´ë¿¡¼ ·Îº¿ ¿þÀÌÅÍ´Â ´Ü¼øÇÑ ¼ºñ½º ´ã´çÀÚ°¡ ¾Æ´Ñ ºê·£µå Çõ½Å ¾ÆÀ̵§Æ¼Æ¼ÀÇ ¿¬Àå¼±»ó¿¡¼ Àνĵǰí ÀÖ½À´Ï´Ù. ·¹½ºÅä¶û¿¡¼´Â ·Îº¿ ¿þÀÌÅͰ¡ °æÇèÀÇ ÀϺΰ¡ µÊÀ¸·Î½á °í°´ À¯ÁöÀ², Å×À̺í ü·ù ½Ã°£, Æò±Õ ÁÖ¹® ±Ý¾×ÀÌ ¸ðµÎ ÃøÁ¤ °¡´ÉÇÑ °³¼±À» º¸¿´½À´Ï´Ù°í º¸°íÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¶°¨ À¯Çà ½Ã±â³ª º´¿ø ½Ä´ç°ú °°ÀÌ ¸é¿ª·ÂÀÌ ÀúÇÏµÈ È¯°æ¿¡¼´Â ·Îº¿À» ÅëÇÑ ºñÁ¢ÃË½Ä ¹«±Õ ¹è¼ÛÀÌ Á¡Á¡ ´õ ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, È£ÅÚ ³» ·¹½ºÅä¶ûÀÌ Àִ ȣÅÚ¿¡¼´Â ¿¤¸®º£ÀÌÅÍ¿Í º¹µµ ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛÀ» ÀÌ¿ëÇÏ¿© ·ë¼ºñ½º ±â´É¿¡ ·Îº¿ ¿þÀÌÅ͸¦ ä¿ëÇÏ¿© ÀηÂÀ» È®ÃæÇÏÁö ¾Ê°íµµ 24½Ã°£ 365ÀÏ ÀÚµ¿ÈµÈ ´ÙÀÌ´× ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
½ÃÀåÀÇ °¡´É¼ºÀ» ³ÐÈ÷´Â µðÀÚÀÎ Æ®·»µå¿Í ÀÌ¿ë »ç·ÊÀÇ Çõ½ÅÀ̶õ?
·Îº¿ ¿þÀÌÅÍÀÇ ´Ù¾çÇÑ ´ÙÀÌ´× ÇüÅ¿¡ ´ëÇÑ ÀûÀÀ¼ºÀ» ³ôÀÌ´Â °ÍÀº µðÀÚÀÎ °È¿Í ¸ðµâÇü ÆûÆÑÅÍÀÇ »õ·Î¿î ¹°°áÀÔ´Ï´Ù. Á¢ÀÌ½Ä Æ®·¹À̸¦ ÀåÂøÇÑ ¼ÒÇü ·Îº¿ ¿þÀÌÅÍ´Â Á¼Àº Ä«Æä¿¡ µµÀԵǰí ÀÖ½À´Ï´Ù. ÇÑÆí, Æ®·¹ÀÌ ¹èÁ¤ÀÌ °¡´ÉÇÑ ´ëÇü ´Ù´Ü½Ä ¹è´Þ·Îº¿Àº ¿¬È¸ÀåÀ̳ª ºßÆä ȯ°æ¿¡¼ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, UV-C »ì±Õ ±â´ÉÀÌ Å¾ÀçµÈ ¸ðµ¨µµ ÀÖ¾î Æ®·¹À̸¦ À§»ýÀûÀ¸·Î °ü¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ´Ù±â´É¼ºÀº ½Ä´ç °æ¿µÀÚÀÇ ºÎ°¡°¡Ä¡¸¦ ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó °øÇ× ¶ó¿îÁö, ´ëÇÐ ½Ä´ç, º´¿ø ±Þ½Ä ¹è´Þ µî »õ·Î¿î ¿ëµµÀÇ ¼öÁ÷Àû È®ÀåÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. °íµµÀÇ ´Ü¿¼º, À¯Ãâ ¹æÁö ±¸È¹, ½Ç½Ã°£ ¿ø°Ý ÃøÁ¤ ±â´ÉÀº Â÷¼¼´ë ·Îº¿ ¼¹ö¿¡¼ ±â´ëµÇ´Â ±âº»ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
