½ÃÀ庸°í¼­
»óǰÄÚµå
1467776

½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå º¸°í¼­ : Àç·á ±¸¼º, ÃÖÁ¾ Á¦Ç°, ¿ëµµ, Áö¿ªº°(2024-2032³â)

Scintillator Market Report by Composition of Material, End Product, Application, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 137 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå ±Ô¸ð´Â 2023³â 5¾ï 6,590¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº 2024-2032³â 4.2%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸À̸ç 2032³â±îÁö 8¾ï 2,800¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óÇϰí ÀÖ½À´Ï´Ù.

½ÅÆ¿·¹ÀÌÅÍ´Â °í¿¡³ÊÁö ±¤ÀÚ, ¾ç¼ºÀÚ, ÀüÀÚ, Áß¼ºÀÚ µî ÀÔ»ç ÀÔÀÚ¸¦ Èí¼öÇÒ ¼ö ÀÖ´Â ¹°ÁúÀ» ¸»ÇÕ´Ï´Ù. ÀϹÝÀûÀÎ ½ÅÆ¿·¹ÀÌÅÍ Àç·á¿¡´Â ¹«±â ¹× À¯±â °áÁ¤, À¯±â ¾×ü, Èñ°¡½º ¹× ½ÅÆ¿·¹ÀÌ¼Ç °¡½º°¡ Æ÷ÇԵ˴ϴÙ. ½ÅÆ¿·¹ÀÌÅÍ´Â ¼öÁýµÈ ¿¡³ÊÁö¸¦ °¡½Ã±¤¼± ¶Ç´Â Àڿܼ± ¿µ¿ªÀÇ ±¤ÀÚ·Î º¯È¯ÇÏ¿© ±¤ÀüÀÚ Áõ¹è°üÀ̳ª Æ÷Åä´ÙÀÌ¿Àµå¿¡ ÀÇÇÑ °ËÃâÀ» º¸ÀåÇÕ´Ï´Ù. ÀÌ ¿Ü¿¡µµ ½ÅÆ¿·¹ÀÌÅÍ´Â ÀÔ»ç ¹æ»ç¼±ÀÇ ¿¡³ÊÁö¿Í ½Ã°£À» È¿À²ÀûÀ¸·Î °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ´Ù¸¥ À¯ÇüÀÇ ¹æ»ç¼± °ËÃâ±â¿Í ºñ±³ÇÒ ¶§ ÀÌ·¯ÇÑ Àç·á´Â ´õ °£´ÜÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖÀ¸¸ç ºñ¿ë È¿À²ÀûÀÎ ±¸Á¶¿Í ÀÛµ¿À¸·Î ÃàÀû µÈ ¿¡³ÊÁö¿¡ ´õ ¹Î°¨ÇÏ°í ´õ ºü¸¥ ÀÀ´ä ½Ã°£À» °¡Áö°í ÀÖ½À´Ï´Ù. ±× °á°ú ¿øÀÚ·Â ¹ßÀü¼Ò, ÀÇ·á ¿µ»ó ó¸®, Á¦Á¶ »ê¾÷, °í¿¡³ÊÁö ÀÔÀÚ ½ÇÇè, ±¹°¡ ¾Èº¸ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.

ÀÇ·á »ê¾÷¿¡¼­ ½ÅÆ¿·¹ÀÌÅÍ´Â ½ÉÇ÷°ü Áúȯ°ú ½Å°æ ÁúȯÀ» °¨ÁöÇÏ°í ºÐ¼®ÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ Áúº´ÀÇ ¹ß»ýÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Àü ¼¼°èÀûÀ¸·Î ½ÅÆ¿·¹ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°è Á¤ºÎ´Â ÀÇ·á±â±â »ç¿ë¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ½ÃÇàÇϰí ÀÖÀ¸¸ç, ±× °á°ú º´¿ø°ú ÀÇ·á ±â°üÀÌ ±â¼úÀûÀ¸·Î Áøº¸µÈ ½ÅÆ¿·¹ÀÌ¼Ç ¹× ¹æ»ç¼± °¨Áö±â¸¦ äÅÃÇϵµ·Ï ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Àç·á´Â ±¹Åä¾Èº¸¸¦ °­È­Çϰí ÀÎ¸í ¼Õ½ÇÀ» ¹æÁöÇϱâ À§ÇØ Àü ¼¼°è º¸¾È ¹× ¹æÀ§ ±â°ü¿¡¼­ »ç¿ëÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ ±¹Åä¾Èº¸ºÎ(DHS)´Â ¹æ»ç¼º ¹°ÁúÀ» ŽÁöÇÏ°í ¹æ»ç´É À§ÇùÀ» ¹æÁöÇϱâ À§ÇØ Å½»ö ¿¬±¸ ÇÁ·Î±×·¥ ¹× Áß¼Ò±â¾÷ Çõ½Å ¿¬±¸ ÇÁ·Î±×·¥¿¡ µû¶ó °íü À¯±â ½ÅÆ¿·¹ÀÌÅÍ °³¹ßÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

