½ÃÀ庸°í¼­
»óǰÄÚµå
1642472

°ø±âÁú ¸ð´ÏÅ͸µ ½ÃÀå º¸°í¼­ : Á¦Ç° À¯Çü, ¿À¿° ¹°Áú, »ùÇøµ ¹æ¹ý, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº°(2025-2033³â)

Air Quality Monitoring Market Report by Product Type, Pollutant, Sampling Method, End-User, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 139 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

°ø±âÁú ¸ð´ÏÅ͸µ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 52¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ½ÃÀåÀÌ 2033³â±îÁö 95¾ï ´Þ·¯¿¡ À̸£·¶À¸¸ç 2025³âºÎÅÍ 2033³â±îÁö 6.18%ÀÇ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. µµ½ÃÈ­¿Í »ê¾÷È­ÀÇ ÁøÀü, ¿À¿°ÀÌ °Ç°­¿¡ ¹ÌÄ¡´Â À¯ÇØÇÑ ¿µÇâ¿¡ ´ëÇÑ ÀÏ¹Ý ½Ã¹ÎÀÇ ÀǽÄÀÇ °íÁ¶, ±â´É¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ »ç¹°ÀÎÅͳÝ(IoT)°ú ÀΰøÁö´É(AI)ÀÇ °ø±âÁú ¸ð´ÏÅ͸µ ½Ã½ºÅÛ ÅëÇÕ µîÀÌ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â ¿äÀÎÀÇ ÀϺΰ¡ µÇ°í ÀÖ½À´Ï´Ù.

°ø±âÁú ¸ð´ÏÅ͸µÀº ƯÁ¤ Áö¿ª ¹× Áö¿ªÀÇ °ø±â ǰÁúÀÇ Ã¼°èÀûÀÎ Æò°¡¿Í ºÐ¼®À» Æ÷ÇÔÇÕ´Ï´Ù. ¹Ì¸³ÀÚ ¹°Áú(PM), Èֹ߼º À¯±â È­ÇÕ¹°(VOC), ÀÌ»êÈ­Áú¼Ò(NO2), ÀÌ»êȭȲ(SO2), ¿ÀÁ¸(O3) µî ´ë±â¿¡ Á¸ÀçÇÏ´Â ´Ù¾çÇÑ ¿À¿°¹°Áú°ú ¿À¿°¹°ÁúÀÇ ÃøÁ¤°ú Æò°¡·Î ±¸¼ºµË´Ï´Ù. Ư¼ö Àåºñ ¹× ¼¾¼­¸¦ ÀÌ¿ëÇÏ¿© ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿© °ø±âÁú µ¿Çâ°ú ÀáÀçÀûÀÎ °Ç°­ À§ÇèÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¹Ç·Î °ø±âÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¼ö¿ä°¡ ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÇöÀç °³ÀÎÀÇ ´Ù¾çÇÑ °Ç°­ »óÅÂÀÇ À§ÇèÀ» ÁÙÀ̱â À§ÇØ ½Å¼±ÇÑ °ø±â¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±âÈÄ º¯È­ ¹®Á¦¿¡ ´ëÇÑ ´ëÀÀ°ú ¹èÃâ·® °¨Ãà¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼¼°èÀÇ ¿¬±¸ÀÚ, Á¤Ã¥ ÀÔ¾ÈÀÚ, °øÁߺ¸°Ç±â°ü °£¿¡ °ø±âÁú µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Â °Íµµ ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» À¯ÁöÇÏ´Â Àαâ Áõ°¡´Â ¾÷°è ÅõÀÚÀڵ鿡°Ô À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. °Ô´Ù°¡ ´Ù¾çÇÑ ±¹°¡ÀÇ ÇàÁ¤±â°üÀÌ »ê¾÷°è¿¡ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀÇ Ã¤¿ëÀ» Ã˱¸ÇÏ´Â ¾ö°ÝÇÑ ´ë±âÁú ±âÁØÀ» µµÀÔÇϰí ÀÖÀ¸¸ç, À̰ÍÀÌ ½ÃÀåÀÇ ¼ºÀåÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. À̿ʹ º°µµ·Î ¼¼°è ´ëÁßµé »çÀÌ¿¡¼­ ´ë±â¿À¿°°ú °ü·ÃµÈ Áúº´ÀÇ À¯º´·üÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

