시장보고서
상품코드
1830340

식품 로봇 시장 : 로봇 유형, 최종 용도, 용도, 적재량, 동작 모드별 - 세계 예측(2025-2032년)

Food Robotics Market by Robot Type, End Use, Application, Payload Capacity, Operation Mode - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

식품 로봇 시장은 2032년까지 연평균 복합 성장률(CAGR) 14.38%로 110억 7,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 37억 7,000만 달러
추정 연도 : 2025년 43억 1,000만 달러
예측 연도 : 2032년 110억 7,000만 달러
CAGR(%) 14.38%

식품 산업의 효율성과 식품 안전 및 공급망 강인성을 재정의하는 운영 인에이블러로서 로봇 공학을 전략적으로 도입하는 것

식품 로봇 공학의 전망은 틈새 자동화 파일럿에서 식품 가공, 포장, 물류 및 소매업 전반에 걸친 운영 전략의 결정적인 요소로 진화하고 있습니다. 센싱, 제어 소프트웨어 및 모듈형 하드웨어의 발전은 노동력의 변화하는 동력과 위생적이고 일관성 있는 추적 가능한 운영에 대한 수요 증가와 결합하고 있습니다. 이러한 힘은 처리량, 식품 안전성, SKU 변동에 대한 적응성을 우선시하는 로봇 솔루션으로 수작업을 대체하거나 보강하는 것을 가속화하고 있습니다. 리더들은 이제 표준화된 로봇 셀을 대규모로 채택할 것인지, 혼합 제품 라인에 유연한 코봇 도입을 추구할 것인지, 아니면 자동화된 콜드체인 운영을 위한 엔드투엔드 통합 시스템에 투자할 것인지 등 경쟁적 포지셔닝을 결정하기 위한 선택에 직면해 있습니다.

이 소개에서는 로봇공학을 단순한 설비투자가 아닌 전략적 인에이블러로 포지셔닝함으로써 주요 요약의 다른 부분을 구성하고 있습니다. 운영 리더는 라이프사이클 비용, 통합의 복잡성, 직원 재교육의 필요성을 고려하면서 투명성과 품질에 대한 규제 및 소비자 주도의 요구사항에 따라 투자를 해야 합니다. 그 결과, 현실적인 접근 방식을 통해 시험적 검증과 명확한 확장 로드맵을 결합하여 공급망 연속성 및 소프트웨어 중심의 오케스트레이션을 관리하면서 생산성을 향상시킬 수 있습니다.

인식 모듈 통합의 진보에 따른 노동력의 역동성과 지속가능성의 요구가 식품 로봇의 채택과 배치를 근본적으로 변화시키는 방법

지난 몇 년 동안 식품 산업은 로봇 공학의 사양, 배치 및 수익 창출 방식을 재구성하는 일련의 혁신적인 변화를 겪었습니다. 첫째, 지각 시스템과 AI 기반 시각의 성숙으로 로봇은 변형이 쉽고 불규칙하고 변화하기 쉬운 식품을 이전보다 더 넓은 범위에서 더 빠르고 안정적으로 처리할 수 있게 되었습니다. 이를 통해 대응 가능한 용도 세트가 경직된 반복 작업에서 미묘한 핸들링, 검사, 품질 등급 분류로 확대되었습니다. 둘째, 모듈화 및 표준화된 통신 프로토콜을 통해 통합 마찰을 줄이고 라인 전환을 더 빠르게 하고 로봇, 컨베이어, 기업 소프트웨어 간의 상호 운용성을 용이하게 합니다.

셋째, 노동력의 역동성과 안전에 대한 요구는 인체공학적 위험과 부족한 인력 풀에 대한 의존도를 줄이면서 인간 작업자와 안전하게 공존할 수 있는 협업 및 반자율형 시스템에 대한 수요를 가속화하고 있습니다. 넷째, 지속가능성에 대한 요구와 식품 안전 규제 강화로 인해 폐기물을 줄이고, 추적성을 향상시키며, 콜드체인 물류의 관리 환경을 유지하기 위해 자동화를 도입하는 추세입니다. 마지막으로, 비즈니스 모델의 전환이 진행되고 있습니다. 제조업체와 통합업체들은 서비스형 로봇, 성과 기반 계약, 구독형 소프트웨어 업데이트를 제공함으로써 진입장벽을 낮추고 벤더의 인센티브를 고객의 가동시간과 성과에 맞추어 조정하는 등 다양한 방식으로 로봇을 제공합니다. 것입니다.