º» º¸°í¼­¿¡¼­ ´Ù·ç´Â ÁÖ¿ä Áú¹®µé

  • ½ÅÆ¿·¹ÀÌÅÍ ¼¼°è ½ÃÀåÀº Áö±Ý±îÁö ¾î¶»°Ô ¹ßÀüÇØ ¿Ô½À´Ï±î?
  • ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷ÀÇ ÁÖ¿ä Áö¿ª ½ÃÀåÀº?
  • COVID-19°¡ ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷¿¡ ¹ÌÄ¡´Â ¿µÇâÀº?
  • Àç·á ±¸¼ºº° ½ÃÀå ÇöȲÀº?
  • ¿ëµµº° ½ÃÀå ³»¿ªÀº?
  • ÃÖÁ¾ Á¦Ç°º° ½ÃÀå ºÐ¼®Àº?
  • ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷ °¡Ä¡»ç½½ÀÇ ´Ù¾çÇÑ ´Ü°è´Â ¹«¾ùÀΰ¡?
  • ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷ÀÇ ÁÖ¿ä ÃËÁø¿äÀΰú °úÁ¦´Â ¹«¾ùÀΰ¡?
  • ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷ ±¸Á¶¿Í ÁÖ¿ä ÁøÃâ ±â¾÷Àº?
  • ¼¼°è ½ÅÆ¿·¹ÀÌÅÍ »ê¾÷ÀÇ °æÀï Á¤µµ´Â ¾î´À Á¤µµÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä »ê¾÷ µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ½ÅÆ¿·¹ÀÌÅÍ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ³»¿ª : Àç·á Á¶¼ºº°
  • ½ÃÀå ³»¿ª : ÃÖÁ¾ Á¦Ç°º°
  • ½ÃÀå ³»¿ª : ¿ëµµº°
  • ½ÃÀå ³»¿ª : Áö¿ªº°
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª : Àç·á ±¸¼ºº°

  • ¹«±â ½ÅÆ¿·¹ÀÌÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ³»¿ª : À¯Çüº°
      • ÇҷΰÕÈ­ ¾ËÄ®¸®
      • »êÈ­¹°°è ½ÅÆ¿·¹ÀÌÅÍ
      • ±âŸ
    • ½ÃÀå ¿¹Ãø
  • À¯±â ½ÅÆ¿·¹ÀÌÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ³»¿ª : À¯Çüº°
      • ´Ü°áÁ¤
      • ¾×ü ½ÅÆ¿·¹ÀÌÅÍ
      • ÇÃ¶ó½ºÆ½ ½ÅÆ¿·¹ÀÌÅÍ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ³»¿ª : ÃÖÁ¾ Á¦Ç°º°

  • ÆÛ½º³Î »çÀÌÁî ¶Ç´Â Æ÷ÄÏ »çÀÌÁî
  • ÇÚµåÇïµå ±â±â
  • °íÁ¤½Ä, ¼³Ä¡½Ä, ÀÚµ¿½Ä

Á¦8Àå ½ÃÀå ³»¿ª : ¿ëµµº°

  • ÀÇ·á
  • ¿øÀڷ¹ßÀü¼Ò
  • Á¦Á¶¾÷
  • ±¹Åä¾Èº¸¿Í ¹æÀ§
  • ±âŸ

Á¦9Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
  • À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
  • ¶óƾ¾Æ¸Þ¸®Ä«

Á¦10Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀï Á¤µµ
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï »óȲ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • Scintacor Ltd
    • Hamamatsu Photonics K.K.
    • Proterial, Ltd.(Hitachi Ltd.)
    • Ludlum Measurements Inc.
    • Mirion Technologies Inc.
    • Radiation Monitoring Devices Inc.(Dynasil Corporation of America)
    • Rexon Components, Inc.
    • Zecotek Photonics Inc.
ksm 24.05.07

The global scintillator market size reached US$ 565.9 Million in 2023. Looking forward, IMARC Group expects the market to reach US$ 828.0 Million by 2032, exhibiting a growth rate (CAGR) of 4.2% during 2024-2032.

Scintillators refer to materials which can absorb high-energy photons and incident particles such as protons, electrons and neutrons. The common scintillator materials include inorganic and organic crystals, organic liquids, and noble and scintillating gases. They assist in converting the gathered energy into visible or ultraviolet range of photons which ensures detection by photomultipliers and photodiodes. Besides this, scintillators help in efficiently determining the energy and time of incident radiation. When compared to other types of radiation detectors, these materials are more sensitive to deposited energy and have a faster response time with simpler, reliable and cost-efficient construction and operation. As a result, they find vast applications in nuclear plants, medical imaging, manufacturing industries, high-energy particle experiments and national security.

