![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1301202
¼¼°èÀÇ ¸ð¹ÙÀÏ ÀΰøÁö´É(AI) ½ÃÀå ±Ô¸ð, Á¡À¯À², µ¿Çâ º¸°í¼ : ±â¼ú ³ëµåº°, ¿ëµµº°, Áö¿ªº°, ºÎ¹®º° ¿¹Ãø(2023-2030³â)Mobile Artificial Intelligence Market Size, Share & Trends Report By Technology Node (7 nm, 10 nm, 20-28 nm And Others), By Application (Smartphones, Cameras, Drones), By Region, And Segment Forecast, 2023 - 2030 |
¼¼°èÀÇ ¸ð¹ÙÀÏ ÀΰøÁö´É(Mobile Artificial Intelligence) ½ÃÀåÀº 2023³âºÎÅÍ 2030³â»çÀÌ 26.9%ÀÇ CAGR·Î ÃßÀÌÇÏ¿©, 2030³â¿¡´Â 849¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÃÖ±Ù ¸î ³âµ¿¾È ½ÃÀå ¼ºÀåÀº ¿©·¯ ¿äÀο¡ ÀÇÇØ ÇöÀúÇÕ´Ï´Ù. ½ÃÀå ¼ºÀå ÃËÁø ¿äÀÎ Áß Çϳª´Â ¸ð¹ÙÀÏ ÀåÄ¡ÀÇ Ã³¸® ´É·Â Çâ»óÀÔ´Ï´Ù. Ãֽнº¸¶Æ®Æù°ú ÅÂºí¸´¿¡´Â AI ¾Ë°í¸®Áò°ú ¸ðµ¨À» È¿À²ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â °·ÂÇÑ ÇÁ·Î¼¼¼¿Í ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU)°¡ žÀçµÇ¾î ÀÖ½À´Ï´Ù.
¸ð¹ÙÀÏ ÀΰøÁö´É(AI) ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇÏ´Â ¶Ç ´Ù¸¥ ¿äÀÎÀº AI µµ±¸¿Í ÇÁ·¹ÀÓ¿öÅ©°¡ ´«¿¡ ¶ç°Ô »ç¿ëÇÒ ¼ö ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. TensorFlow, PyTorch, Keras µî ¸¹Àº ÀϹÝÀûÀÎ AI ÇÁ·¹ÀÓ¿öÅ©¿¡´Â ¸ð¹ÙÀÏ ¹öÀüÀÌ ÀÖÀ¸¸ç °³¹ßÀÚ´Â ¸ð¹ÙÀÏ ÀåÄ¡¿¡¼ AI ¸ðµ¨À» ±¸ÃàÇÏ°í ¹èÆ÷ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸ð¹ÙÀÏ AI ¿ëµµ´Â ÀÇ·á, ±ÝÀ¶, ±³À° ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ® ºÐ¾ß¿¡¼ È¿À²¼º, Á¤È®¼º ¹× »ç¿ëÀÚ °æÇèÀ» Çâ»ó½ÃŰ´Â µ¥ »ç¿ëµË´Ï´Ù. ¿¹¸¦ µé¾î, ¸ð¹ÙÀÏ AI´Â ÀÇ·á À̹ÌÁö¸¦ ºÐ¼®Çϰí, ±ÝÀ¶ °Å·¡ÀÇ »ç±â¼ºÀ» °¨ÁöÇϰí, °³ÀÎÈµÈ ÇнÀ °æÇèÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ »õ·Î¿î µ¥ÀÌÅÍ ¼öÁýµµ ½ÃÀå ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¸ð¹ÙÀÏ ±â±â´Â À̹ÌÁö, µ¿¿µ»ó, ÅØ½ºÆ® µî ¾öû³ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ¿© AI ¸ðµ¨À» ÇнÀÇÏ´Â µ¥ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)ÀÇ ¼ºÀåÀº ¼¾¼³ª ¿¬°áµÈ ÀåÄ¡ µî ´Ù¾çÇÑ ¼Ò½º¿¡¼ µ¥ÀÌÅ͸¦ »ý¼ºÇÔÀ¸·Î½á µ¥ÀÌÅÍ °¡¿ë¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.