»õ·Î¿î ÀÌ¿ë »ç·Ê´Â ±â¼ú Çõ½ÅÀÇ ÇѰ踦 ´õ¿í ³ÐÇô°¡°í ÀÖ½À´Ï´Ù. ÀϺΠ°í±Þ ·¹½ºÅä¶û¿¡¼´Â À½·á¸¦ µû¸£°í, AI°¡ žÀçµÈ ¹Ì°¢ ¸ÅĪ ¾Ë°í¸®ÁòÀ» ÅëÇØ ¿ÍÀÎ Æä¾î¸µÀ» ÃßõÇϰí, È£½ºÇÇÅ»¸®Æ¼¿¡ Æ¯ÈµÈ ´ëÈ·Î ÈÆ·ÃµÈ ¾ð¾î ¸ðµ¨À» ³»ÀåÇØ ÀÌ¿ëÀÚ¿Í ´ëÈÇÏ´Â ·Îº¿À» ½Ã¹üÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °¨Á¤ AI¸¦ µµÀÔÇØ °í°´ÀÇ Ç¥Á¤¿¡¼ ºÒ¸¸À» °¨ÁöÇϰí, À̸¦ Àû±ØÀûÀ¸·Î Àΰ£ Á÷¿ø¿¡°Ô ¾Ë·Á °³ÀÔÇÏ°Ô ÇÏ´Â »ç·Êµµ ÀÖ½À´Ï´Ù. ÀϺΠ·Îº¿ ¿þÀÌÅÍ Áß¿¡´Â ½ÅÃà °¡´ÉÇÑ ÈíÀÔ ¾Ï°ú Å×À̺íÀÇ ºóÀÚ¸®¸¦ °¨ÁöÇÏ´Â ¼¾¼¸¦ ÀÌ¿ëÇØ ½Ä»ç ÈÄ Å×À̺í û¼Ò ·Îº¿À¸·Î ±â´ÉÇÏ´Â ·Îº¿ ¿þÀÌÅ͵µ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÏÀ̺긮µå ±â´ÉÀ¸·ÎÀÇ ÀüȯÀº ºñ¿ë¿¡ ¹Î°¨ÇÑ ¿î¿µÀÚµéÀÌ ¼±Çà ÅõÀÚ¸¦ Á¤´çÈÇϱâ À§ÇØ ¸ÖƼŽºÅ· ÀÚµ¿È ¼Ö·ç¼ÇÀ» ã´Â °Í°ú ÀÏÄ¡ÇÕ´Ï´Ù.
·Îº¿ ¿þÀÌÅÍ ½ÃÀå ±Þ¼ºÀå ¿äÀÎÀº?
¼¼°è ·Îº¿ ¿þÀÌÅÍ ½ÃÀåÀÇ ¼ºÀåÀº ¿©·¯ °¡Áö ¿äÀο¡ ÀÇÇØ ÁÖµµµÇ°í ÀÖÀ¸¸ç, À̴ äÅà ±âȸ°¡ ¸¹°í ¸¶ÂûÀÌ ÀûÀº ȯ°æÀ» Á¶¼ºÇϱâ À§ÇØ ¼ö·ÅµÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ LiDAR, AI Ĩ, ¹èÅ͸® ½Ã½ºÅÛ µî ºÎǰ ºñ¿ëÀÇ ±Þ°ÝÇÑ Ç϶ôÀÌ ´ëÇ¥ÀûÀÔ´Ï´Ù. Áß±¹ Á¦Á¶¾÷üµéÀÌ ·Îº¿ Çϵå¿þ¾î¿Í AI Æß¿þ¾îÀÇ Àúºñ¿ë »ý»êÀ» ÁÖµµÇϰí Àֱ⠶§¹®¿¡ º¸±ÞÇü ·Îº¿ ¿þÀÌÅÍ´Â 5³â ÀüÀÇ À¯»ç Á¦Ç° °¡°ÝÀÇ ¸î ºÐÀÇ 1¿¡ ºÒ°úÇÑ °¡°ÝÀ¸·Î ±¸ÀÔÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °¡°ÝÀÇ ÁøÈ¸¦ ÅëÇØ ÀÌÀü¿¡´Â ÀÚµ¿È¿¡ ´ëÇÑ Á¢±ÙÀÌ ¾î·Á¿ü´ø Áß¼Ò±Ô¸ðÀÇ ½Ä´ç °æ¿µÀڵ鿡°Ôµµ Á¢±Ù¼ºÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¼ºñ½ºÇü(as-a-service) ºñÁî´Ï½º ¸ðµ¨ÀÌ Àα⸦ ²ø¸é¼ ·Îº¿ ¿þÀÌÅÍ ¾÷üµéÀº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¾÷±×·¹À̵å, ±¸µ¶ ¸ðµ¨À» ÅëÇÑ À¯Áöº¸¼ö¸¦ Æ÷ÇÔÇÑ ¸®½º ¿É¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ¼³ºñ ÅõÀÚ À庮À» ´õ¿í ¿ÏÈÇϰí ÀÖ½À´Ï´Ù.
