![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1659439
¼¼°èÀÇ ÀÔÀÚ¼± Ä¡·á ½ÃÀåParticle Therapy |
¼¼°èÀÇ ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀº 2030³â±îÁö 28¾ï ´Þ·¯¿¡ ´ÞÇÒ Àü¸Á
2024³â¿¡ 17¾ï ´Þ·¯·Î ÃßÁ¤µÇ´Â ¼¼°èÀÇ ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀº 2024-2030³â¿¡ CAGR 8.8%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 28¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®Æ÷Æ®¿¡¼ ºÐ¼®ÇÑ ºÎ¹®ÀÇ ÇϳªÀÎ ¾çÀÚ¼± Ä¡·á´Â CAGR 9.2%¸¦ ±â·ÏÇϸç, ºÐ¼® ±â°£ Á¾·á½Ã¿¡´Â 23¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÁßÀÔÀÚ¼± Ä¡·á ºÎ¹®ÀÇ ¼ºÀå·üÀº ºÐ¼® ±â°£¿¡ CAGR 7.1%·Î ÃßÁ¤µË´Ï´Ù.
¹Ì±¹ ½ÃÀåÀº 4¾ï 8,140¸¸ ´Þ·¯·Î ÃßÁ¤, Áß±¹Àº CAGR 8.0%·Î ¼ºÀå ¿¹Ãø
¹Ì±¹ÀÇ ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀº 2024³â¿¡ 4¾ï 8,140¸¸ ´Þ·¯·Î ÃßÁ¤µË´Ï´Ù. ¼¼°è 2À§ÀÇ °æÁ¦´ë±¹ÀÎ Áß±¹Àº 2024-2030³âÀÇ ºÐ¼® ±â°£¿¡ CAGR 8.0%·Î ÃßÀÌÇϸç, 2030³â¿¡´Â 4¾ï 3,210¸¸ ´Þ·¯ÀÇ ½ÃÀå ±Ô¸ð¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±âŸ ÁÖ¸ñÇÒ ¸¸ÇÑ Áö¿ªº° ½ÃÀåÀ¸·Î´Â ÀϺ»°ú ij³ª´Ù°¡ ÀÖÀ¸¸ç, ºÐ¼® ±â°£ Áß CAGRÀº °¢°¢ 8.3%¿Í 7.0%·Î ¿¹ÃøµË´Ï´Ù. À¯·´¿¡¼´Â µ¶ÀÏÀÌ CAGR ¾à 7.0%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¼¼°èÀÇ ÀÔÀÚ¼± Ä¡·á ½ÃÀå - ÁÖ¿ä µ¿Çâ°ú ÃËÁø¿äÀÎ Á¤¸®
Çö´ë ¾Ï Ä¡·á¿¡ ÀÔÀÚ¼± Ä¡·á°¡ ÇʼöÀûÀÎ ÀÌÀ¯´Â ¹«¾ùÀΰ¡?
ÀÔÀÚ¼± Ä¡·á´Â ÁÖº¯ÀÇ °Ç°ÇÑ Á¶Á÷¿¡ ´ëÇÑ ¼Õ»óÀ» ÃÖ¼ÒÈÇÏ¸é¼ Á¤È®Çϰí Ç¥ÀûÈµÈ ¹æ»ç¼± Ä¡·á¸¦ Á¦°øÇÔÀ¸·Î½á Çö´ë ¾Ï Ä¡·á¿¡¼ ÇʼöÀûÀÌ°í ¸Å¿ì È¿°úÀûÀÎ Ä¡·á ¿É¼ÇÀ¸·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù. ±âÁ¸ÀÇ ±¤ÀÚ ±â¹Ý ¹æ»ç¼±°ú ´Þ¸® ÀÔÀÚ¼± Ä¡·á´Â ¾ç¼ºÀÚ³ª ź¼Ò À̿°ú °°Àº ÇÏÀüµÈ ÀÔÀÚ¸¦ »ç¿ëÇϹǷΠÁ¾¾ç Àü¹®ÀÇ´Â ÀÎÁ¢ÇÑ °Ç°ÇÑ Á¶Á÷À» º¸Á¸ÇÏ¸é¼ Á¾¾ç¿¡ Á÷Á¢ °í¼±·®ÀÇ ¹æ»ç¼±À» Á¶»çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤È®¼ºÀº ³úÁ¾¾ç, ¼Ò¾Æ¾Ï, ô¼ö ÁÖº¯ Á¾¾ç µî Áß¿äÇÑ ±¸Á¶¹° ±Ùó¿¡ À§Ä¡ÇÑ ¾ÏÀ» Ä¡·áÇÒ ¶§ ƯÈ÷ °¡Ä¡°¡ ÀÖÀ¸¸ç, °Ç°ÇÑ Á¶Á÷À» º¸Á¸ÇÏ´Â °ÍÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±× °á°ú, ÀÔÀÚ¼± Ä¡·á´Â º¹ÀâÇϰí Ä¡·á°¡ ¾î·Á¿î ¾Ï Ä¡·áÀÇ Ãʼ®ÀÌ µÇ¾î Ä¡·á ¼ºÀûÀ» Å©°Ô °³¼±ÇÏ°í ºÎÀÛ¿ëÀ» °¨¼Ò½ÃÄ×½À´Ï´Ù.
