¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
ÀÚ±â Áöµµ ÇнÀ ½ÃÀå ¼ºÀå°ú µ¿Çâ:
Grand View Research, IncÀÇ ÃֽŠº¸°í¼¿¡ µû¸£¸é Àü ¼¼°è ÀÚ±â Áöµµ ÇнÀ ½ÃÀå ±Ô¸ð´Â 2030³â±îÁö 896¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025³âºÎÅÍ 2030³â±îÁö 35.2%ÀÇ CAGR·Î È®´ëµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
ÀÚ±â Áöµµ ÇнÀÀº ÀÚ¿¬¾î ó¸®(NLP)¿¡¼ µÎµå·¯Áö°Ô »ç¿ëµÇ´Â ±â°è ÇнÀ ±â¼úÀ̸ç, ÄÄÇ»ÅÍ ºñÀü ¹× À½¼º ó¸® ÀÀ¿ë ÇÁ·Î±×·¥ÀÌ ±× µÚ¸¦ ÀÕ½À´Ï´Ù. ÀÚ±â Áöµµ ÇнÀÀÇ ÀÀ¿ë ºÐ¾ß¿¡´Â ¸» ¹Ù²Ù±â, »ö»óÈ, À½¼º ÀÎ½Ä µîÀÌ Æ÷ÇԵ˴ϴÙ.
COVID-19 »çÅ´ ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆÀ¸¸ç, ¸¹Àº ±â¾÷µéÀÌ COVID-19¿¡ ´ëÀÀÇϱâ À§ÇØ AI¿Í ¸Ó½Å·¯´×À» µµÀÔÇÏ°í ÀÖ½À´Ï´Ù. ¹Ì±¹¿¡ º»»ç¸¦ µÐ Amazon Web Services, Inc., Google, Microsoft µî ¸¹Àº À¯¸í ½ÃÀå ±â¾÷µéÀÌ ÆÒµ¥¹Í ±â°£ µ¿¾È ¸ÅÃâ Áõ°¡¸¦ ¸ñ°ÝÇß½À´Ï´Ù. ¶ÇÇÑ, µðÁöÅÐÈÀÇ °¡¼ÓÈ´Â ÀÚ±â Áöµµ ÇнÀ ¾ÖÇø®ÄÉÀ̼ÇÀÇ Ã¤Åÿ¡µµ ±â¿©Çß½À´Ï´Ù. ¿¹¸¦ µé¾î, 2020³â 4¿ù ±¸±ÛÀÇ »ç¾÷ºÎÀÎ ±¸±Û Ŭ¶ó¿ìµå(Google Cloud)´Â COVID-19 ÆÒµ¥¹Í¿¡ ´ëÀÀÇϱâ À§ÇØ Áß¿äÇÑ Á¤º¸¸¦ Á¦°øÇÏ´Â ÀΰøÁö´É(AI) 꺿À» ¹ßÇ¥Çß½À´Ï´Ù.
¸¹Àº ½ÃÀå ±â¾÷µéÀÌ À½¼º ÇÕ¼º, ¾ð¾î ¹ø¿ª ¹× ¿¹Ãø µî ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀ̼ÇÀ» À§ÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌµé ¾÷üµéÀº ÀÚ±â Áöµµ ÇнÀ¿¡ ´ëÇÑ ¿¬±¸µµ ÁøÇàÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹¿¡ º»»ç¸¦ µÐ ¸ÞŸ(Meta)´Â ±³½À ÇнÀÀ» ¿¬±¸ÇÏ°í ´Ù¾çÇÑ ¾Ë°í¸®Áò°ú ¸ðµ¨À» °³¹ßÇØ ¿ÔÀ¸¸ç, 2022³â 2¿ù ¸ÞŸ´Â ÀÚ»çÀÇ ÀÚ±â Áöµµ ÇнÀ ÄÄÇ»ÅÍ ºñÀü ¸ðµ¨ SEERÀÇ »õ·Î¿î ÁøÀüÀ» ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ ¸ðµ¨Àº ´õ¿í °·ÂÇØÁ® ÄÄÇ»ÅÍ ºñÀü Á¦Ç°À» ±¸ÃàÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµË´Ï´Ù.