Á¤ºÎÀÇ Á¤Ã¥Àû Áö¿øµµ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼´Â Á¤ºÎ°¡ ¼¼±Ý °¨¸é, R&D º¸Á¶±Ý, ½Ã¹ü ÀÚ±Ý Áö¿øÀ» ÅëÇØ ½º¸¶Æ® ¼ºñ½º Çõ½Å¿¡ ´ëÇÑ Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. Áß±¹¿¡¼´Â µµ½Ã Çö´ëÈ °èȹÀÇ ÀÏȯÀ¸·Î Çб³ ½Ä´ç°ú Áö¿ª ½Ä´ç¿¡ ·Îº¿ ¿þÀÌÅͰ¡ ºü¸£°Ô µµÀԵǰí ÀÖ½À´Ï´Ù. ¸¶Âù°¡Áö·Î ½Ì°¡Æ÷¸£¿Í Çѱ¹¿¡¼´Â ±¹°¡ AI Àü·«¿¡ µû¶ó ½º¸¶Æ® ´ÙÀ̴׿¡ ´ëÇÑ ³ë·ÂÀÌ Á¶±â µµÀÔÀÇ Åä¾çÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇÑÆí, À¯·´°ú ¹Ì±¹ÀÇ ·¹½ºÅä¶û üÀÎÀº ÇÏÀÌÅ×Å© ½ºÅ¸Æ®¾÷°ú Á¦ÈÞÇÏ¿© ÇÁ·£Â÷ÀÌÁî Àü°³¿¡ ¸Â°Ô ·Îº¿À» ¸ÂÃãÈÇÏ¿© À§»ý ±âÁØ, ÈÀç ¾ÈÀü ±âÁØ, ADA(¹Ì±¹ Àå¾ÖÀιý)ÀÇ Á¢±Ù¼º ¿ä°ÇÀ» ÁؼöÇϵµ·Ï Çϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ, Äڷγª19 »çÅ´ ºñÁ¢ÃË½Ä ¼ºñ½º¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ÀνĿ¡ Áö¼ÓÀûÀÎ ÇൿÀû ¿µÇâÀ» ³²°å½À´Ï´Ù. À§»ý¿¡ ÁßÁ¡À» µÐ µðÀÚÀÎÀº ¸¹Àº ½ÃÀå ºÎ¹®¿¡¼ Â÷º°È ¿ä¼Ò¿¡¼ ±âº»ÀûÀÎ ±â´ëÄ¡·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ ¿þÀÌÅÍ´Â »ç¶÷°úÀÇ Á¢ÃË ¾øÀ̵µ Àϰü¼º ÀÖ°í ¿¹Ãø °¡´ÉÇϸç ÃßÀû °¡´ÉÇÑ ¼ºñ½º¸¦ Á¦°øÇÒ ¼ö ÀÖ¾î, ÆÒµ¥¹Í ÀÌÈÄ ¼ö¿ä¸¦ ÃæÁ·½Ãų ¼ö ÀÖ´Â µ¶º¸ÀûÀÎ À§Ä¡¿¡ ÀÖ½À´Ï´Ù. QRÀ» ÀÌ¿ëÇÑ ½Ä»ç ÇȾ÷ºÎÅÍ ¼¾¼¸¦ ÀÌ¿ëÇÑ Æ®·¹ÀÌ È¸¼ö±îÁö, ·Îº¿ ½Ã½ºÅÛÀº ½Å·Ú¼º, È¿À²¼º, »õ·Î¿òÀÇ À¶ÇÕÀ» Á¦°øÇÏ¿© ¼ÒºñÀÚ ½É¸®¿¡ ºÎÇÕÇÏ´Â ·Îº¿ ½Ã½ºÅÛÀÔ´Ï´Ù. ¸Ó½Å·¯´×ÀÌ Çâ»óµÇ°í ·Îº¿ÀÌ »óȲ Àνİú ÁÖ¹æ ¿öÅ©Ç÷οì¿ÍÀÇ ¹Ì¼¼ Á¶Á¤¿¡ Á¡Á¡ ´õ ´É¼÷ÇØÁü¿¡ µû¶ó ±× À¯¿ë¼ºÀÇ ±Ô¸ð¿Í ¹üÀ§´Â Á¡Á¡ ´õ È®´ëµÉ °ÍÀÔ´Ï´Ù.
