½ÃÀ庸°í¼­
»óǰÄÚµå
1519386

¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå º¸°í¼­ : ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, Àü°³ À¯Çüº°, Á¶Á÷ ±Ô¸ðº°, ¾÷°èº°, Áö¿ªº°(2024-2032³â)

Predictive Maintenance Market Report by Component, Technique, Deployment Type, Organization Size, Industry Vertical, and Region 2024-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 139 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¿¹Áöº¸Àü ½ÃÀå ±Ô¸ð´Â 2023³â 103¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2032³â±îÁö 723¾ï ´Þ·¯¿¡ À̸£°í, 2024-2032³â¿¡ °ÉÃÄ 23.8%ÀÇ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ±â°è°£(M2M) Åë½ÅÀÇ ÀÌ¿ë È®´ë, ³ëÈÄÈ­µÈ ´Ù¾çÇÑ »ê¾÷±â°èÀÇ ¼ö¸í ¿¬Àå¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡, °íµµÀÇ ½ÃÇèÀ» ½Ç½ÃÇϱâ À§ÇÑ ¿ø°Ý °¨½Ã¿ÍÀÇ ÅëÇÕ Áõ°¡°¡ ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎ ¸î °¡ÁöÀÔ´Ï´Ù.

¿¹Áöº¸ÀüÀ̶õ ¿îÀüÁßÀÇ ±â±âÀÇ ¼º´ÉÀ» °¨½ÃÇÏ´Â »óÅ °¨½Ã ÅøÀ̳ª ½Ã½ºÅÛ¿¡ ÀÇÁ¸ÇÏ´Â ±â¼úÀ» ¸»ÇÕ´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT), ÀΰøÁö´É(AI), ÅëÇÕ ½Ã½ºÅÛÀ¸·Î ±¸¼ºµÇ¾î ´Ù¾çÇÑ ÀÚ»ê°ú ½Ã½ºÅÛÀ» ¿¬°áÇϰí Áß¿äÇÑ µ¥ÀÌÅ͸¦ °øÀ¯¡¤ºÐ¼®ÇÕ´Ï´Ù. ¶ÇÇÑ ¿¹Áöº¸Àü¼¾¼­, »ê¾÷¿ë Á¦¾îÀåÄ¡, ±â¾÷ÀÚ»ê°ü¸®(EAM), ±â¾÷ÀÚ¿ø°èȹ(ERP) ¼ÒÇÁÆ®¿þ¾î µîÀÇ ¾÷¹«½Ã½ºÅÛÀ¸·Î ±¸¼ºµË´Ï´Ù. »óÅ °¨½Ã ÀåÄ¡¸¦ ÀÌ¿ëÇÏ¿© ÀÚ»êÀÇ ¼º´ÉÀ» ½ÃÇ衤Æò°¡ÇÔÀ¸·Î½á ±â´ÉÇÕ´Ï´Ù. ¿Âµµ, Áøµ¿, Àüµµµµ µî ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ ±â·ÏÇÏ¿© ¿£Áö´Ï¾î°¡ Àåºñ ¹× ÀÚ»êÀÇ °íÀåÀ» ¿¹ÃøÇϸ鼭 »çÀü¿¡ ±³Ã¼ ¹× ¼ö¸®ÇÒ ¼ö ÀÖ½À´Ï´Ù. À¯Áö º¸¼ö ºñ¿ëÀ» Àý°¨Çϰí Àåºñ ¼ö¸íÀ» ¿¬ÀåÇÏ¸ç »ý»ê¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿¹Áöº¸ÀüÀº ¾ÈÀü ÄÄÇöóÀÌ¾ð½º¿Í ¼±Á¦ÀûÀÎ ½ÃÁ¤Á¶Ä¡¸¦ Á¦°øÇϱ⠶§¹®¿¡ ¼ö¿ä´Â ¼¼°èÀûÀ¸·Î ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿¹Áöº¸Àü ½ÃÀå µ¿Çâ :