ÀÔÀÚ¼± Ä¡·á´Â ±× Á¤È®¼º°ú ´õºÒ¾î Á¾¾ç ºÎÀ§¿¡¼ÀÇ ¼±·® °µµ°¡ ³ô±â ¶§¹®¿¡ ±âÁ¸ÀÇ ¹æ»ç¼± Á¶»ç¿¡ Àß ¹ÝÀÀÇÏÁö ¾Ê´Â ¹æ»ç¼± ÀúÇ×¼º Á¾¾ç¿¡ ƯÈ÷ È¿°úÀûÀÔ´Ï´Ù. ºê·¡±× ÇÇÅ© È¿°ú¿Í °°Àº ÀÔÀÚ¼±ÀÇ µ¶Æ¯ÇÑ Æ¯¼ºÀ¸·Î ÀÎÇØ Á¾¾ç ºÎÀ§¿¡ Á÷Á¢ ÃÖ´ë ¿¡³ÊÁö¸¦ ¹æÃâÇÒ ¼ö ÀÖÀ¸¸ç, Á¾¾ç ¿ÜÀÇ ¹æ»ç¼± ÇÇÆøÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡Àº ºÎÀÛ¿ë°ú Àå±âÀûÀÎ ÇÕº´ÁõÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖÀ¸¸ç, ƯÈ÷ ¼Ò¾Æ ȯÀÚ³ª ¹Î°¨ÇÑ Àå±â ±Ùó¿¡ ¾ÏÀÌ Àִ ȯÀڵ鿡°Ô À¯ÀÍÇÕ´Ï´Ù. ȯÀڵ鿡°Ô ÀÔÀÚ¼± Ä¡·á´Â ÇÕº´ÁõÀÌ Àû°í Ä¡·á ±â°£ÀÌ ´ÜÃàµÉ ¼ö ÀÖ´Ù´Â °ÍÀ» ÀǹÌÇϸç, ÀÌ´Â Á¤¹Ðµµ°¡ ³ôÀº ¾Ï Ä¡·á¸¦ ÇÏ´Â Çö´ë Á¾¾çÇп¡¼ ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ ÀÔÀÚ¼± Ä¡·á´Â °¢ ȯÀÚÀÇ Á¾¾ç Ư¼º¿¡ ¸Â´Â Ä¡·á °èȹÀ» ¼¼¿ï ¼ö ÀÖÀ¸¹Ç·Î °³ÀÎ ¸ÂÃãÇü ¾Ï Ä¡·á Áõ°¡ Ãß¼¼¿¡ ºÎÇÕÇÕ´Ï´Ù. ¿µ»ó Áø´Ü ¹× Ä¡·á °èȹÀÇ ¹ßÀüÀ¸·Î Á¾¾ç Àü¹®ÀÇ´Â ÀÔÀÚ¼± Ä¡·á¸¦ »ç¿ëÇÏ¿© Á¾¾çÀÇ Å©±â, ¸ð¾ç ¹× À§Ä¡¿¡ µû¶ó Á¾¾çÀ» ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â Á¤¹Ðµµ·Î Ç¥ÀûÈÇÒ ¼ö ÀÖÀ¸¸ç, Ä¡·á È¿°ú¸¦ Çâ»ó½ÃŰ´Â °³ÀÎÈµÈ Á¢±Ù¹ýÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â´ÉÀ» ÅëÇØ ÀÔÀÚ¼± Ä¡·á´Â Á¤¹Ð Á¾¾çÇп¡ ÇʼöÀûÀÎ Á¸Àç°¡ µÇ¾î ¾Ï Ä¡·á·Î ÀÎÇÑ ½ÅüÀû, Á¤½ÅÀû ºÎ´ãÀ» ÁÙÀÌ¸é¼ È¯ÀÚÀÇ ¿¹Èĸ¦ °³¼±Çϴ ÷´Ü Ç¥ÀûÄ¡·á¿¡ ´ëÇÑ ¿ä±¸¸¦ ÃæÁ·½Ãų ¼ö ÀÖ½À´Ï´Ù.
±â¼úÀÇ ¹ßÀüÀº ÀÔÀÚ¼± Ä¡·á¸¦ ¾î¶»°Ô Çâ»ó½Ã۰í Àִ°¡?