수입 관세 및 무역 정책의 변화로 인해 로봇 하드웨어 및 지원 생태계의 조달 통합 및 자본 계획이 어떻게 변화하는지 분석합니다.

부품 및 완제품 로봇 수입에 대한 관세 조치의 누적 영향을 예측하기 위해서는 조달, 공급망 설계, 자본 계획 등을 종합적으로 고려해야 합니다. 관세 압력은 일반적으로 수입 하드웨어 및 하위 어셈블리의 상륙 비용을 상승시켜 제조업체와 통합 업체는 조달 전략과 총 소유 비용을 재검토해야 합니다. 이에 대응하기 위해 많은 이해관계자들은 국내 공급업체를 인증하고, 현지에서 조달 가능한 부품을 사용하도록 제품 아키텍처를 재설계하고, 관세 변동을 헤지하기 위해 장기 계약을 협상하는 노력을 가속화합니다.

운영 측면에서 수입 관세 인상은 가동 중단 시간을 피하기 위해 중요 부품의 재고 버퍼를 늘리고, 운전 자본 요구 사항을 늘리고, 예측 유지 보수 및 부품 표준화에 중점을 두도록 유도합니다. 동시에 관세는 조립 및 최종 통합 작업의 니어쇼어링을 촉진하고, 지역 시스템 조립 허브 및 현지화 된 맞춤형 서비스 기회를 창출 할 수 있습니다. 기술 공급자의 대응 전략으로는 부품 목록의 다양화, 부품 대체가 가능한 제품 모듈성 최적화, 선행 자본 지출에서 반복적인 운영 지출로 부담을 전환할 수 있는 서비스 기반의 상업적 모델 제공 등이 있습니다. 전환 계획은 단기적 완화와 장기적 회복력의 균형을 맞추고, 유연성을 유지하며, 단일 공급업체에 대한 고정화를 피하기 위한 투자를 우선시해야 합니다.

로봇 운동학 페이로드와 동작 모드를 최종 용도 및 통합 우선순위에 맞게 조정하는 종합적인 세분화 인사이트를 제공합니다.

부문 수준에서 이해하면 가치가 어디에서 창출되는지, 이용 사례에 따라 우선순위가 어떻게 달라지는지 명확하게 알 수 있습니다. 로봇 유형별로 살펴보면, 복잡한 다축 작업에 적합한 다관절 로봇, 선형 픽앤 플레이스 작업에 적합한 직교 로봇, 고속 경량 패키징에 적합한 델타 로봇, 중가반 중량 조립 및 검사에 적합한 속도와 정밀도의 균형을 갖춘 스칼라 로봇 등이 있습니다. 각 유형은 설치 면적, 사이클 속도, 프로그래밍 복잡성에서 트레이드 오프 관계가 있으며, 자동화에 가장 적합한 라인과 작업에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 식품 로봇 시장 : 로봇 유형별

  • 다관절 로봇
  • 직교 로봇
  • 델타 로봇
  • 스카라 로봇

제9장 식품 로봇 시장 : 최종 용도별

  • 콜드체인 물류
  • 식품 및 음료 제조업체
  • 푸드서비스
  • 소매

제10장 식품 로봇 시장 : 용도별

  • 검사
  • 패키징
  • 팔레타이징
  • 프로세싱
  • 분류

제11장 식품 로봇 시장 : 적재량별

  • 5-50kg
  • 5kg 미만
  • 50kg 이상

제12장 식품 로봇 시장 : 동작 모드별

  • 자율형
  • 반자율형

제13장 식품 로봇 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 식품 로봇 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 식품 로봇 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Artly, Inc.
    • Bear Robotics, Inc.
    • Blendid, Inc.
    • Chef Robotics, Inc.
    • Dexai Robotics, Inc.
    • Hyper Food Robotics Ltd.
    • Kitchen Robotics Ltd.
    • Miso Robotics, Inc.
    • Nala Robotics, Inc.
    • Picnic Works, Inc.
    • Remy Robotics, Inc.
    • Staubli International AG
LSH 25.10.23

The Food Robotics Market is projected to grow by USD 11.07 billion at a CAGR of 14.38% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 3.77 billion
Estimated Year [2025] USD 4.31 billion
Forecast Year [2032] USD 11.07 billion
CAGR (%) 14.38%

A strategic introduction that positions robotics as an operational enabler redefining food industry efficiency food safety and supply chain resilience

The food robotics landscape is evolving from niche automation pilots to a defining element of operational strategy across food processing, packaging, logistics, and retail. Advances in sensing, control software, and modular hardware are converging with shifting labor dynamics and heightened demand for hygienic, consistent, and traceable operations. These forces are accelerating the replacement or augmentation of manual tasks with robotic solutions that prioritize throughput, food safety, and adaptability to SKU variability. Leaders now face choices that will determine competitive positioning: whether to adopt standardized robotic cells at scale, pursue flexible cobot deployments for mixed-product lines, or invest in end-to-end integrated systems for automated cold chain operations.