ÇöÀç ´Ù¾çÇÑ »ê¾÷ÀÚ»êÀÇ ¿î¿ë ÀÚµ¿È­°¡ ÁøÇàµÇ°í Àֱ⠶§¹®¿¡ ¿¹Áöº¸Àü ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ°í, À̰ÍÀÌ ½ÃÀå¿¡ Ç÷¯½ºÀÇ ¿µÇâÀ» ÁÖ°í ÀÖ´Â ÁÖ¿äÀÎ Áß Çϳª°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ¿Ü¿¡µµ »ê¾÷ÀÚ»ê°ú »ç¾÷Àڻ꿡¼­ ¾òÀº ´Ù¾çÇÑ Á¤º¸¸¦ Á¶»çÇϱâ À§ÇÑ M2M(Machine-to-Machine) Åë½Å ¹× Ŭ¶ó¿ìµå ±â¼úÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °Íµµ ½ÃÀå Àü¸ÁÀ» ¾çÈ£ÇÑ °Í Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±â¼úÀÚ°¡ ÀûÀýÇÑ ´Ü°è¸¦ ¹â¾Æ ¼ö¸®¸¦ °èȹ¡¤ÁغñÇϱâ À§ÇÑ ¿¹Áöº¸ÀüÀÇ Ã¤¿ëµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â »ý»êÁÖ±â Áß´Ü ¹× ¿¹±âÄ¡ ¸øÇÑ °¡µ¿ ÁßÁö ½Ã°£ ¹ß»ýÀ» ¹æÁöÇϱâ À§ÇÑ ¿¹Áöº¸Àü äÅà Áõ°¡¿Í ÇÔ²² ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. À̿ʹ º°µµ·Î °¡½ÃÀûÀÎ ÅõÀÚ¼öÀÍ·ü(ROI)À» âÃâÇϱâ À§ÇØ ±â¾÷¿¡ ÀÇÇÑ ¿¹Áöº¸ÀüÀÇ ÀÌ¿ëÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ´Â ³ëÈÄÈ­µÈ ´Ù¾çÇÑ »ê¾÷±â°èÀÇ ¼ö¸íÀ» ¿¬ÀåÇϱâ À§ÇÑ ÅõÀÚ Áõ°¡¿Í ÇÔ²² ½ÃÀåÀÇ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °íµµÀÇ ½ÃÇèÀ» ½Ç½ÃÇÏ°í ºÎǰ ¹× ÀåºñÀÇ °íÀåÀ» ¿¹ÃøÇϱâ À§ÇØ ¿ø°Ý ¸ð´ÏÅ͸µ°ú ¿¹Ãø º¸ÀüÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ´Â °Íµµ ½ÃÀåÀÇ ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÇ·á ÀÎÇÁ¶óÀÇ ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ ÀÇ·á ºÎ¹®¿¡¼­ ¿¹Áöº¸Àü äÅÃÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·ç´Â ÁÖ¿ä Áú¹®

  • 2023³â ¼¼°è ¿¹Áöº¸Àü½ÃÀå ±Ô¸ð´Â?
  • 2024-2032³â ¼¼°èÀÇ ¿¹Áöº¸Àü½ÃÀåÀÇ ¿¹»ó ¼ºÀå·üÀº?
  • ¼¼°èÀÇ ¿¹Áöº¸Àü½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?
  • ¼¼°èÀÇ ¿¹Áöº¸Àü½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâÀº?
  • ¼¼°èÀÇ ¿¹Áöº¸Àü½ÃÀåÀÇ ÄÄÆ÷³ÍÆ®º° ³»¿ªÀº?
  • ¼¼°èÀÇ ¿¹Áöº¸Àü½ÃÀåÀÇ ±â¼úº° ³»¿ªÀº?
  • ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀåÀÇ Àü°³ À¯Çüº° ³»¿ªÀº?
  • ¼¼°è ¿¹Áöº¸Àü½ÃÀåÀÇ ¾÷°èº° ³»¿ªÀº?
  • ¼¼°è ¿¹Áöº¸Àü½ÃÀåÀÇ ÁÖ¿ä Áö¿ªÀº?
  • ¼¼°è ¿¹Áöº¸Àü½ÃÀåÀÇ ÁÖ¿ä ÁøÀÔ±â¾÷Àº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ¿¹Áöº¸Àü ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ÄÄÆ÷³ÍÆ®º°

  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦7Àå ½ÃÀå ºÐ¼® : ±â¼úº°

  • Áøµ¿ °¨½Ã
  • Àü±â ½ÃÇè
  • ¿ÀÀÏ ºÐ¼®
  • ÃÊÀ½ÆÄ ´©¼³ °ËÃâ±â
  • ¼îÅ© ÆÞ½º
  • Àû¿Ü¼±
  • ±âŸ

Á¦8Àå ½ÃÀå ³»¿ª : Àü°³ À¯Çüº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦9Àå ½ÃÀå ³»¿ª: Á¶Á÷ ±Ô¸ðº°