°ø±âÁú ¸ð´ÏÅ͸µ ½ÃÀå °æÇâ/ÃËÁø¿äÀÎ:

¿­¾ÇÇÑ ´ë±âÀÇ À¯ÇØÇÑ ¿µÇâ¿¡ ´ëÇÑ ÀÇ½Ä Áõ°¡

´ë±âÀÇ Áú ÀúÇÏ¿¡ µû¸¥ °Ç°­¿¡ ¾Ç¿µÇâÀ» ¹ÌÄ¡´Â ´ëÁßÀÇ ÀǽÄÀÌ ³ô¾ÆÁö¸é¼­ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´ë±â¿À¿°¹°Áú°ú È£Èí±âÁúȯ, ½ÉÇ÷°üÁúȯ, ½ÉÁö¾î °³ÀÎÀÇ Á¶»ç¿ÍÀÇ »ó°ü°ü°è¸¦ ÅëÇØ »ç¶÷µéÀº ´ë±âÁú¿¡ ´ëÇÑ °ü½ÉÀ» ³ôÀÔ´Ï´Ù. À̿ʹ º°µµ·Î ´Ù¾çÇÑ ±¹°¡ÀÇ ÇàÁ¤±â°üÀÌ ´ë±âÀÇ ÁúÀ» Çâ»ó½ÃŰ°í ¾ö°ÝÇÑ ´ë±âÁú ±âÁذú ¹èÃâÁ¦ÇÑÀ» ½Ç½ÃÇÏ´Â °Í¿¡ ´ëÇÑ ÀνÄÀ» ³ÐÈ÷°í ÀÖ½À´Ï´Ù. ±× °á°ú, »ê¾÷°è¿Í ±â¾÷Àº ¹ú±ÝÀ̳ª dzÆò ÇÇÇØ¸¦ ÇÇÇϱâ À§ÇØ ¹èÃâ·®À» È¿°úÀûÀ¸·Î Æò°¡ ¹× °ü¸®ÇÏ´Â °íµµÀÇ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ» µµÀÔÇÒ ¼ö¹Û¿¡ ¾ø°Ô µÇ¾ú½À´Ï´Ù.

»ê¾÷È­·Î ÀÎÇÑ ¿À¿° ¼öÁØ »ó½Â

Àü ¼¼°èÀûÀ¸·Î ±Þ¼ÓÇÑ µµ½ÃÈ­¿Í »ê¾÷È­°¡ ÁøÇàµÇ°í ¿À¿° ¼öÁØÀÌ »ó½ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀÚµ¿Â÷ÀÇ ¹è±â °¡½º, »ê¾÷ °øÁ¤, °Ç¼³ Ȱµ¿ÀÌ ÁýÁߵʿ¡ µû¶ó ´ë±â Áß¿¡ ¸¹Àº ¾çÀÇ ¿À¿°¹°ÁúÀÌ ¹æÃâµÇ¾î ´ë±âÁúÀÇ ¾ÇÈ­¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¼¼°èÀûÀ¸·Î ÁÖÅðú »ó¾÷¿ë ÀÎÇÁ¶ó °³¹ß ÇÁ·ÎÁ§Æ®°¡ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. À̿ʹ º°µµ·Î, »ç¶÷µéÀº °æÁ¦Àû ±âȸ¸¦ ã°í µµ½Ã Á߽ɺηÎÀÇ ÀÌÁÖ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µµ½Ã ÀÎÇÁ¶óÀÇ ±ÞÁõÀº ¾öû³­ ¾çÀÇ ¿À¿°À» À¯¹ßÇϹǷΠÁ¤È®ÇÑ °ø±âÁú ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÌ ÇÊ¿äÇÕ´Ï´Ù. °Ô´Ù°¡ »ê¾÷°è, Áö¹æÀÚÄ¡´Üü, µµ½Ã°èȹÀÚµéÀº ¿À¿°¿øÀ» ÆÄ¾ÇÇϰí, Àû±ØÀûÀÎ ¿ÏÈ­ Àü·«À» ¼ö¸³Çϰí, Áö¼Ó°¡´ÉÇÑ µµ½Ã °³¹ßÀ» º¸ÀåÇϱâ À§ÇØ ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅͰ¡ ÇÊ¿äÇÕ´Ï´Ù.