ÀÚ±â Áöµµ ÇнÀ ½ÃÀå º¸°í¼ ÇÏÀ̶óÀÌÆ®
- ÃÖÁ¾ ¿ëµµº°·Î´Â BFSI ºÎ¹®ÀÌ 2024³â 18.3%ÀÇ °¡Àå Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È¿¡µµ ±× À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ ºÎ¹®¿¡¼ AI ¹× ML°ú °°Àº ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ±¤°í ¹× ¹Ìµð¾î ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È À¯¸®ÇÑ ¼ºÀåÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
- ±â¼úº°·Î´Â ÀÚ¿¬¾î ó¸® ºÐ¾ß°¡ 2024³â Áö¹èÀûÀÎ Á¡À¯À²À» Â÷ÁöÇߴµ¥, ÀÌ´Â ¿©·¯ »ê¾÷¿¡ °ÉÃÄ ¹æ´ëÇÑ ¾çÀÇ ºñÁ¤Çü ÅؽºÆ® µ¥ÀÌÅ͸¦ ó¸®ÇÒ ¼ö ÀÖ´Â ´É·Â ¶§¹®ÀÔ´Ï´Ù. ÀÌ´Â NLP ¾ÖÇø®ÄÉÀ̼ÇÀÇ ´Ù¾ç¼º°ú º¸±Þ¿¡ ±âÀÎÇÕ´Ï´Ù.
- ºÏ¹Ì´Â 2024³â 35.7%ÀÇ °¡Àå Å« Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, ¿¹Ãø ±â°£ µ¿¾È¿¡µµ ±× À§Ä¡¸¦ À¯ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â ÀÌ Áö¿ª¿¡ ´Ù¼öÀÇ ½ÃÀå ±â¾÷ÀÌ Á¸ÀçÇϱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ, Àü¹® ÀηÂÀÇ Á¸Àç¿Í ±â¼ú ÀÎÇÁ¶óÀÇ °³¹ßÀÌ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù.
- 2024³â 7¿ù, ±¸±Û LLC´Â Àεµ¿¡¼ ³ó¾÷ °æ°ü ÀÌÇØ(ALU) µµ±¸¸¦ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ AI ±â¹Ý Ç÷§ÆûÀº °íÇØ»óµµ À§¼º À̹ÌÁö¿Í ±â°è ÇнÀÀ» »ç¿ëÇÏ¿© °³º° ³óÀå ¼öÁØ¿¡¼ °¡¹³ ´ëÃ¥, °ü°³ ¹× ÀÛ¹° °ü¸®¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.
- 2024³â 5¿ù, Meta AI, Google, INRIA, University Paris SaclayÀÇ ¿¬±¸ÆÀÀº ÀÓº£µðµå ¸ðµ¨°ú °èÃþÀû k-means Ŭ·¯½ºÅ͸µÀ» ÀÌ¿ëÇÑ ÀÚ±â Áöµµ ÇнÀ(SSL)À» À§ÇÑ ÀÚµ¿ µ¥ÀÌÅÍ ¼¼Æ® Å¥·¹ÀÌ¼Ç ±â¼úÀ» °³¹ßÇß½À´Ï´Ù. ÀÌ ±â¼úÀº ±ÕÇü ÀâÈù µ¥ÀÌÅÍ ¼¼Æ®¸¦ º¸ÀåÇÏ°í ¼öµ¿ Å¥·¹À̼ǰú °ü·ÃµÈ ºñ¿ë°ú ½Ã°£À» ÁÙ¿© ¸ðµ¨ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.