  • Áß¼Ò±â¾÷
  • ´ë±â¾÷

Á¦10Àå ½ÃÀå ºÐ¼® : ¾÷°èº°

  • Á¦Á¶
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ¿î¼Û ¹× ¹°·ù
  • Á¤ºÎ
  • ÀÇ·á
  • ±âŸ

Á¦11Àå ½ÃÀå ºÐ¼®: Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ºÐ¼® : ±¹°¡º°
    • ½ÃÀå ¿¹Ãø

Á¦12Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦13Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦14Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦15Àå °¡°Ý ºÐ¼®

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Asystom
    • C3.ai Inc.
    • General Electric Company
    • Google LLC(Alphabet Inc.)
    • Hitachi Ltd.
    • International Business Machines Corporation
    • Microsoft Corporation
    • PTC Inc.
    • SAP SE
    • Software AG
    • Tibco Software Inc.
    • Uptake Technologies Inc.
JHS 24.07.31

The global predictive maintenance market size reached US$ 10.3 Billion in 2023. Looking forward, IMARC Group expects the market to reach US$ 72.3 Billion by 2032, exhibiting a growth rate (CAGR) of 23.8% during 2024-2032. The growing utilization of machine-to-machine (M2M) communication, increasing investment in extending the lifespan of various aging industrial machinery, and rising integration with remote monitoring to conduct advanced inspections represent some of the key factors driving the market.

Predictive maintenance refers to the technique that relies on condition-monitoring tools and systems to monitor the performance of equipment during operation. It comprises the internet of things (IoT), artificial intelligence (AI), and integrated systems to connect different assets and systems and share and analyze crucial data. It also consists of predictive maintenance sensors, industrial controls, and business systems, such as enterprise asset management (EAM) and enterprise resource planning (ERP) software. It functions by utilizing condition monitoring equipment to examine and evaluate the performance of assets. It records a wide range of data, such as temperature, vibrations, and conductivity, which enables an engineer to predict the failure of equipment or assets while allowing them to be replaced or repaired in advance. It helps reduce maintenance costs, increase the shelf life of equipment, and improve productivity. Furthermore, as predictive maintenance provides safety compliance and preemptive corrective actions, its demand is increasing around the world.

Predictive Maintenance Market Trends:

At present, the rising demand for predictive maintenance due to the increasing automation of operations of various industrial assets represents one of the primary factors influencing the market positively. Besides this, the growing utilization of machine-to-machine (M2M) communication and cloud technology to investigate a wide array of information derived from industrial and business assets is offering a favorable market outlook. Additionally, there is an increase in the adoption of predictive maintenance by technicians to plan and prepare for a repair by taking appropriate steps. This, along with the rising employment of predictive maintenance to prevent the disruption of production cycles and the occurrence of unplanned downtime, is propelling the growth of the market. Apart from this, there is a rise in the utilization of predictive maintenance by businesses to generate a tangible return on investment (ROI). This, coupled with the increasing investment in extending the lifespan of various aging industrial machinery, is contributing to the growth of the market. In addition, the rising integration of predictive maintenance with remote monitoring to conduct advanced inspections and predict component and equipment failures is supporting the market growth. Moreover, the increasing employment of predictive maintenance in the healthcare sector to improve the reliability of healthcare infrastructure is bolstering the market growth.

Key Market Segmentation:

IMARC Group provides an analysis of the key trends in each sub-segment of the global predictive maintenance market report, along with forecasts at the global, regional and country level from 2024-2032. Our report has categorized the market based on component, technique, deployment type, organization size and industry vertical.

Component Insights:

Solution

Service

The report has provided a detailed breakup and analysis of the predictive maintenance market based on the component. This includes solution and service. According to the report, solution represented the largest segment.

Technique Insights:

Vibration Monitoring

Electrical Testing

Oil Analysis

Ultrasonic Leak Detectors

Shock Pulse

Infrared

Others

A detailed breakup and analysis of the predictive maintenance market based on the technique has also been provided in the report. This includes vibration monitoring, electrical testing, oil analysis, ultrasonic leak detectors, shock pulse, infrared, and others. According to the report, vibration monitoring accounted for the largest market share.

Deployment Type Insights:

Cloud-based

On-premises

A detailed breakup and analysis of the predictive maintenance market based on the deployment type has also been provided in the report. This includes cloud-based and on-premises. According to the report, on-premises accounted for the largest market share.

Organization Size Insights:

Small and Medium-sized Enterprises

Large Enterprises

A detailed breakup and analysis of the predictive maintenance market based on the organization size has also been provided in the report. This includes small and medium-sized enterprises and large enterprises. According to the report, large enterprises accounted for the largest market share.