±â¼úÀÇ ¹ßÀüÀº ÀÔÀÚ¼± Ä¡·áÀÇ È¿°ú, Á¢±Ù¼º ¹× È¿À²¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ ¾Ï Ä¡·á¿¡ ´ëÇÑ ÀÀ¿ë°ú ¸Å·ÂÀ» ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ßÀÇ °¡Àå Áß¿äÇÑ Çõ½Å Áß Çϳª´Â ¼±·® ºÐÆ÷ÀÇ Á¤È®µµ¸¦ ´õ¿í ³ôÀÏ ¼ö ÀÖ´Â °µµ º¯Á¶ ¾ç¼ºÀÚ Ä¡·á(IMPT)ÀÇ °³¹ß·Î, Á¾¾ç Àü¹®Àǰ¡ ¾ç¼ºÀÚ ºöÀÇ °µµ¸¦ Á¶ÀýÇÏ¿© Á¾¾çÀÇ À±°û¿¡ µû¶ó ¾ç¼ºÀÚ ºöÀ» º¸´Ù Á¤È®ÇÏ°Ô Çü¼ºÇϰí ÁÖº¯ °Ç°ÇÑ Á¶Á÷À» º¸´Ù È¿°úÀûÀ¸·Î º¸Á¸ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü Á¦¾î´Â ¹æ»ç¼± À¯¹ß ºÎÀÛ¿ëÀÇ À§ÇèÀ» ÁÙÀ̰í, º¹ÀâÇÏ°í ºÒ±ÔÄ¢ÇÑ ¸ð¾çÀÇ Á¾¾ç¿¡ ƯÈ÷ À¯¿ëÇϸç, IMPT ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ³Ä¡¼º ¾ÏÁ¾ ȯÀÚÀÇ Ä¡·á °á°ú°¡ °³¼±µÇ°í ÀÔÀÚ¼± Ä¡·áÀÇ Àü¹ÝÀûÀÎ È¿´ÉÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù.
½Ç½Ã°£ MRI ¹× PET ½ºÄµ°ú °°Àº ÷´Ü ¿µ»ó ±â¼úÀÇ ÅëÇÕÀº Ä¡·áÀÇ ÁöħÀÌ µÇ´Â »ó¼¼ÇÑ ½Ç½Ã°£ À̹ÌÁö¸¦ Á¦°øÇÔÀ¸·Î½á ÀÔÀÚ¼± Ä¡·áÀÇ Á¤È®¼ºÀ» ´õ¿í Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿µ»ó ±â¼úÀ» ÅëÇØ Á¾¾ç Àü¹®ÀÇ´Â Á¾¾çÀÇ À§Ä¡¸¦ Á¤È®ÇÏ°Ô ÆÄ¾ÇÇϰí È£ÈíÀ̳ª ȯÀÚÀÇ ¿òÁ÷ÀÓ°ú °°Àº Á¾¾çÀÇ ¿òÁ÷ÀÓÀ» °í·ÁÇÏ¿© Ä¡·á ¸Å°³º¯¼ö¸¦ Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ç½Ã°£ À̹Ì¡°ú ÀÔÀÚ¼± Ä¡·á¸¦ °áÇÕÇÏ¿© Á¾¾ç Àü¹®ÀÇ´Â º¸´Ù Á¤È®Çϰí ÀûÀÀÀûÀÎ Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖÀ¸¸ç, Á¾¾ç¿¡ ¹æ»ç¼±À» Á¶»çÇϰí ÁÖº¯ Á¶Á÷À» º¸Á¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Çõ½ÅÀº ÀûÀÀÇü ÀÔÀÚ¼± Ä¡·á¸¦ Áö¿øÇϰí, Ä¡·á¿¡ ´ëÇÑ Á¾¾çÀÇ º¯È¿¡ µû¶ó Ä¡·á¸¦ µ¿ÀûÀ¸·Î Á¶Á¤ÇÏ¿© È¿°ú¸¦ ³ôÀÌ°í ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.
½Ì±Û·ë ¾ç¼ºÀÚ Ä¡·á±â µî ÄÞÆÑÆ®ÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ÀÔÀÚ¼± Ä¡·á ½Ã½ºÅÛÀÇ °³¹ß·Î ÀÔÀÚ¼± Ä¡·áÀÇ Á¢±Ù¼º°ú °¡°ÝÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. ±âÁ¸¿¡´Â ÀÔÀÚ¼± Ä¡·á´Â ´ë±Ô¸ðÀÇ º¹ÀâÇÏ°í °ªºñ½Ñ ½Ã¼³À» ÇÊ¿ä·Î ÇßÀ¸¹Ç·Î ÀÌ¿ë °¡´ÉÇÑ ½Ã¼³Àº Àü ¼¼°è¿¡¼ ÇÑÁ¤µÈ ½Ã¼³¿¡ ±¹ÇѵǾî ÀÖ¾ú½À´Ï´Ù. ±×·¯³ª ¼ÒÇü ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î ´õ ¸¹Àº º´¿ø°ú ¾Ï¼¾ÅͰ¡ ÀÔÀÚ¼± Ä¡·á ±â¼úÀ» äÅÃÇÒ ¼ö ÀÖ°Ô µÇ¾î ´õ ¸¹Àº ȯÀÚµéÀÌ ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ½Ã½ºÅÛÀº ´ë±Ô¸ð ÀÎÇÁ¶óÀÇ Çʿ伺À» ÁÙÀÌ°í ºñ¿ëÀ» Å©°Ô Àý°¨ÇÏ¿© Áö¿ª º´¿ø°ú Áö¿ª ¾Ï¼¾ÅͰ¡ ÀÌ Ã·´Ü Ä¡·á¹ýÀ» Á¦°øÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸´Â ÀÔÀÚ¼± Ä¡·á¸¦ º¸´Ù Àú·ÅÇÏ°í ±¤¹üÀ§ÇÏ°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ±× ¹üÀ§¸¦ ³ÐÇô ´õ ¸¹Àº ȯÀÚ¿¡°Ô Á¤¹ÐÇÑ ¾Ï Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.