IoT ´ëÀÀ ´ë±â ǰÁú ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

´Ù¾çÇÑ Á¦Á¶¾÷üµéÀÌ °í±Þ ¼¾¼­, ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý Àåºñ, °í±Þ ºÐ¼® µµ±¸ µî °ø±âÁú ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ÷´Ü ±â¼úÀ» µµÀÔÇÏ¿© ÀÌÇØ°ü°èÀÚ°¡ ´ë±â Áú¿¡ ´ëÇÑ Á¤È®ÇÏ°í ½Ã±â ÀûÀýÇÑ Á¤º¸¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, »ç¹° ÀÎÅͳÝ(IoT) ±â¼úÀ» °ø±âÁú ¸ð´ÏÅ͸µ¿¡ ÅëÇÕÇÔÀ¸·Î½á ¿ø°Ý ¸ð´ÏÅ͸µ, µ¥ÀÌÅÍ Àü¼Û ¹× Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼®ÀÌ °¡´ÉÇÕ´Ï´Ù. IoT¿¡ ¿¬°áµÈ Àåºñ´Â ±¤´ëÇÑ Áö¿ªÀ» Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ³×Æ®¿öÅ© ±¸ÃàÀ» ¿ëÀÌÇÏ°Ô ÇÏ°í ´ë±âÁúÀÇ ¿ªÇÐÀ» Á¾ÇÕÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ÀÌ µ¥ÀÌÅÍ Áß½ÉÀÇ Á¢±Ù¹ýÀº ¿À¿° ÃøÁ¤ÀÇ Á¤È®¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó ¿À¿°¹°ÁúÀÇ ¿ÀÀÛµ¿°ú ±Þ°ÝÇÑ »ó½ÂÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ °ø±âÁú ¸ð´ÏÅ͸µ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ºÐ¼® : Á¦Ç° À¯Çüº°
  • ½ÃÀå ºÐ¼® : ¿À¿°¹°Áúº°
  • ½ÃÀå ºÐ¼® : »ùÇøµ ¹æ¹ýº°
  • ½ÃÀå ºÐ¼® : ÃÖÁ¾»ç¿ëÀÚº°
  • ½ÃÀå ºÐ¼® : Áö¿ªº°
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª: Á¦Ç° À¯Çüº°

  • ½Ç³» ¸ð´ÏÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿Á¿Ü ¸ð´ÏÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿þ¾î·¯ºí ¸ð´ÏÅÍ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ºÐ¼® : ¿À¿°¹°Áúº°

  • È­ÇпÀ¿°¹°Áú
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹°¸®Àû ¿À¿°¹°Áú
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • »ý¹°ÇÐÀû ¿À¿°¹°Áú
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ºÐ¼® : »ùÇøµ ¹æ¹ýº°

  • ¾×Ƽºê/°è¼ÓÀûÀÎ °¨½Ã
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÆÐ½Ãºê ¸ð´ÏÅ͸µ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • °£ÇæÀûÀÎ ¸ð´ÏÅ͸µ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ½ºÅà °¨½Ã
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ³»¿ª: ÃÖÁ¾ »ç¿ëÀÚº°