Industry Vertical Insights:

Manufacturing

Energy and Utilities

Aerospace and Defense

Transportation and Logistics

Government

Healthcare

Others

A detailed breakup and analysis of the predictive maintenance market based on the industry vertical has also been provided in the report. This includes manufacturing, energy and utilities, aerospace and defense, transportation and logistics, government, healthcare, and others. According to the report, manufacturing accounted for the largest market share.

Regional Insights:

North America

United States

Canada

Asia-Pacific

China

Japan

India

South Korea

Australia

Indonesia

Others

Europe

Germany

France

United Kingdom

Italy

Spain

Russia

Others

Latin America

Brazil

Mexico

Others

Middle East and Africa

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (the United Kingdom, Germany, France, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America (the United States and Canada) was the largest market for predictive maintenance. Some of the factors driving the North America predictive maintenance market included the growing demand for remote monitoring facilities, rising technological advancements in business automation processes, increasing number of solution and service vendors, etc.

Competitive Landscape:

The report has also provided a comprehensive analysis of the competitive landscape in the global predictive maintenance market. Competitive analysis such as market structure, market share by key players, player positioning, top winning strategies, competitive dashboard, and company evaluation quadrant has been covered in the report. Also, detailed profiles of all major companies have been provided. Some of the companies covered include Asystom, C3.ai Inc., General Electric Company, Google LLC (Alphabet Inc.), Hitachi Ltd., International Business Machines Corporation, Microsoft Corporation, PTC Inc., SAP SE, Software AG, Tibco Software Inc., Uptake Technologies Inc., etc. Kindly note that this only represents a partial list of companies, and the complete list has been provided in the report.

Key Questions Answered in This Report

  • 1. What was the size of the global predictive maintenance market in 2023?
  • 2. What is the expected growth rate of the global predictive maintenance market during 2024-2032?
  • 3. What are the key factors driving the global predictive maintenance market?
  • 4. What has been the impact of COVID-19 on the global predictive maintenance market?
  • 5. What is the breakup of the global predictive maintenance market based on the component?
  • 6. What is the breakup of the global predictive maintenance market based on the technique?
  • 7. What is the breakup of the global predictive maintenance market based on deployment type?
  • 8. What is the breakup of the global predictive maintenance market based on the organization size?
  • 9. What is the breakup of the global predictive maintenance market based on the industry vertical?
  • 10. What are the key regions in the global predictive maintenance market?
  • 11. Who are the key players/companies in the global predictive maintenance market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Predictive Maintenance Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Component

  • 6.1 Solution
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Service
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by Technique

  • 7.1 Vibration Monitoring
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Electrical Testing
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Oil Analysis
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Ultrasonic Leak Detectors
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Shock Pulse
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Infrared
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast
  • 7.7 Others
    • 7.7.1 Market Trends
    • 7.7.2 Market Forecast

8 Market Breakup by Deployment Type

  • 8.1 Cloud-based
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 On-premises
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast

9 Market Breakup by Organization Size

  • 9.1 Small and Medium-sized Enterprises
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Large Enterprises
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast

10 Market Breakup by Industry Vertical

  • 10.1 Manufacturing
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Energy and Utilities
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Aerospace and Defense
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Transportation and Logistics
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Government
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast
  • 10.6 Healthcare
    • 10.6.1 Market Trends
    • 10.6.2 Market Forecast
  • 10.7 Others
    • 10.7.1 Market Trends
    • 10.7.2 Market Forecast