ÀÔÀÚ¼± Ä¡·á´Â ȯÀÚ¿Í ÀÇ·á ½Ã½ºÅÛ¿¡ ¾î¶² ÀÌÁ¡ÀÌ Àִ°¡?
ÀÔÀÚ¼± Ä¡·á´Â ¾Ï Ä¡·á¿¡ Á¤È®Çϰí È¿°úÀûÀ̸ç ȯÀÚ Ä£ÈÀûÀÎ Á¢±Ù ¹æ½ÄÀ» Á¦°øÇÔÀ¸·Î½á ȯÀÚ¿Í ÀÇ·á ½Ã½ºÅÛ ¸ðµÎ¿¡°Ô Å« ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ȯÀÚ¿¡°Ô ÀÔÀÚ¼± Ä¡·áÀÇ ÁÖ¿ä ÀÌÁ¡ Áß Çϳª´Â °Ç°ÇÑ Á¶Á÷ ¼Õ»óÀ» ÃÖ¼ÒÈÇÏ°í ´Ü±â ¹× Àå±â ºÎÀÛ¿ëÀ» ÁÙÀÏ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á÷ º¸Á¸ Ư¼ºÀº ÇÕº´ÁõÀÇ À§ÇèÀ» ÁÙÀÌ°í »îÀÇ ÁúÀ» À¯ÁöÇϱâ À§ÇØ ¼Ò¾Æ ȯÀÚ³ª ¼¶¼¼ÇÑ ±¸Á¶¹° ±Ùó¿¡ Á¾¾çÀÌ Àִ ȯÀÚ¿¡°Ô ƯÈ÷ °¡Ä¡°¡ ÀÖ½À´Ï´Ù. ÀÔÀÚ¼± Ä¡·á´Â ÁÖº¯ Á¶Á÷¿¡ ´ëÇÑ ¹æ»ç¼± ÇÇÆøÀ» ÃÖ¼ÒÈÇÏ¿© ºÎÀÛ¿ëÀÌ ÀûÀº Ä¡·á¸¦ °¡´ÉÇÏ°Ô Çϸç, Á¶±â ȸº¹°ú Ä¡·á ÈÄ »îÀÇ Áú Çâ»óÀ¸·Î À̾îÁý´Ï´Ù. ÀÌ·¯ÇÑ ÀåÁ¡Àº ¹æ»ç¼± ³ëÃâ·Î ÀÎÇÑ ÀÌÂ÷Àû ¾ÏÀ̳ª ¹ß´Þ Àå¾ÖÀÇ À§ÇèÀ» ÁÙ¿©Áֱ⠶§¹®¿¡ ƯÈ÷ ÀþÀº ȯÀڵ鿡°Ô À¯ÀÍÇÕ´Ï´Ù.
ÀÇ·á ½Ã½ºÅÛ¿¡¼ ÀÔÀÚ¼± Ä¡·á´Â ¹æ»ç¼± ºÎÀÛ¿ë ¹× ÇÕº´Áõ °ü¸®¿¡ µû¸¥ Àå±âÀûÀÎ Ä¡·á ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ ¹æ»ç¼± Ä¡·á´Â ¹æ»ç¼±ÇǺο°, Àå±â ¼Õ»ó, ÀÌÂ÷Àû ¾Ç¼º Á¾¾ç°ú °°Àº ºÎÀÛ¿ëÀ» °ü¸®Çϱâ À§ÇØ Ä¡·á ÈÄ ´ë±Ô¸ð Ä¡·á°¡ ÇÊ¿äÇÑ °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ÀÔÀÚ¼± Ä¡·áÀÇ Á¤È®ÇÑ Å¸±êÆÃÀº ÀÌ·¯ÇÑ ÇÕº´Áõ ¹ß»ý·üÀ» Å©°Ô °¨¼Ò½ÃÄÑ ÀÔ¿øÀ» ÁÙÀ̰í ÈÄ¼Ó Ä¡·á ¼ö¿ä¸¦ °¨¼Ò½Ãų ¼ö ÀÖ½À´Ï´Ù. Ä¡·á ÈÄ ÇÕº´Áõ °¨¼Ò´Â ÀÇ·á ½Ã½ºÅÛÀÇ ºñ¿ë Àý°¨À¸·Î À̾îÁ® ÀÚ¿øÀ» º¸´Ù È¿°úÀûÀ¸·Î ¹èºÐÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÔÀÚ¼± Ä¡·á´Â Àå±âÀûÀÎ ¿µÇâÀÌ Àû°í, ´õ ³ªÀº ȯÀÚ °á°ú¸¦ Áö¿øÇÔÀ¸·Î½á º¸´Ù Áö¼Ó°¡´ÉÇÑ ¾Ï Ä¡·á Á¢±Ù ¹æ½Ä¿¡ ±â¿©Çϰí, ÀÇ·á ½Ã½ºÅÛ¿¡ ÀçÁ¤Àû, ¿î¿µ»óÀÇ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.