¸ñÂ÷
Á¦1Àå Á¶»ç ¹æ¹ý°ú ¹üÀ§
Á¦2Àå ÁÖ¿ä ¿ä¾à
Á¦3Àå ÀÚ±â Áöµµ ÇнÀ ½ÃÀå º¯¼ö, µ¿Çâ, ¹üÀ§
- ¼¼°èÀÇ ÀÚ±â Áöµµ ÇнÀ ½ÃÀå Àü¸Á
- ¾÷°è ¹ë·ùüÀÎ ºÐ¼®
- ½ÃÀå ¿ªÇÐ
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ºÐ¼®
- ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ ºÐ¼®
- ¾÷°è °úÁ¦
- Porter's Five Forces ºÐ¼®
- °ø±Þ¾÷üÀÇ ´É·Â
- ±¸¸ÅÀÚÀÇ ´É·Â
- ´ëüÀÇ À§Çù
- ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
- °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è
- PESTEL ºÐ¼®
- Á¤Ä¡ »óȲ
- °æÁ¦ »óȲ
- »çȸ »óȲ
- ±â¼úÀû »óȲ
- ȯ°æ »óȲ
- ¹ýÀûÀÎ »óȲ
Á¦4Àå ÀÚ±â Áöµµ ÇнÀ ½ÃÀå : ÃÖÁ¾ ¿ëµµ Àü¸Á ÃßÁ¤°ú ¿¹Ãø
- ÀÚ±â Áöµµ ÇнÀ ½ÃÀå : ÃÖÁ¾ ¿ëµµ º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
- ÇコÄɾî
- BFSI
- ÀÚµ¿Â÷¡¤¼ö¼Û
- ¼ÒÇÁÆ®¿þ¾î °³¹ß(IT)
- ±¤°í¿Í ¹Ìµð¾î
- ±âŸ
Á¦5Àå ÀÚ±â Áöµµ ÇнÀ ½ÃÀå : ±â¼ú Àü¸Á ÃßÁ¤°ú ¿¹Ãø
- ÀÚ±â Áöµµ ÇнÀ ½ÃÀå : ±â¼ú º¯µ¿ ºÐ¼®, 2024³â ¹× 2030³â
- ÀÚ¿¬¾î ó¸®(NLP)
- ÄÄÇ»ÅÍ ºñÀü
- À½¼º ó¸®
Á¦6Àå ÀÚ±â Áöµµ ÇнÀ ½ÃÀå : Áö¿ª ÃßÁ¤¡¤µ¿Ç⠺м®
- ÀÚ±â Áöµµ ÇнÀ ½ÃÀå Á¡À¯À², Áö¿ªº°, 2024³â ¹× 2030³â
- ºÏ¹Ì
- À¯·´
- ¾Æ½Ã¾ÆÅÂÆò¾ç
- ¶óƾ¾Æ¸Þ¸®Ä«
- Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
- ¾Æ¶ø¿¡¹Ì¸®Æ®
- »ç¿ìµð¾Æ¶óºñ¾Æ
- ³²¾ÆÇÁ¸®Ä«°øȱ¹
Á¦7Àå °æÀï »óȲ
- ÁÖ¿ä ½ÃÀå ÁøÃâ ±â¾÷ÀÇ ÃÖ±Ù µ¿Çâ°ú ¿µÇ⠺м®
- º¥´õ »óȲ
- ±â¾÷ ºÐ·ù
- ÁÖ¿ä ÆǸŴ븮Á¡ ¹× ä³Î ÆÄÆ®³Ê ¸®½ºÆ®
- ÀáÀç °í°´ ¸®½ºÆ®/¸®½ºÆ®
- °æÀï ¿ªÇÐ
- °æÀï º¥Ä¡¸¶Å·
- Àü·« ¸ÅÇÎ
- È÷Æ®¸Ê ºÐ¼®
- ±â¾÷ °³¿ä
- Alphabet Inc.(Google LLC)
- Amazon Web Services, Inc.
- Apple Inc.
- Baidu, Inc.
- Iberdrola SA Dataiku
- Databricks
- DataRobot, Inc.
- IBM Corporation
- Meta
- Microsoft
- SAS Institute Inc.
- Tesla
- The MathWorks, Inc
ksm 24.11.25
Self-supervised Learning Market Growth & Trends:
The global self-supervised learning market size is estimated to reach USD 89.68 billion by 2030, expanding at a CAGR of 35.2% from 2025 to 2030, according to a new report by Grand View Research, Inc. Self-supervised learning is a machine learning technique used prominently in Natural Language Processing (NLP), followed by computer vision and speech processing applications. Applications of self-supervised learning include paraphrasing, colorization, and speech recognition.