°á±¹ ·Îº¿ ¿þÀÌÅÍ ½ÃÀåÀº ·Îº¿ °øÇÐÀÇ ¹ßÀü, ¼ÒºñÀÚ ±â´ëÄ¡ ¼ö¿ä Ãø¸éÀÇ º¯È, ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶°ø±Þ Ãø¸éÀÇ ¼º¼÷¿¡ ÈûÀÔ¾î ÁÖ·ùÈÀÇ ¸Å¿ì Áß¿äÇÑ ÁöÁ¡¿¡ ¼ ÀÖ½À´Ï´Ù. ·Îº¿ OEM, AI ¼ÒÇÁÆ®¿þ¾î °³¹ßÀÚ, ¿Ü½Ä ¼ºñ½º Á¦°ø¾÷ü °£ÀÇ Àü·«Àû Çù·ÂÀÌ Çõ½ÅÀ» °¡¼ÓÈÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, º¿ÀÌ »ý¼ºÇÏ´Â °í°´ Çൿ, À½½Ä Á¦°ø ½Ã°£, ÁÖ¹® ºóµµ¿¡ ´ëÇÑ µ¥ÀÌÅÍ ºÐ¼®Àº ¼ºñ½º ¸ðµ¨ ÃÖÀûȸ¦ À§ÇÑ Ç³ºÎÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ¼ºñ½º ¸ðµ¨ ÃÖÀûȸ¦ À§ÇÑ Ç³ºÎÇÑ ÅëÂû·ÂÀ» Á¦°øÇÏ°Ô µÉ °ÍÀÔ´Ï´Ù. ·¹½ºÅä¶û ÀÚµ¿ÈÀÇ ¹Ì·¡´Â ·Îº¿ ¿þÀÌÅͰ¡ ¾÷¹« È¿À²¼º°ú °í°´ Áß½ÉÀÇ Á¤±³ÇÑ ¼ºñ½º¸¦ ¾ó¸¶³ª Àß À¶ÇÕÇÒ ¼ö ÀÖ´À³Ä¿¡ µû¶ó °áÁ¤µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
ºÎ¹®
ºÎÇÏ ¿ë·®(20 Kg¹Ì¸¸, 20-40 Kg, 40 KgÀÌ»ó);À¯Åë ä³Î(¿ÀÇÁ¶óÀÎ À¯Åë ä³Î, ¿Â¶óÀÎ À¯Åë ä³Î);ÃÖÁ¾»ç¿ëÀÚ(HORECA ÃÖÁ¾»ç¿ëÀÚ, ¹Ù£¦Ä«Áö³ë ÃÖÁ¾»ç¿ëÀÚ, ½Ã´Ï¾î ¸®ºù Ȩ ÃÖÁ¾»ç¿ëÀÚ, ±âŸ ÃÖÁ¾»ç¿ëÀÚ)
AI ÅëÇÕ
´ç»ç´Â À¯È¿ÇÑ Àü¹®°¡ ÄÁÅÙÃ÷¿Í AIÅø¿¡ ÀÇÇØ ½ÃÀå Á¤º¸¿Í °æÀï Á¤º¸¸¦ º¯ÇõÇϰí ÀÖ½À´Ï´Ù.
Global Industry Analysts´Â ÀϹÝÀûÀÎ LLM³ª ¾÷°èº° SLM Äõ¸®¿¡ µû¸£´Â ´ë½Å¿¡, ºñµð¿À ±â·Ï, ºí·Î±×, °Ë»ö ¿£Áø Á¶»ç, ´ë·® ±â¾÷, Á¦Ç°/¼ºñ½º, ½ÃÀå µ¥ÀÌÅÍ µî, Àü ¼¼°è Àü¹®°¡·ÎºÎÅÍ ¼öÁýÇÑ ÄÁÅÙÃ÷ ¸®Æ÷ÁöÅ丮¸¦ ±¸ÃàÇß½À´Ï´Ù.