This introduction frames the rest of the executive summary by situating robotics as a strategic enabler rather than simply a capital expenditure. Operational leaders must weigh lifecycle costs, integration complexity, and staff reskilling needs while aligning investments to regulatory and consumer-driven requirements for transparency and quality. Consequently, a pragmatic approach blends pilot validation with a clear roadmap for scaling, enabling organizations to capture productivity gains while managing supply chain continuity and software-driven orchestration.

How advances in perception modular integration workforce dynamics and sustainability imperatives are fundamentally altering food robotics adoption and deployment

Over the past several years, the food industry has witnessed a series of transformative shifts that are reshaping how robotics are specified, deployed, and monetized. First, the maturation of perception systems and AI-driven vision has enabled robots to handle a wider range of deformable, irregular, and variable food items with greater speed and reliability than before. This has expanded the addressable application set from rigid, repetitive tasks to nuanced handling, inspection, and quality grading. Second, modularization and standardized communication protocols have reduced integration friction, enabling faster line changeovers and easier interoperability between robots, conveyors, and enterprise software.

Third, workforce dynamics and safety imperatives are accelerating demand for collaborative and semi-autonomous systems that can coexist safely with human operators while reducing ergonomic risks and dependence on scarce labor pools. Fourth, sustainability imperatives and tighter food safety regulations are driving adoption of automation to reduce waste, improve traceability, and maintain controlled environments in cold chain logistics. Finally, business models are shifting: manufacturers and integrators increasingly offer robotics-as-a-service, outcome-based contracts, and subscription software updates, which lower entry barriers and align vendor incentives with customer uptime and performance.

Analyzing how shifts in import duties and trade policy can reshape sourcing integration and capital planning for robotics hardware and support ecosystems

Anticipating the cumulative impact of tariff measures that may be instituted on components and finished robotics imports requires a holistic view of procurement, supply chain design, and capital planning. Tariff pressures typically increase landed costs for imported hardware and subassemblies, which in turn prompts manufacturers and integrators to reassess sourcing strategies and total cost of ownership. In response, many stakeholders accelerate efforts to qualify domestic suppliers, redesign product architectures to use locally available components, and negotiate longer-term contracts that hedge against tariff volatility.

From an operational perspective, increased import duties encourage higher inventory buffers for critical parts to avoid downtime, which raises working capital requirements and places a premium on predictive maintenance and parts standardization. At the same time, tariffs can catalyze nearshoring of assembly and final integration activities, creating opportunities for regional system assembly hubs and localized customization services. For technology providers, response strategies include diversifying bill-of-materials, optimizing product modularity to allow for component substitution, and offering service-based commercial models that shift burden from upfront capital expenditure to recurring operational spend. Transition planning should balance short-term mitigation against long-term resilience, prioritizing investments that preserve flexibility and avoid lock-in to single-source suppliers.

Comprehensive segmentation insights that align robot kinematics payload and operation modes with unique end-use applications and integration priorities

Segment-level understanding sharpens where value is created and how priorities differ across use cases. Based on Robot Type, the landscape spans articulated robots suited to complex multi-axis tasks, Cartesian robots optimized for linear pick-and-place operations, delta robots tailored for high-speed lightweight packaging, and SCARA robots that balance speed and precision for mid-payload assembly and inspection. Each type brings trade-offs in footprint, cycle rate, and programming complexity, influencing which lines and tasks are the best fit for automation.

Based on End Use, dynamics differ across cold chain logistics, food and beverage manufacturers, food service, and retail. Cold chain environments emphasize thermal-rated components and insulated handling; manufacturers focus on continuous processing and hygienic design; food service prioritizes compact, flexible cells that support menu variability; and retail requires user-friendly systems for back-of-house replenishment, in-store packaging, and shelf stocking. Based on Application, common priorities include inspection for quality and safety, packaging for throughput and presentation, palletizing for load stability and space optimization, processing for consistent product transformation, and sorting for channel-specific fulfillment. Based on Payload Capacity, solutions are distinguished by classes such as sub-5 kg systems for delicate handling, 5-50 kg platforms for common pick-and-place and palletizing tasks, and heavier-than-50 kg equipment for bulk material handling; payload choice drives mechanical design, safety systems, and floor loading considerations. Based on Operation Mode, the operational profile ranges from fully autonomous systems that operate with minimal human intervention to semi-autonomous deployments that require operator oversight and hybrid human-machine workflows; this axis determines software complexity, sensor redundancy, and workforce training requirements.