  • Á¤ºÎ±â°ü ¹× Çмú±â°ü
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • »ó¾÷ ¹× ÁÖÅà »ç¿ëÀÚ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¼®À¯È­Çлê¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¹ßÀü¼Ò
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Á¦¾à¾÷°è
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • À¯·´
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ºÏ¹Ì
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦11Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦13Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °¡°Ý ºÐ¼®

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Thermo Fisher Scientific
    • Siemens Aktiengesellschaft
    • Teledyne Technologies
    • Emerson Electric
    • General Electric Company
    • 3M Company
    • Horiba
    • Merck KGaA
    • Aeroqual
    • TSI Incorporated
    • Testo India Pvt. Ltd.
    • Honeywell International Inc.
    • Agilent Technologies
    • TE Connectivity
    • Tisch Environmental
    • Spectris plc
SHW 25.03.04

The global air quality monitoring market size reached USD 5.2 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 9.5 Billion by 2033, exhibiting a growth rate (CAGR) of 6.18% during 2025-2033. The growing pace of urbanization and industrialization, increasing public awareness about the harmful impacts of pollution on health, and incorporation of internet of things (IoT) and artificial intelligence (AI) in air monitoring systems to improve functionality are some of the factors impelling the market growth.

Air quality monitoring involves the systematic assessment and analysis of the quality of air in a specific area or region. It comprises the measurement and evaluation of various pollutants and contaminants present in the air, such as particulate matter (PM), volatile organic compounds (VOCs), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3). It utilizes specialized equipment and sensors to collect real-time data and enable the identification of air quality trends and potential health risks. As it allows businesses to make informed decisions, the demand for air quality monitoring is increasing across the globe.

At present, the rising need for fresh air to reduce the risk of various health conditions among individuals is bolstering the growth of the market. In line with this, the increasing focus on addressing climate change issues and reducing emissions is propelling the growth of the market. Moreover, the growing demand for air quality data among researchers, policymakers, and public health organizations around the world is positively influencing the market. In addition, the rising popularity of maintaining sustainability in the environment is providing lucrative growth opportunities to industry investors. Additionally, governing agencies of various countries are implementing stringent air quality standards that encourage industries to adopt monitoring solutions, which is supporting the growth of the market. Apart from this, the rising prevalence of air pollution-related illnesses among the masses worldwide is contributing to the growth of the market.

Air Quality Monitoring Market Trends/Drivers:

Rising awareness about the harmful impact of poor air quality

The rising awareness about adverse health impacts associated with poor air quality among the masses is supporting the growth of the market. In addition, people are becoming increasingly concerned about air quality due to the correlation between air pollutants and respiratory diseases, cardiovascular issues, and even premature mortality among individuals. Apart from this, governing agencies of various countries are spreading awareness about maintaining enhanced air quality and implementing stringent air quality standards and emission limits. As a result, industries and businesses are compelled to implement advanced monitoring solutions to assess and manage their emissions effectively, avoiding fines and reputational damage.

Increasing pollution levels due to industrialization

There is a rise in pollution levels due to rapid urbanization and industrialization across the globe. Moreover, the concentration of vehicular emissions, industrial processes, and construction activities releases significant amounts of pollutants into the air that contribute to deteriorating air quality. In addition, the increasing number of infrastructure development projects for residential and commercial purposes across the globe is bolstering the growth of the market. Apart from this, people are increasingly migrating to urban centers to seek economic opportunities. This upsurge in urban infrastructure creates huge amounts of pollution, which requires an accurate air quality monitoring system. Furthermore, industries, local authorities, and urban planners need reliable data to identify pollution sources, develop targeted mitigation strategies, and ensure sustainable urban development.