°ü¼¼ ¿µÇâ °è¼ö
Global Industry Analysts´Â º»»ç ¼ÒÀçÁö, Á¦Á¶°ÅÁ¡, ¼öÃâÀÔ(¿ÏÁ¦Ç° ¹× OEM)À» ±âÁØÀ¸·Î ±â¾÷ÀÇ °æÀï·Â º¯È¸¦ ¿¹ÃøÇß½À´Ï´Ù. ÀÌ·¯ÇÑ º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ½ÃÀå ¿ªÇÐÀº ¼öÀÍ¿ø°¡(COGS) Áõ°¡, ¼öÀͼº Ç϶ô, °ø±Þ¸Á ÀçÆí µî ¹Ì½ÃÀû, °Å½ÃÀû ½ÃÀå ¿ªÇÐ Áß¿¡¼µµ ƯÈ÷ °æÀï»çµé¿¡°Ô ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Global Robot Waiters Market to Reach US$3.7 Billion by 2030
The global market for Robot Waiters estimated at US$638.7 Million in the year 2024, is expected to reach US$3.7 Billion by 2030, growing at a CAGR of 33.8% over the analysis period 2024-2030. Below 20 Kg, one of the segments analyzed in the report, is expected to record a 29.5% CAGR and reach US$1.8 Billion by the end of the analysis period. Growth in the 20 - 40 Kg segment is estimated at 39.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$167.9 Million While China is Forecast to Grow at 32.2% CAGR
The Robot Waiters market in the U.S. is estimated at US$167.9 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$553.7 Million by the year 2030 trailing a CAGR of 32.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 30.3% and 29.6% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 23.9% CAGR.
Global Robot Waiters Market - Key Trends & Drivers Summarized
How Are Intelligent Navigation and Human-Robot Interactions Reshaping the Dining Experience?
Robot waiters are no longer a novelty but are becoming integrated into mainstream hospitality ecosystems due to major strides in artificial intelligence, computer vision, and autonomous mobility systems. These robots now use simultaneous localization and mapping (SLAM) algorithms, LiDAR sensors, and AI-based path-planning capabilities to seamlessly maneuver through crowded and dynamic restaurant environments. Unlike earlier versions that relied on pre-defined track-based movement, today’s service robots dynamically adjust their paths based on real-time mapping and obstacle detection, greatly enhancing operational agility. Innovations such as voice interaction modules and facial recognition systems further allow robots to engage with guests using contextual awareness, delivering personalized experiences that previously required trained human staff.
In addition to technical evolution, robot waiters are being embedded into broader intelligent restaurant ecosystems. Integration with point-of-sale (POS) systems, kitchen display systems (KDS), and customer management software is enabling synchronized workflows across back-end and front-end operations. For example, once a table is assigned and an order is placed, the robot can autonomously deliver meals from the kitchen to the designated table, minimizing delays and reducing dependence on servers during peak hours. These features are particularly gaining traction in high-footfall environments like food courts, theme park eateries, and quick-service restaurants (QSRs) where speed, precision, and safety are paramount. The robotic systems are also being tested for their ability to manage multilingual orders, dietary requests, and allergen alerts, indicating the expanding functional envelope of automated service agents.
Why Are Restaurant Chains and Hotels Aggressively Piloting Robotic Servers?
One of the most prominent drivers behind the adoption of robot waiters is the structural labor shortage in the hospitality industry. Post-pandemic workforce attrition, rising wages, and the seasonal volatility of staff availability have made it increasingly difficult for restaurant operators to maintain consistent service levels. Robot waiters are thus being seen as a long-term workforce stabilization strategy, particularly in regions like Japan, South Korea, China, and parts of Europe where the demographic pressure on the service economy is acute. Several fast-casual and full-service chains are now running pilot programs that replace or augment human servers with robots during lunch and dinner rush hours to sustain throughput while controlling operating costs.
Moreover, the consumer experience angle is playing a vital role in propelling interest in robotic waiters. Especially in urban tech-forward markets and among Gen Z diners, robotic waiters are perceived not just as service agents but as extensions of a brand’s innovation identity. Restaurants are reporting that customer retention, time spent at the table, and average order value all show measurable improvements when robot waiters are part of the experience. Additionally, during flu seasons or in immuno-compromised environments such as hospital cafeterias, touchless and sterile delivery by robots is being increasingly preferred. Hotels with in-house restaurants are also adopting robotic waiters for room service functions, using elevators and corridor navigation systems to provide 24/7 automated dining options without expanding the human resource pool.
Which Design Trends and Use-Case Innovations Are Broadening Market Possibilities?