Àü¹ÝÀûÀ¸·Î AI ±â¼úÀÌ º¸´Ù Á¤±³ÇÏ°í »ç¿ëÇϱ⠽¬¿öÁö°í ¸ð¹ÙÀÏ µð¹ÙÀ̽º°¡ ´õ¿í °·ÂÇϰí À¯ºñÄõÅͽº°¡ µÊ¿¡ µû¶ó ¸ð¹ÙÀÏ AIÀÇ ¼ºÀåÀÌ °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¸ð¹ÙÀÏ AI´Â ´Ù¾çÇÑ ¿µ¿ª¿¡¼ Ȱ¿ëÇÒ ¼ö Àֱ⠶§¹®¿¡ ´Ù¾çÇÑ »ê¾÷À» º¯È½ÃŰ°í ¼¼°è »ç¶÷µéÀÇ »îÀ» Çâ»ó½Ãų ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¸ð¹ÙÀÏ AI ¿ëµµÀÇ ¿¹·Î´Â À½¼º ÀνÄ, À̹ÌÁö ¹× ¿µ»ó ÀνÄ, ÀÚ¿¬ ¾ð¾î ó¸®, ¿¹Ãø ºÐ¼® µîÀÌ ÀÖ½À´Ï´Ù.
ÃÖ±Ù ´Ù¾çÇÑ AI ±â¹Ý ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ¿ä¼Ò´Â ¸ð¹ÙÀÏ AI ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. AI ±â´ÉÀ» žÀçÇÑ ÇÁ·Î¼¼¼ ¼ö¿ä°¡ ¼¼°è ±Ô¸ð·Î ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀåÀ» °ßÀÎÇÏ´Â ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀϺΠ±¹°¡ÀÇ Á¤ºÎ´Â ½Å»ý ¹®È¸¦ Áö¿øÇϱâ À§ÇØ ´Ù¾çÇÑ À¯¸®ÇÑ Á¤Ã¥À» ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ ±¹Á¦ ½ÃÀå¿¡¼´Â ¸ð¹ÙÀÏ AIÀÇ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ½º¸¶Æ®Æù, Ä«¸Þ¶ó, µå·Ð, AR/VR, ÀÚµ¿Â÷, ·Îº¿ µîÀº ÀÌ ½ÃÀåÀÇ ¾ÆÀÌÅÛÀÌ »ç¿ëµÇ°í ÀÖ´Â Áß¿äÇÑ »ê¾÷ÀÇ ÀϺÎÀÔ´Ï´Ù. Á¦ÇÑµÈ AI Àü¹®°¡¿Í °í°¡ÀÇ AI ÇÁ·Î¼¼¼´Â »ê¾÷ È®ÀåÀ» Á¦ÇÑÇÏ´Â µÎ °¡Áö ¿äÀÎÀÔ´Ï´Ù. ´ëÁ¶ÀûÀ¸·Î IoTÀÇ ¿¡Áö ÄÄÇ»ÆÃ, ¸ð¹ÙÀÏ ±â±âÀÇ Àúºñ¿ë ºñÀü ¿ëµµ, Ä«¸Þ¶ó¿ë AI Ĩ¿¡ ´ëÇÑ ¼ö¿ä°¡ ¿¹»óµË´Ï´Ù.
The global mobile artificial intelligence market is anticipated to reach USD 84.97 billion by 2030, registering a CAGR of 26.9% from 2023 to 2030, according to a new report by Grand View Research, Inc. The market growth has been significant in recent years due to several factors. One of the major drivers augmenting the market is the increasing processing power of mobile devices. Modern smartphones and tablets have powerful processors and graphics processing units (GPUs) that can efficiently run AI algorithms and models.
Another factor fueling the market growth of mobile artificial intelligence (AI) is the prominent availability of AI tools and frameworks. Many popular AI frameworks, such as TensorFlow, PyTorch, and Keras, have mobile versions that allow developers to build and deploy AI models on mobile devices. Mobile AI applications are used in healthcare, finance, education, and entertainment to improve efficiency, accuracy, and user experience. For instance, mobile AI analyzes medical images, detects fraud in financial transactions, and provides personalized learning experiences. Moreover, emerging data collection is also a significant factor in market growth. Mobile devices generate vast amounts of data, such as images, videos, and text, which can be used to train AI models. The growth of the Internet of Things (IoT) contributes to data availability by generating data from various sources, such as sensors and connected devices.
Overall, the growth of mobile AI is expected to continue as AI technology becomes more advanced and accessible and as mobile devices become more powerful and ubiquitous. It has the potential to transform various industries and improve the lives of people around the world, as its applications can be used in various domains. Some examples of mobile AI applications include speech recognition, image and video recognition, natural language processing, and predictive analytics.
Investments in various AI-based technologies have increased recently. This element is driving the global market for mobile AI. The rise in demand for processors with AI capabilities on a worldwide scale is another factor driving the market. Several nations' governments are implementing various advantageous policies to support the start-up culture. This reason is increasing the need for mobile AI in the international market. Smartphones, Cameras, drones, AR/VR, automobiles, and robots are a few of the significant industries in which items from the market is used. Limited AI Experts and Expensive AI Processors are the two factors limiting industry expansion. In contrast, the potential includes prominent demand for Edge Computing in IoT and Low-Cost vision applications in mobile devices and AI chips for cameras.