The COVID-19 pandemic had a positive impact on the market. More businesses adopted AI and Machine Learning as a response to the COVID-19 pandemic. Many prominent market players such as U.S.-based Amazon Web Services, Inc., Google, and Microsoft witnessed a rise in revenue during the pandemic. Moreover, accelerated digitalization also contributed to the adoption of self-supervised learning applications. For instance, in April 2020, Google Cloud, a business segment of Google, launched an Artificial Intelligence (AI) chatbot that provides critical information to fight the COVID-19 pandemic.
Many market players offer solutions for various applications such as text-to-speech and language translation & prediction. Moreover, these players are researching in self-supervised learning. For instance, U.S.-based Meta has been advancing in self-supervised learning research and has developed various algorithms and models. In February 2022, Meta announced new advances in the company's self-supervised computer vision model SEER. The model is more powerful and is expected to enable the company in building computer vision products.
Self-supervised Learning Market Report Highlights:
- In terms of end-use, the BFSI segment accounted for the largest revenue share of 18.3% in 2024 and is expected to retain its position over the forecast period. This can be attributed to the increasing adoption of technologies such as AI and ML in the segment. The Advertising & Media segment is anticipated to register lucrative growth over the forecast period.
- Based on technology, the natural language processing segment accounted for the dominant share in 2024 due to its ability to handle vast amounts of unstructured text data across multiple industries.. This can be attributed to the variety and penetration of NLP applications.
- North America held the largest share of 35.7% in 2024 and is expected to retain its position over the forecast period. This can be attributed to the presence of a large number of market players in the region. Moreover, the presence of specialists and developed technology infrastructure are aiding the growth of the market.
- In July 2024, Google LLC launched the Agricultural Landscape Understanding (ALU) tool in India, an AI-based platform that uses high-resolution satellite imagery and machine learning to provide detailed insights on drought preparedness, irrigation, and crop management at an individual farm level.
- In May 2024, Researchers from Meta AI, Google, INRIA, and University Paris Saclay created an automatic dataset curation technique for self-supervised learning (SSL) using embedding models and hierarchical k-means clustering. This method improves model performance by ensuring balanced datasets and reducing the costs and time associated with manual curation.
Table of Contents
Chapter 1. Methodology and Scope
- 1.1. Market Segmentation & Scope
- 1.2. Market Definition
- 1.3. Information Procurement
- 1.3.1. Purchased Database
- 1.3.2. GVR's Internal Database
- 1.3.3. Secondary Sources & Third-Party Perspectives
- 1.3.4. Primary Research
- 1.4. Information Analysis
- 1.4.1. Data Analysis Models
- 1.5. Market Formulation & Data Visualization
- 1.6. Data Validation & Publishing
Chapter 2. Executive Summary
- 2.1. Market Insights
- 2.2. Segmental Outlook
- 2.3. Competitive Outlook
Chapter 3. Self-supervised Learning Market Variables, Trends & Scope
- 3.1. Global Self-supervised Learning Market Outlook
- 3.2. Industry Value Chain Analysis
- 3.3. Market Dynamics
- 3.3.1. Market Driver Analysis
- 3.3.2. Market Restraint Analysis
- 3.3.3. Industry Challenges
- 3.4. Porter's Five Forces Analysis
- 3.4.1. Supplier Power
- 3.4.2. Buyer Power
- 3.4.3. Substitution Threat
- 3.4.4. Threat from New Entrant
- 3.4.5. Competitive Rivalry
- 3.5. PESTEL Analysis
- 3.5.1. Political Landscape
- 3.5.2. Economic Landscape
- 3.5.3. Social Landscape
- 3.5.4. Technological Landscape
- 3.5.5. Environmental Landscape
- 3.5.6. Legal Landscape
Chapter 4. Self-supervised Learning Market: End Use Outlook Estimates & Forecasts
- 4.1. Self-supervised Learning Market: End Use Movement Analysis, 2024 & 2030
- 4.1.1. Healthcare
- 4.1.1.1. Healthcare Market estimates and forecast, 2018 - 2030 (USD Million)
- 4.1.2. BFSI
- 4.1.2.1. BFSI Market estimates and forecast, 2018 - 2030 (USD Million)
- 4.1.3. Automotive & Transportation