¶ÇÇÑ ÀÔÀÚ¼± Ä¡·á´Â °³ÀÎÈ ¹× Á¤¹Ð Á¾¾çÇÐÀ¸·ÎÀÇ Àüȯ¿¡ ºÎÇÕÇϸç, ÀÇ·áÁøÀº °¢ ȯÀÚÀÇ Á¾¾ç Ư¼º¿¡ ¸Â´Â ¸ÂÃãÇü Ä¡·á¸¦ Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÷´Ü ¿µ»ó Áø´Ü ¹× Ä¡·á °èȹ ±â¼úÀ» ÅëÇØ Á¾¾ç Àü¹®ÀÇ´Â Á¾¾çÀÇ À§Ä¡, Å©±â, ¸ð¾ç¿¡ µû¶ó °³º°ÈµÈ ÀÔÀÚ¼± Ä¡·á ÇÁ·ÎÅäÄÝÀ» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °³º°È´Â Ä¡·á È¿°ú¸¦ Çâ»ó½Ã۰í, ȯÀÚ°¡ ºÒÇÊ¿äÇÑ ¹æ»ç¼± ³ëÃâ ¾øÀÌ ÇÊ¿äÇÑ ¾çÀÇ ¹æ»ç¼±À» Á¤È®ÇÏ°Ô ¹ÞÀ» ¼ö ÀÖÀ¸¸ç, ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á ½Ã½ºÅÛ ÀÔÀå¿¡¼´Â ¸ÂÃãÇü Ä¡·á°¡ °¡´ÉÇØÁü¿¡ µû¶ó ȯÀÚ ¸¸Á·µµ¿Í Ä¡·á °á°ú°¡ Çâ»óµÇ°í, Á¾ÇÕÀûÀÎ ¾Ï Ä¡·á ÇÁ·Î±×·¥ÀÇ ÀÏȯÀ¸·Î ÀÔÀÚ¼± Ä¡·áÀÇ °¡Ä¡¸¦ ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. »îÀÇ Áú Çâ»ó, Àå±âÀûÀÎ ºñ¿ë Àý°¨, Á¤¹ÐÇÑ ¾Ï Ä¡·á Áö¿ø µî ÀÔÀڿܼ± Ä¡·á°¡ ȯÀÚ¿Í ÀÇ·áÁø¿¡°Ô °¡Á®´Ù ÁÙ ¼ö ÀÖ´Â º¯ÈÀÇ °¡´É¼ºÀº ¹«±Ã¹«ÁøÇÕ´Ï´Ù.
ÀÔÀÚ Ä¡·á ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀº ¹«¾ùÀΰ¡?
ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀÇ ¼ºÀåÀº ¾Ï ¹ßº´·ü Áõ°¡, ÃÖ¼Ò Ä§½ÀÀûÀ̰í Á¤¹ÐÇÑ ¾Ï Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀÔÀÚ¼± Ä¡·á ±â¼úÀÇ ¹ßÀü, ¾ç¼ºÀÚ ¹× ź¼Ò À̿ ġ·á ¼¾ÅÍ¿¡ ´ëÇÑ Á¢±Ù¼º È®´ë µîÀÇ ¿äÀο¡ ÀÇÇØ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. Àü ¼¼°è¿¡¼ ¾Ï ¹ßº´·üÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖ´Â °¡¿îµ¥, ºÎÀÛ¿ëÀ» ÃÖ¼ÒÈÇÏ¸é¼ Ä¡·á ¼ºÀûÀ» Çâ»ó½Ãų ¼ö Àִ ÷´Ü Ä¡·á ¿É¼ÇÀÌ Àý½ÇÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ÀÔÀÚ¼± Ä¡·á´Â Á¤È®ÇÑ Ç¥ÀûÈ¿Í °Ç°ÇÑ Á¶Á÷¿¡ ´ëÇÑ ¿µÇâ °¨¼Ò¸¦ ÅëÇØ ±âÁ¸ ¹æ»ç¼±¿¡ ´ëÇÑ È¿°úÀûÀ̰í ȯÀÚ Ä£ÈÀûÀÎ Ä¡·á ´ë¾ÈÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ºÎÀÀÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä´Â Á¶Á÷ º¸Á¸ Ä¡·á°¡ °¡Àå ÇÊ¿äÇÑ ¼Ò¾Æ¿Ü°úÇÐ ºÐ¾ß¿¡¼ ƯÈ÷ °ÇÕ´Ï´Ù. Àü ¼¼°è¿¡¼ ¾Ï ¹ßº´·üÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÀÔÀÚ¼± Ä¡·á¿Í °°Àº °íÁ¤¹Ð Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå È®´ëÀÇ ¿øµ¿·ÂÀÌ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÃÖ¼Òħ½ÀÀû ¾Ï Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ȯÀÚ¿Í ÀÇ·áÁø ¸ðµÎ ºÎÀÛ¿ëÀÌ Àû°í ȸº¹ ½Ã°£ÀÌ ÂªÀ¸¸é¼µµ È¿°úÀûÀÎ °á°ú¸¦ Á¦°øÇÏ´Â Ä¡·á¸¦ ¿øÇϰí ÀÖ½À´Ï´Ù. ÀÔÀÚ¼± Ä¡·á´Â °í¼±·®ÀÇ ¹æ»ç¼±À» Á¾¾ç¿¡ Á÷Á¢ Á¶»çÇϰí ÁÖº¯ Á¶Á÷À» º¸Á¸ÇÒ ¼ö ÀÖÀ¸¹Ç·Î Á¤È®¼º°ú ÃÖ¼Ò Ä§½À¼ºÀÇ ¿ä±¸¿¡ ºÎÇÕÇÕ´Ï´Ù. ÀÔÀÚ¼± Ä¡·á°¡ ±âÁ¸ ¹æ»ç¼±º¸´Ù ¿ì¼öÇÏ´Ù´Â Á¡ÀÌ È¯ÀÚ¿Í ÀÇ·áÁø »çÀÌ¿¡¼ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ äÅ÷üÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ȯÀÚµéÀÌ È¿°ú¿Í »îÀÇ Áú »çÀÌÀÇ ±ÕÇüÀ» °í·ÁÇÑ Ä¡·á¸¦ ¿øÇÔ¿¡ µû¶ó ÀÔÀÚ¼± Ä¡·á´Â º¹ÀâÇϰí À§Çèµµ°¡ ³ôÀº ¾Ï¿¡ ÀûÇÕÇÑ ´ë¾ÈÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
¶ÇÇÑ ÀÔÀÚ¼± Ä¡·áÀÇ ¼ÒÇüÈ, ½Ì±Û ·ë ½Ã½ºÅÛ µî ÀÔÀÚ¼± Ä¡·á ±â¼úÀÇ ¹ßÀüÀº ÀÔÀÚ¼± Ä¡·á¸¦ º¸´Ù Ä£¼÷Çϰí Àú·ÅÇÏ°Ô ¸¸µé¾î ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü ½Ã½ºÅÛÀº ±âÁ¸ ÀÔÀÚ¼± Ä¡·á ½Ã¼³¿¡ ÇÊ¿äÇÑ ÀÎÇÁ¶ó¿Í ºñ¿ëÀ» Àý°¨ÇÏ¿© ´õ ¸¹Àº º´¿ø°ú ¾Ï¼¾ÅͰ¡ ÀÌ Ã·´Ü ±â¼úÀ» äÅÃÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °µµ º¯Á¶ ¾ç¼ºÀÚ Ä¡·á ¹× ÀûÀÀÇü Ä¡·á °èȹ°ú °°Àº Çõ½ÅÀº ÀÔÀÚ¼± Ä¡·áÀÇ Á¤È®¼º°ú ÀûÀÀ¼ºÀ» Çâ»ó½ÃÄÑ º¸´Ù ´Ù¾çÇÑ ¾ÏÁ¾¿¡ ´ëÇÑ Ä¡·á È¿°ú¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ±â¼úÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó ÀÔÀÚ¼± Ä¡·á´Â ´õ ¸¹Àº ÀÇ·á ½Ã¼³¿¡¼ »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾î ȯÀÚÀÇ Á¢±Ù¼ºÀ» ³ôÀÌ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù.
ƯÈ÷ ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç µîÀÇ Áö¿ª¿¡¼ ÀÔÀÚ¼± Ä¡·á ¼¾ÅͰ¡ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ¿Í ÀÇ·á ±â°üÀº ÀÔÀÚ¼± Ä¡·áÀÇ ÀÎÇÁ¶ó ±¸Ãà¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ¾Ï Ä¡·á¿¡ ´ëÇÑ ÀåÁ¡°ú Àå±âÀûÀÎ ÀÇ·áºñ Àý°¨ °¡´É¼ºÀ» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¸¹Àº ±¹°¡µéÀÌ ÀÔÀÚ¼± Ä¡·áÀÇ È¯ÀÚ Á¢±Ù¼ºÀ» ³ôÀ̱â À§ÇØ ¸¹Àº ±¹°¡¿¡¼ ȯ±Þ ¹× ÀçÁ¤Àû Áö¿øÀ» Á¦°øÇÕ´Ï´Ù. Àü ¼¼°è¿¡¼ ´õ ¸¹Àº ÀÔÀÚ¼± Ä¡·á ¼¾ÅͰ¡ ¼³¸³µÊ¿¡ µû¶ó ÀÌ Ä¡·á¹ýÀÇ ÀÌ¿ë °¡´É¼º°ú ÀÎÁöµµ°¡ ³ô¾ÆÁ® ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Ï ¹ßº´·ü Áõ°¡, Á¤È®ÇÑ Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä, ±â¼ú ¹ßÀü, ÀÎÇÁ¶ó È®´ë µîÀÇ ¿äÀÎÀÌ °áÇÕÇÏ¿© ÀÔÀÚ¼± Ä¡·á ½ÃÀåÀº °·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖÀ¸¸ç, Çö´ë Á¾¾çÇÐ ¹× °³ÀÎ ¸ÂÃãÇü ¾Ï Ä¡·áÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.