Taken together, these segmentation perspectives reveal that successful rollouts are not one-size-fits-all but rather require careful mapping of robot kinematics, environmental constraints, application goals, and operational modes to the enterprise's strategic priorities. The most resilient strategies integrate modular hardware choices with standardized software layers to lower integration costs and accelerate return on investment through repeatable deployment patterns.

Regional adoption patterns and support infrastructure that determine scalability serviceability and compliance across the Americas Europe Middle East and Africa and Asia Pacific

Regional dynamics materially affect adoption patterns, regulatory expectations, and supply chain design. In the Americas, emphasis is strong on scalability and integration with legacy processing infrastructure, with adopters favoring solutions that reduce labor intensity and enhance traceability across long distribution networks. This region also demonstrates growing interest in service-led commercial models and retrofit kits that modernize existing lines without full replacement.

In Europe, Middle East & Africa, regulatory stringency, food safety standards, and sustainability targets are significant drivers, prompting investments in hygienic design, energy-efficient actuation, and circular approaches to packaging automation. The need to serve diverse regulatory regimes and language environments encourages vendors to provide configurable software stacks and comprehensive local support. In the Asia-Pacific region, rapid industrial automation uptake, a dense supplier ecosystem, and higher volumes of contract manufacturing create fertile ground for both OEM-driven integrations and specialized third-party integrators. Proximity to component suppliers in this region often enables faster innovation cycles, but it also necessitates careful management of IP and quality standards when designing for global markets.

Across all regions, localized service capacity, spare parts availability, and training programs are often the decisive factors in moving from a pilot to a scaled deployment. Strategic investments in regional assembly, certified integrator networks, and remote diagnostics platforms help mitigate downtime and support cross-border rollouts.

Market dynamics and vendor differentiation driven by vertical expertise modular innovation and evolving commercial models that prioritize uptime and outcomes

Competitive dynamics in the food robotics space are defined by a mix of established automation suppliers, specialized OEM partners, and a growing number of software-first entrants. Leading integrators differentiate through deep vertical expertise, validated hygiene-compliant designs, and long-term service contracts that reduce customer risk. At the same time, smaller innovators are disrupting traditional models by focusing on modularity, low-code programming environments, and plug-and-play safety fences that reduce deployment time. Strategic partnerships between robot OEMs and food processors accelerate domain-specific feature development, such as vision algorithms tuned for organic produce variability or end-effectors engineered for delicate textures.

Talent and intellectual property are also sources of competitive advantage. Companies that invest in applied research for soft-grip end effectors, advanced machine vision for grading, and deterministic motion planning for mixed-SKU lines tend to capture higher-value implementations. Additionally, commercial models are evolving: some firms bundle hardware with predictive maintenance and uptime warranties, while others offer outcome-based pricing tied to throughput or yield improvements. For buyers, vendor selection increasingly hinges on demonstrated case studies, field service capacity, and the ability to co-develop pilots that scale into repeatable templates across multiple facilities.

Actionable recommendations for leaders to scale automation responsibly optimize supplier risk and align workforce reskilling with operational performance targets

Industry leaders should take deliberate steps to translate automation potential into operational reality. Start by developing a cross-functional automation roadmap that aligns engineering, operations, procurement, and talent development around prioritized use cases rather than isolated pilots. Early priorities should include standardizing on communication protocols, specifying hygienic and serviceable mechanical interfaces, and defining data contracts that enable performance monitoring across heterogeneous equipment.

Next, prioritize supplier diversification and modular design to reduce sourcing risk and improve upgrade paths. Invest in workforce transition programs that pair robotics engineers with line operators to accelerate skill transfer while preserving institutional knowledge. When evaluating commercial models, consider blended approaches that combine capital purchases for core line assets with service subscriptions for software and predictive maintenance. Finally, institutionalize a governance process for continuous improvement that captures lessons from pilots, codifies integration templates, and measures outcomes in operational terms such as uptime, waste reduction, and time-to-changeover. These actions will help organizations scale automation responsibly and sustainably while keeping strategic flexibility intact.