11 Market Breakup by Region

  • 11.1 North America
    • 11.1.1 United States
      • 11.1.1.1 Market Trends
      • 11.1.1.2 Market Forecast
    • 11.1.2 Canada
      • 11.1.2.1 Market Trends
      • 11.1.2.2 Market Forecast
  • 11.2 Asia-Pacific
    • 11.2.1 China
      • 11.2.1.1 Market Trends
      • 11.2.1.2 Market Forecast
    • 11.2.2 Japan
      • 11.2.2.1 Market Trends
      • 11.2.2.2 Market Forecast
    • 11.2.3 India
      • 11.2.3.1 Market Trends
      • 11.2.3.2 Market Forecast
    • 11.2.4 South Korea
      • 11.2.4.1 Market Trends
      • 11.2.4.2 Market Forecast
    • 11.2.5 Australia
      • 11.2.5.1 Market Trends
      • 11.2.5.2 Market Forecast
    • 11.2.6 Indonesia
      • 11.2.6.1 Market Trends
      • 11.2.6.2 Market Forecast
    • 11.2.7 Others
      • 11.2.7.1 Market Trends
      • 11.2.7.2 Market Forecast
  • 11.3 Europe
    • 11.3.1 Germany
      • 11.3.1.1 Market Trends
      • 11.3.1.2 Market Forecast
    • 11.3.2 France
      • 11.3.2.1 Market Trends
      • 11.3.2.2 Market Forecast
    • 11.3.3 United Kingdom
      • 11.3.3.1 Market Trends
      • 11.3.3.2 Market Forecast
    • 11.3.4 Italy
      • 11.3.4.1 Market Trends
      • 11.3.4.2 Market Forecast
    • 11.3.5 Spain
      • 11.3.5.1 Market Trends
      • 11.3.5.2 Market Forecast
    • 11.3.6 Russia
      • 11.3.6.1 Market Trends
      • 11.3.6.2 Market Forecast
    • 11.3.7 Others
      • 11.3.7.1 Market Trends
      • 11.3.7.2 Market Forecast
  • 11.4 Latin America
    • 11.4.1 Brazil
      • 11.4.1.1 Market Trends
      • 11.4.1.2 Market Forecast
    • 11.4.2 Mexico
      • 11.4.2.1 Market Trends
      • 11.4.2.2 Market Forecast
    • 11.4.3 Others
      • 11.4.3.1 Market Trends
      • 11.4.3.2 Market Forecast
  • 11.5 Middle East and Africa
    • 11.5.1 Market Trends
    • 11.5.2 Market Breakup by Country
    • 11.5.3 Market Forecast

12 SWOT Analysis

  • 12.1 Overview
  • 12.2 Strengths
  • 12.3 Weaknesses
  • 12.4 Opportunities
  • 12.5 Threats

13 Value Chain Analysis

14 Porters Five Forces Analysis

  • 14.1 Overview
  • 14.2 Bargaining Power of Buyers
  • 14.3 Bargaining Power of Suppliers
  • 14.4 Degree of Competition
  • 14.5 Threat of New Entrants
  • 14.6 Threat of Substitutes

15 Price Analysis

16 Competitive Landscape

  • 16.1 Market Structure
  • 16.2 Key Players
  • 16.3 Profiles of Key Players
    • 16.3.1 Asystom
      • 16.3.1.1 Company Overview
      • 16.3.1.2 Product Portfolio
    • 16.3.2 C3.ai Inc.
      • 16.3.2.1 Company Overview
      • 16.3.2.2 Product Portfolio
      • 16.3.2.3 Financials
    • 16.3.3 General Electric Company
      • 16.3.3.1 Company Overview
      • 16.3.3.2 Product Portfolio
      • 16.3.3.3 Financials
      • 16.3.3.4 SWOT Analysis
    • 16.3.4 Google LLC (Alphabet Inc.)
      • 16.3.4.1 Company Overview
      • 16.3.4.2 Product Portfolio
      • 16.3.4.3 SWOT Analysis
    • 16.3.5 Hitachi Ltd.
      • 16.3.5.1 Company Overview
      • 16.3.5.2 Product Portfolio
      • 16.3.5.3 Financials
      • 16.3.5.4 SWOT Analysis
    • 16.3.6 International Business Machines Corporation
      • 16.3.6.1 Company Overview
      • 16.3.6.2 Product Portfolio
      • 16.3.6.3 Financials
      • 16.3.6.4 SWOT Analysis
    • 16.3.7 Microsoft Corporation
      • 16.3.7.1 Company Overview
      • 16.3.7.2 Product Portfolio
      • 16.3.7.3 Financials
      • 16.3.7.4 SWOT Analysis
    • 16.3.8 PTC Inc.
      • 16.3.8.1 Company Overview
      • 16.3.8.2 Product Portfolio
      • 16.3.8.3 Financials
      • 16.3.8.4 SWOT Analysis
    • 16.3.9 SAP SE
      • 16.3.9.1 Company Overview
      • 16.3.9.2 Product Portfolio
      • 16.3.9.3 Financials
      • 16.3.9.4 SWOT Analysis
    • 16.3.10 Software AG
      • 16.3.10.1 Company Overview
      • 16.3.10.2 Product Portfolio
      • 16.3.10.3 Financials
    • 16.3.11 Tibco Software Inc.
      • 16.3.11.1 Company Overview
      • 16.3.11.2 Product Portfolio
      • 16.3.11.3 SWOT Analysis
    • 16.3.12 Uptake Technologies Inc.
      • 16.3.12.1 Company Overview
      • 16.3.12.2 Product Portfolio
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