ºÎ¹®
À¯Çü(¾ç¼ºÀÚ¼±Ä¡·á, ÁßÀÔÀÚ¼±Ä¡·á);½Ã½ºÅÛ(¸ÖƼ·ë ½Ã½ºÅÛ, ½Ì±Û·ë ½Ã½ºÅÛ);¿ëµµ(Ä¡·á, Á¶»ç)
Global Particle Therapy Market to Reach US$2.8 Billion by 2030
The global market for Particle Therapy estimated at US$1.7 Billion in the year 2024, is expected to reach US$2.8 Billion by 2030, growing at a CAGR of 8.8% over the analysis period 2024-2030. Proton Therapy, one of the segments analyzed in the report, is expected to record a 9.2% CAGR and reach US$2.3 Billion by the end of the analysis period. Growth in the Heavy Ion Therapy segment is estimated at 7.1% CAGR over the analysis period.
The U.S. Market is Estimated at US$481.4 Million While China is Forecast to Grow at 8.0% CAGR
The Particle Therapy market in the U.S. is estimated at US$481.4 Million in the year 2024. China, the world's second largest economy, is forecast to reach a projected market size of US$432.1 Million by the year 2030 trailing a CAGR of 8.0% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 8.3% and 7.0% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 7.0% CAGR.
Global Particle Therapy Market - Key Trends & Drivers Summarized
Why Is Particle Therapy Essential in Modern Cancer Treatment?
Particle therapy has become an essential and highly effective treatment option in modern cancer care, providing precise, targeted radiation therapy with minimal damage to surrounding healthy tissue. Unlike traditional photon-based radiation, particle therapy uses charged particles like protons and carbon ions, which allow oncologists to deliver a high dose of radiation directly to tumors while sparing adjacent healthy tissues. This precision is particularly valuable in treating cancers located near critical structures, such as brain tumors, pediatric cancers, and tumors near the spinal cord, where preserving healthy tissue is crucial. As a result, particle therapy has become a cornerstone in the treatment of complex and hard-to-treat cancers, significantly improving outcomes and reducing side effects.
In addition to its accuracy, particle therapy offers a higher dose intensity at the tumor site, making it particularly effective for radioresistant tumors, which are less responsive to traditional forms of radiation. The unique properties of particle beams, such as the Bragg peak effect, allow them to release maximum energy directly at the tumor site, reducing radiation exposure beyond the tumor. This advantage minimizes side effects and long-term complications, which is especially beneficial for pediatric patients and those with cancers near sensitive organs. For patients, particle therapy means a potentially shorter treatment course with fewer complications, making it a preferred option in modern oncology for high-precision cancer care.
Moreover, particle therapy aligns with the growing trend of personalized cancer treatment, as it allows for treatment plans that are tailored to the unique characteristics of each patient’s tumor. With advancements in imaging and treatment planning, oncologists can use particle therapy to target tumors with unparalleled precision based on size, shape, and location, providing an individualized approach that improves treatment efficacy. This capability makes particle therapy an essential part of precision oncology, addressing the need for highly targeted treatments that enhance patient outcomes while reducing the physical and emotional burden of cancer treatment.
How Are Technological Advancements Enhancing Particle Therapy?
Technological advancements are significantly enhancing the effectiveness, accessibility, and efficiency of particle therapy, broadening its application and appeal in cancer treatment. One of the most significant innovations in this field is the development of intensity-modulated proton therapy (IMPT), which allows for even greater precision in dose distribution. IMPT enables oncologists to modulate the intensity of the proton beam, shaping it more accurately to match the tumor’s contours and sparing nearby healthy tissues even more effectively. This enhanced control reduces the risk of radiation-induced side effects and is particularly beneficial for complex, irregularly shaped tumors. As IMPT technology continues to advance, it offers improved outcomes for patients with challenging cancer types, increasing the overall effectiveness of particle therapy.
The integration of advanced imaging technologies, such as real-time MRI and PET scans, has further improved the accuracy of particle therapy by providing detailed, real-time images that guide treatment. These imaging technologies enable oncologists to precisely locate tumors and adjust treatment parameters to account for tumor movement, such as breathing or patient shifts, which is particularly important for tumors in the lungs or abdomen. By combining real-time imaging with particle therapy, oncologists can deliver more accurate and adaptive treatments, ensuring that radiation is consistently targeted to the tumor while sparing surrounding tissues. This innovation supports adaptive particle therapy, allowing treatment to be dynamically adjusted as the tumor changes in response to therapy, enhancing effectiveness and minimizing side effects.
The development of compact and cost-effective particle therapy systems, such as single-room proton therapy units, has increased the accessibility and affordability of particle therapy. Traditionally, particle therapy required large, complex, and expensive facilities, limiting its availability to a select number of centers worldwide. However, advancements in compact systems have made it possible for more hospitals and cancer centers to adopt particle therapy technology, making it accessible to a broader patient population. These compact systems reduce the need for large-scale infrastructure, significantly lowering costs and enabling community hospitals and regional cancer centers to offer this advanced treatment. By making particle therapy more affordable and widely available, these technological advancements are expanding its reach, providing more patients with access to high-precision cancer care.
What Are the Benefits of Particle Therapy for Patients and Healthcare Systems?