- 4.1.3.1. Automotive & Transportation Market estimates and forecast, 2018 - 2030 (USD Million)
- 4.1.4. Software Development (IT)
- 4.1.4.1. Software Development (IT) Market estimates and forecast, 2018 - 2030 (USD Million)
- 4.1.5. Advertising & Media
- 4.1.5.1. Advertising & Media Market estimates and forecast, 2018 - 2030 (USD Million)
- 4.1.6. Others
- 4.1.6.1. Others Market estimates and forecast, 2018 - 2030 (USD Million)
Chapter 5. Self-supervised Learning Market: Technology Outlook Estimates & Forecasts
- 5.1. Self-supervised Learning Market: Technology Movement Analysis, 2024 & 2030
- 5.1.1. Natural Language Processing (NLP)
- 5.1.1.1. Natural Language Processing (NLP) Market estimates and forecast, 2018 - 2030 (USD Million)
- 5.1.2. Computer Vision
- 5.1.2.1. Computer Vision Market estimates and forecast, 2018 - 2030 (USD Million)
- 5.1.3. Speech Processing
- 5.1.3.1. Speech Processing Market estimates and forecast, 2018 - 2030 (USD Million)
Chapter 6. Self-supervised Learning Market: Regional Estimates & Trend Analysis
- 6.1. Self-supervised Learning Market Share, By Region, 2024 & 2030 (USD Million)
- 6.2. North America
- 6.2.1. North America Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.2.1.1. North America Self-supervised Learning Market Estimates and Forecasts, by Country, 2018 - 2030 (USD Million)
- 6.2.1.2. North America Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.2.1.3. North America Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.2.2. U.S.
- 6.2.2.1. U.S. Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.2.2.2. U.S. Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.2.2.3. U.S. Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.2.3. Canada
- 6.2.3.1. Canada Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.2.3.2. Canada Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.2.3.3. Canada Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.2.4. Mexico
- 6.2.4.1. Mexico Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.2.4.2. Mexico Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.2.4.3. Mexico Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.3. Europe
- 6.3.1. Europe Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.3.1.1. Europe Self-supervised Learning Market Estimates and Forecasts, by Country, 2018 - 2030 (USD Million)
- 6.3.1.2. Europe Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.3.1.3. Europe Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.3.2. UK
- 6.3.2.1. UK Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.3.2.2. UK Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.3.2.3. UK Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.3.3. Germany
- 6.3.3.1. Germany Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.3.3.2. Germany Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.3.3.3. Germany Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.3.4. France
- 6.3.4.1. France Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.3.4.2. France Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.3.4.3. France Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4. Asia Pacific
- 6.4.1. Asia Pacific Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.1.1. Asia Pacific Self-supervised Learning Market Estimates and Forecasts, by Country, 2018 - 2030 (USD Million)
- 6.4.1.2. Asia Pacific Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.1.3. Asia Pacific Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4.2. China
- 6.4.2.1. China Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.2.2. China Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.2.3. China Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4.3. Japan
- 6.4.3.1. Japan Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.3.2. Japan Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.3.3. Japan Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4.4. India
- 6.4.4.1. India Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.4.2. India Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.4.3. India Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4.5. South Korea
- 6.4.5.1. South Korea Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.5.2. Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.5.3. South Korea Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.4.6. Australia