A new wave of design enhancements and modular form factors is driving adaptability of robot waiters across diverse dining formats. Compact robot waiters with collapsible trays are being deployed in narrow cafe settings, while larger, multi-tiered delivery bots equipped with adaptive tray allocation are increasingly used in banqueting halls or buffet environments. Some models now include UV-C sanitation features, allowing robots to sanitize trays between deliveries. Such multi-functionality not only adds value for restaurateurs but also enables new application verticals such as airport lounges, university dining halls, and hospital food delivery. Advanced thermal insulation, spill-proof compartmentalization, and real-time telemetry features are becoming baseline expectations in next-gen robotic servers.
Emerging use-cases are further pushing innovation boundaries. Some high-end venues are experimenting with robots that can pour drinks, recommend wine pairings using AI-powered taste-matching algorithms, and interact with diners through embedded language models trained on hospitality-specific dialogue. Others are incorporating emotional AI to detect dissatisfaction in customer expressions and proactively notify human staff for intervention. Cross-functionality is also on the rise; some robotic waiters can double up as table-cleaning bots post-meal service using extendable suction arms and sensors that detect table vacancy. This shift toward hybrid functionalities aligns well with cost-conscious operators looking for multi-tasking automation solutions to justify upfront investment.
What Factors Are Fueling the Rapid Expansion of the Robot Waiters Market?
The growth in the global robot waiters market is driven by several factors that are converging to create a high-opportunity, low-friction environment for adoption. Foremost among these is the steep decline in component costs, especially for LiDAR, AI chips, and battery systems. With Chinese manufacturers leading in low-cost production of robotics hardware and AI firmware, entry-level robot waiters are now available at a fraction of what similar units cost five years ago. This pricing evolution is opening up access to small and mid-sized restaurant operators, who were previously priced out of automation initiatives. Moreover, with as-a-service business models gaining traction, robot waiter vendors are offering leasing options that include hardware, software upgrades, and maintenance under subscription models, further easing capital expenditure barriers.
Government policy support is also playing a key role, especially in Asia-Pacific where governments are incentivizing smart service innovations through tax breaks, R&D subsidies, and pilot funding. In China, robot waiters are being fast-tracked into school cafeterias and community canteens as part of urban modernization plans. Similarly, in Singapore and South Korea, smart dining initiatives under national AI strategies are providing fertile ground for early adoption. Meanwhile, European and North American restaurant chains are partnering with tech startups to tailor robots for franchise deployment, ensuring compliance with health codes, fire safety norms, and ADA (Americans with Disabilities Act) accessibility requirements.
In addition, the COVID-19 pandemic has left a lasting behavioral imprint on consumers’ perception of contactless service. Hygiene-focused design has moved from being a differentiator to a basic expectation in many market segments. Robot waiters-capable of providing consistent, predictable, and traceable service without human contact-are uniquely positioned to meet this post-pandemic demand. From QR-based meal pickup to sensor-enabled tray retrieval, robotic systems are offering a blend of reliability, efficiency, and novelty that is aligning with consumer sentiment. As machine learning improves and robots become increasingly adept at situational awareness and micro-coordination with kitchen workflows, the scale and scope of their utility will only grow.
Ultimately, the robot waiters market stands at a pivotal point of mainstreaming, supported by advancements in robotics engineering, demand-side transformation in consumer expectations, and supply-side maturity in cost-effective manufacturing. Strategic collaborations between robotics OEMs, AI software developers, and foodservice providers are expected to accelerate innovation, while data analytics generated by these bots-on customer behavior, food delivery times, and order frequencies-will offer rich insights for optimizing service models. The future of restaurant automation will likely be defined by how well robotic waiters can blend operational efficiency with guest-centric service refinement.
SCOPE OF STUDY:
The report analyzes the Robot Waiters market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Load Capacity (Below 20 Kg, 20 - 40 Kg, Above 40 Kg); Distribution Channel (Offline Distribution Channel, Online Distribution Channel); End-Use (HORECA End-Use, Bars & Casinos End-Use, Senior Living Homes End-Use, Other End-Uses)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 43 Featured) -
AI INTEGRATIONS
We're transforming market and competitive intelligence with validated expert content and AI tools.
Instead of following the general norm of querying LLMs and Industry-specific SLMs, we built repositories of content curated from domain experts worldwide including video transcripts, blogs, search engines research, and massive amounts of enterprise, product/service, and market data.
TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs on geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by increasing the Cost of Goods Sold (COGS), reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.