Particle therapy offers substantial benefits for both patients and healthcare systems, providing a precise, effective, and patient-friendly approach to cancer treatment. For patients, one of the primary advantages of particle therapy is its ability to minimize damage to healthy tissues, reducing both short-term and long-term side effects. This tissue-sparing property is particularly valuable for pediatric patients and those with tumors near sensitive structures, as it reduces the risk of complications and preserves quality of life. By minimizing radiation exposure to surrounding tissues, particle therapy allows patients to undergo treatment with fewer side effects, leading to a quicker recovery and enabling a better post-treatment quality of life. This advantage is especially beneficial for young patients, as it lowers the risk of secondary cancers and developmental issues associated with radiation exposure.
For healthcare systems, particle therapy reduces the long-term care costs associated with managing radiation-induced side effects and complications. Traditional radiation treatments often require extensive post-treatment care to manage side effects such as radiation dermatitis, damage to organs, and even secondary malignancies. With particle therapy’s precise targeting, the incidence of such complications is significantly reduced, leading to fewer hospital admissions and a lower demand for follow-up treatments. This reduction in post-treatment complications translates into cost savings for healthcare systems and allows resources to be allocated more effectively. By supporting better patient outcomes with fewer long-term effects, particle therapy contributes to a more sustainable approach to cancer care, which benefits healthcare systems financially and operationally.
Particle therapy also aligns well with the shift toward personalized and precision oncology, enabling healthcare providers to deliver treatments that are tailored to the unique characteristics of each patient’s tumor. With advanced imaging and treatment planning technologies, oncologists can develop individualized particle therapy protocols based on tumor location, size, and shape. This personalization enhances treatment efficacy and optimizes resource use, as patients receive precisely the amount of radiation needed without unnecessary exposure. For healthcare systems, the ability to provide tailored treatment improves patient satisfaction and outcomes, reinforcing the value of particle therapy as part of a comprehensive cancer care program. Together, these benefits—improved quality of life, reduced long-term costs, and support for precision oncology—highlight the transformative potential of particle therapy for patients and healthcare providers alike.
What Is Fueling the Growth in the Particle Therapy Market?
The growth in the particle therapy market is driven by factors such as the rising incidence of cancer, increasing demand for minimally invasive and precise cancer treatments, advancements in particle therapy technology, and expanded access to proton and carbon ion therapy centers. As cancer incidence continues to rise globally, there is an urgent demand for advanced treatment options that improve outcomes while minimizing side effects. Particle therapy, with its precise targeting and reduced impact on healthy tissues, meets this demand by providing an effective, patient-friendly alternative to traditional radiation. This demand is particularly strong in pediatric oncology, where the need for tissue-sparing therapies is paramount. As the global cancer burden grows, the demand for high-precision treatments like particle therapy is expected to drive market expansion.
The increasing demand for minimally invasive cancer treatments has further fueled growth in the particle therapy market. Patients and healthcare providers alike are seeking treatments that provide effective results with fewer side effects and shorter recovery times. Particle therapy, with its ability to deliver high-dose radiation directly to tumors while sparing surrounding tissues, aligns with this demand for precision and minimal invasiveness. The market is benefiting from a growing awareness among patients and providers about the advantages of particle therapy over traditional radiation, leading to higher adoption rates. As patients increasingly seek treatments that balance efficacy with quality of life, particle therapy is emerging as a preferred option for complex and high-risk cancers.
Advancements in particle therapy technology, such as compact and single-room systems, are also driving market growth by making particle therapy more accessible and affordable. These compact systems reduce the infrastructure and cost requirements of traditional particle therapy facilities, enabling more hospitals and cancer centers to adopt this advanced technology. Additionally, innovations like intensity-modulated proton therapy and adaptive treatment planning have enhanced the precision and adaptability of particle therapy, increasing its effectiveness across a broader range of cancer types. As technology continues to improve, particle therapy is becoming more viable for a wider range of healthcare facilities, expanding patient access and fueling market growth.
The expansion of particle therapy centers, particularly in regions like North America, Europe, and Asia-Pacific, is another significant factor in market growth. Governments and healthcare organizations are investing in particle therapy infrastructure, recognizing its benefits for cancer care and the potential for long-term healthcare cost savings. Many countries are also offering reimbursement and funding support to make particle therapy more accessible to patients. As more particle therapy centers are established globally, the availability and awareness of this treatment are increasing, driving further demand. Together, these factors—rising cancer incidence, demand for precise treatments, technological advancements, and infrastructure expansion—are driving robust growth in the particle therapy market, positioning it as a crucial component of modern oncology and personalized cancer care.
SCOPE OF STUDY:
The report analyzes the Particle Therapy market in terms of units by the following Segments, and Geographic Regions/Countries:
Segments:
Type (Proton Therapy, Heavy Ion Therapy); System (Multi-Room Systems, Single-Room Systems); Application (Treatment, Research)
Geographic Regions/Countries:
World; United States; Canada; Japan; China; Europe (France; Germany; Italy; United Kingdom; and Rest of Europe); Asia-Pacific; Rest of World.
Select Competitors (Total 22 Featured) -