- 6.4.6.1. Australia Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.4.6.2. Australia Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.4.6.3. Australia Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.5. Latin America
- 6.5.1. Latin America Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.5.1.1. Latin America Self-supervised Learning Market Estimates and Forecasts, by Country, 2018 - 2030 (USD Million)
- 6.5.1.2. Latin America Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.5.1.3. Latin America Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.5.2. Brazil
- 6.5.2.1. Brazil Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.5.2.2. Brazil Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.5.2.3. Brazil Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.6. Middle East and Africa
- 6.6.1. Middle East and Africa Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.6.1.1. Middle East and Africa Self-supervised Learning Market Estimates and Forecasts, by Country, 2018 - 2030 (USD Million)
- 6.6.1.2. Middle East and Africa Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.6.1.3. Middle East and Africa Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.6.2. UAE
- 6.6.2.1. UAE Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.6.2.2. UAE Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.6.2.3. UAE Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.6.3. KSA
- 6.6.3.1. KSA Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.6.3.2. KSA Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.6.3.3. KSA Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
- 6.6.4. South Africa
- 6.6.4.1. South Africa Self-supervised Learning Market Estimates and Forecasts, 2018 - 2030 (USD Million)
- 6.6.4.2. South Africa Self-supervised Learning Market Estimates and Forecasts, by End Use, 2018 - 2030 (USD Million)
- 6.6.4.3. South Africa Self-supervised Learning Market Estimates and Forecasts, by Technology, 2018 - 2030 (USD Million)
Chapter 7. Competitive Landscape
- 7.1. Recent Developments & Impact Analysis, By Key Market Participants
- 7.2. Vendor Landscape
- 7.2.1. Company categorization
- 7.2.2. List of Key Distributors and channel Partners
- 7.2.3. List of Potential Customers/Listing
- 7.3. Competitive Dynamics
- 7.3.1. Competitive Benchmarking
- 7.3.2. Strategy Mapping
- 7.3.3. Heat Map Analysis
- 7.4. Company Profiles/Listing
- 7.4.1. Alphabet Inc. (Google LLC)
- 7.4.1.1. Participant's overview
- 7.4.1.2. Financial performance
- 7.4.1.3. Product benchmarking
- 7.4.1.4. Strategic initiatives
- 7.4.2. Amazon Web Services, Inc.
- 7.4.2.1. Participant's overview
- 7.4.2.2. Financial performance
- 7.4.2.3. Product benchmarking
- 7.4.2.4. Strategic initiatives
- 7.4.3. Apple Inc.
- 7.4.3.1. Participant's overview
- 7.4.3.2. Financial performance
- 7.4.3.3. Product benchmarking
- 7.4.3.4. Strategic initiatives
- 7.4.4. Baidu, Inc.
- 7.4.4.1. Participant's overview
- 7.4.4.2. Financial performance
- 7.4.4.3. Product benchmarking
- 7.4.4.4. Strategic initiatives
- 7.4.5. Iberdrola SA Dataiku
- 7.4.5.1. Participant's overview
- 7.4.5.2. Financial performance
- 7.4.5.3. Product benchmarking
- 7.4.5.4. Strategic initiatives
- 7.4.6. Databricks
- 7.4.6.1. Participant's overview
- 7.4.6.2. Financial performance
- 7.4.6.3. Product benchmarking
- 7.4.6.4. Strategic initiatives
- 7.4.7. DataRobot, Inc.
- 7.4.7.1. Participant's overview
- 7.4.7.2. Financial performance
- 7.4.7.3. Product benchmarking
- 7.4.7.4. Strategic initiatives
- 7.4.8. IBM Corporation
- 7.4.8.1. Participant's overview
- 7.4.8.2. Financial performance
- 7.4.8.3. Product benchmarking
- 7.4.8.4. Strategic initiatives
- 7.4.9. Meta
- 7.4.9.1. Participant's overview
- 7.4.9.2. Financial performance
- 7.4.9.3. Product benchmarking
- 7.4.9.4. Strategic initiatives
- 7.4.10. Microsoft
- 7.4.10.1. Participant's overview
- 7.4.10.2. Financial performance
- 7.4.10.3. Product benchmarking
- 7.4.10.4. Strategic initiatives
- 7.4.11. SAS Institute Inc.
- 7.4.11.1. Participant's overview
- 7.4.11.2. Financial performance
- 7.4.11.3. Product benchmarking
- 7.4.11.4. Strategic initiatives
- 7.4.12. Tesla
- 7.4.12.1. Participant's overview
- 7.4.12.2. Financial performance
- 7.4.12.3. Product benchmarking
- 7.4.12.4. Strategic initiatives
- 7.4.13. The MathWorks, Inc
- 7.4.13.1. Participant's overview
- 7.4.13.2. Financial performance
- 7.4.13.3. Product benchmarking
- 7.4.13.4. Strategic initiatives