A transparent research methodology combining primary interviews secondary standards review and scenario mapping to validate technology feasibility and integration barriers

This research synthesis integrates primary interviews with industry practitioners, secondary literature review, and comparative case analysis to produce actionable insights. Primary engagement included structured discussions with automation engineers, operations leaders in food manufacturing and cold chain logistics, and integrator executives to validate technology feasibility, integration pain points, and service model preferences. These qualitative inputs were triangulated with technical documentation, standards bodies' guidelines for hygienic design, and published regulatory frameworks to ensure alignment with compliance and safety requirements.

Analytical methods focused on thematic coding of interview transcripts to identify recurring barriers to scale, scenario mapping to evaluate the resilience of sourcing strategies under trade and supply disruptions, and capability matrices to match robot types to application-level requirements. The methodology emphasizes reproducibility: assumptions and inclusion criteria for case examples are documented, and recommended evaluation frameworks for pilots are provided to help leaders replicate assessments in their own environments. Wherever possible, findings were cross-verified with multiple independent sources to reduce bias and enhance reliability of the insights presented.

A concise conclusion emphasizing the need for ecosystem thinking modular architectures workforce investment and governance to scale food robotics effectively

Robotics is transitioning from a productivity enhancer in isolated cells to a core strategic capability that underpins resilience, quality, and speed-to-market across the food value chain. The most successful adopters will be those that treat automation as an ecosystem challenge-one that spans hardware, software, talent, and procurement-rather than a point solution. By adopting modular architectures, diversifying sourcing, and investing in workforce development, organizations can capture the operational benefits of robotics while maintaining the flexibility to adapt to shifting trade dynamics and evolving consumer demands.

Looking ahead, the interplay between advanced sensing, edge computing, and services-oriented commercial models will shape which providers and adopters succeed. Decision-makers who prioritize integration readiness, regional service capacity, and measurable outcome governance will be best positioned to convert pilots into scalable operations that enhance food safety, reduce waste, and improve labor productivity. The path forward requires disciplined execution, pragmatic pilots, and a clear linkage between automation investments and business objectives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Deployment of AI-enabled robotic arms for precision confectionery and chocolate decorating processes
  • 5.2. Adoption of autonomous mobile robots for real-time inventory monitoring and stock replenishment in food warehouses
  • 5.3. Integration of vision-guided robotics systems for automated quality inspection of fresh produce on packing lines
  • 5.4. Use of collaborative robots alongside kitchen staff to streamline meal assembly in quick service restaurants
  • 5.5. Development of temperature-controlled robotic arms for safe handling and packaging of frozen and chilled foods
  • 5.6. Implementation of cloud-connected robotics platforms for predictive maintenance in large-scale food processing plants
  • 5.7. Deployment of AI-driven robotic slicing and portioning solutions in meat processing operations to reduce waste
  • 5.8. Emergence of end-to-end automation solutions combining robotics with IoT sensors in dairy production facilities
  • 5.9. Customization of robotic bakery systems for automated dough handling, proofing, and baking workflows
  • 5.10. Integration of UV sterilization modules on food robotics equipment to enhance sanitation and reduce microbial contamination

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Food Robotics Market, by Robot Type

  • 8.1. Articulated Robots
  • 8.2. Cartesian Robots
  • 8.3. Delta Robots
  • 8.4. Scara Robots

9. Food Robotics Market, by End Use

  • 9.1. Cold Chain Logistics
  • 9.2. Food And Beverage Manufacturers
  • 9.3. Food Service
  • 9.4. Retail

10. Food Robotics Market, by Application

  • 10.1. Inspection
  • 10.2. Packaging
  • 10.3. Palletizing
  • 10.4. Processing
  • 10.5. Sorting

11. Food Robotics Market, by Payload Capacity

  • 11.1. 5-50 Kg
  • 11.2. Less Than 5 Kg
  • 11.3. More Than 50 Kg

12. Food Robotics Market, by Operation Mode

  • 12.1. Autonomous
  • 12.2. Semi Autonomous

13. Food Robotics Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Food Robotics Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Food Robotics Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Artly, Inc.
    • 16.3.2. Bear Robotics, Inc.
    • 16.3.3. Blendid, Inc.
    • 16.3.4. Chef Robotics, Inc.
    • 16.3.5. Dexai Robotics, Inc.
    • 16.3.6. Hyper Food Robotics Ltd.
    • 16.3.7. Kitchen Robotics Ltd.
    • 16.3.8. Miso Robotics, Inc.
    • 16.3.9. Nala Robotics, Inc.
    • 16.3.10. Picnic Works, Inc.
    • 16.3.11. Remy Robotics, Inc.
    • 16.3.12. Staubli International AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제