In the healthcare industry, scintillators are used to detect and analyze cardiovascular and neurological diseases. With the increasing occurrence of these ailments, the demand for scintillators is increasing across the globe. Moreover, the governments across the globe are implementing stringent regulations on the use of medical devices which, in turn, is pressurizing hospitals and healthcare organizations to adopt technologically advanced scintillation and radiation detectors. Additionaly, these materials are used by security and defense organizations worldwide to tighten homeland security and avert human loss. For instance, the Department of Homeland Security (DHS) in the United States has been supporting the development of solid organic scintillators under the Exploratory Research and Small Business Innovative Research programs for detecting radioactive substances and preventing radiological threats.

Key Market Segmentation:

IMARC Group provides an analysis of the key trends in each sub-segment of the global scintillator market report, along with forecasts at the global and regional level from 2024-2032. Our report has categorized the market based on composition of material, end product and application.

Breakup by Composition of Material:

In-Organic Scintillators

Alkali Halides

Oxide Based Scintillators

Others

Organic Scintillators

Single Crystal

Liquid Scintillators

Plastic Scintillators

Breakup by End Product:

Personal or Pocket Size Instruments

Hand-Held Instruments

Fixed, Installed, and Automatic Instruments

Breakup by Application:

Healthcare

Nuclear Power Plants

Manufacturing Industries

Homeland Security and Defense

Others

Breakup by Region:

North America

Europe

Asia Pacific

Middle East and Africa

Latin America

Competitive Landscape:

The report has also analysed the competitive landscape of the market with some of the key players being Scintacor Ltd., Hamamatsu Photonics K.K., Proterial, Ltd. (Hitachi Ltd.), Ludlum Measurements Inc., Mirion Technologies Inc., Radiation Monitoring Devices Inc. (Dynasil Corporation of America), Rexon Components, Inc., Zecotek Photonics Inc., etc.

Key Questions Answered in This Report:

  • How has the global scintillator market performed so far and how will it perform in the coming years?
  • What are the key regional markets in the global scintillator industry?
  • What has been the impact of COVID-19 on the global scintillator industry?
  • What is the breakup of the market based on the composition of material?
  • What is the breakup of the market based on the application?
  • What is the breakup of the market based on the end product?
  • What are the various stages in the value chain of the global scintillator industry?
  • What are the key driving factors and challenges in the global scintillator industry?
  • What is the structure of the global scintillator industry and who are the key players?
  • What is the degree of competition in the global scintillator industry?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Scintillator Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Breakup by Composition of Material
  • 5.5 Market Breakup by End Product
  • 5.6 Market Breakup by Application
  • 5.7 Market Breakup by Region
  • 5.8 Market Forecast

6 Market Breakup by Composition of Material

  • 6.1 In-Organic Scintillators
    • 6.1.1 Market Trends
    • 6.1.2 Market Breakup by Type
      • 6.1.2.1 Alkali Halides
        • 6.1.2.1.1 Market Trends
        • 6.1.2.1.2 Market Forecast
      • 6.1.2.2 Oxide Based Scintillators
        • 6.1.2.2.1 Market Trends
        • 6.1.2.2.2 Market Forecast
      • 6.1.2.3 Others
        • 6.1.2.3.1 Market Trends
        • 6.1.2.3.2 Market Forecast
    • 6.1.3 Market Forecast
  • 6.2 Organic Scintillators
    • 6.2.1 Market Trends
    • 6.2.2 Market Breakup by Type
      • 6.2.2.1 Single Crystal
        • 6.2.2.1.1 Market Trends
        • 6.2.2.1.2 Market Forecast
      • 6.2.2.2 Liquid Scintillators
        • 6.2.2.2.1 Market Trends
        • 6.2.2.2.2 Market Forecast
      • 6.2.2.3 Plastic Scintillators
        • 6.2.2.3.1 Market Trends
        • 6.2.2.3.2 Market Forecast
    • 6.2.3 Market Forecast

7 Market Breakup by End Product

  • 7.1 Personal or Pocket Size Instruments
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Hand-Held Instruments
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Fixed, Installed, and Automatic Instruments
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast

8 Market Breakup by Application

  • 8.1 Healthcare
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Nuclear Power Plants
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Manufacturing Industries
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Homeland Security and Defense
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Others
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Europe
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Asia Pacific
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Middle East and Africa
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Latin America
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Scintacor Ltd
    • 14.3.2 Hamamatsu Photonics K.K.
    • 14.3.3 Proterial, Ltd. (Hitachi Ltd.)
    • 14.3.4 Ludlum Measurements Inc.
    • 14.3.5 Mirion Technologies Inc.
    • 14.3.6 Radiation Monitoring Devices Inc. (Dynasil Corporation of America)
    • 14.3.7 Rexon Components, Inc.
    • 14.3.8 Zecotek Photonics Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