Growing demand for IoT-enabled air quality systems

Various manufacturers are introducing advanced technologies in air quality monitoring systems, such as advanced sensors, real-time data collection devices, and sophisticated analytical tools, that empowers stakeholders to obtain accurate and timely information about air quality. In addition, the integration of the Internet of Things (IoT) technology in air quality monitoring enables remote monitoring, data transmission, and cloud-based analysis. IoT-connected devices facilitate the creation of comprehensive networks that cover vast geographical areas and provide a holistic understanding of air quality dynamics. In line with this, this data-driven approach not only enhances the accuracy of pollution measurements but allows for early detection of anomalies or pollutant spikes.

Air Quality Monitoring Industry Segmentation:

Breakup by Product Type:

Indoor Monitors

Outdoor Monitors

Wearable Monitors

Outdoor monitors represent the largest market segment

Outdoor monitors are specialized devices that are designed to measure and analyze pollutants present in the ambient air of external environments. These monitors employ advanced sensors and technologies to detect a range of pollutants. In addition, these devices are strategically positioned across urban, industrial, and residential areas to provide real-time data on air quality conditions. They play a vital role in assessing pollution levels, identifying pollution sources, and enabling timely interventions to mitigate adverse health effects and environmental impact.

Breakup by Pollutant:

Chemical Pollutant

Physical Pollutant

Biological Pollutant

Chemical pollutant accounts for the majority of the market share

Chemical pollutant encompasses various harmful substances released into the air due to human activities, industrial processes, and natural sources. These pollutants include volatile organic compounds (VOCs), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and other toxic gases. Monitoring and controlling chemical pollutants are critical for understanding their impact on public health and the environment. Advanced monitoring technologies employ specialized sensors and analytical methods to quantify these pollutants accurately. Timely detection and measurement of chemical pollutants benefit regulatory bodies, industries, and communities in implementing effective pollution reduction strategies and complying with environmental standards.

Breakup by Sampling Method:

Active/Continuous Monitoring

Passive Monitoring

Intermittent Monitoring

Stack Monitoring

Active or continuous monitoring holds the biggest market share

Active or continuous monitoring involves the use of specialized equipment and sensors that continuously collect real-time air quality data. These instruments operate non-stop and provide constant information about various pollutants. These systems ensure a comprehensive understanding of pollutant levels, fluctuations, and trends. This approach is particularly effective in urban and industrial areas where pollution dynamics can change rapidly. In addition, they enable timely interventions by offering instantaneous and accurate information to industries, local authorities, and public health organizations. They play a vital role in promoting air quality management and minimizing the adverse effects of pollution on human health and the environment.

Breakup by End-User:

Government Agencies and Academic Institutes

Commercial and Residential Users

Petrochemical Industry

Power Generation Plants

Pharmaceutical Industry

Others

Government agencies and academic institutes require accurate and comprehensive air quality data to establish regulatory standards, assess compliance, and conduct research on the impact of air quality. These entities use these systems to monitor pollution levels, identify pollution sources, and make informed policy decisions that safeguard public health and the environment.

Commercial and residential users are increasingly recognizing the importance of monitoring air quality within their premises. Indoor air quality affects well-being, comfort, and productivity of individuals. On the other hand, businesses, offices, schools, and residential buildings are deploying monitoring solutions to ensure optimal indoor environments and identify potential indoor pollutants.

The petrochemical industry relies on these systems to manage emissions and comply with strict environmental regulations. Monitoring systems help petrochemical facilities track pollutants released during their processes and minimize their ecological footprint while maintaining operational efficiency.

Breakup by Region:

North America

Europe

Asia Pacific

Middle East and Africa

Latin America

North America exhibits a clear dominance, accounting for the largest air quality monitoring market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include Europe, North America, Asia, the Middle East and Africa, and Latin America. According to the report, North America accounted for the largest market share.

North America held the biggest market share due to the increasing focus on environmental regulations and public health. Apart from this, the rising adoption of advanced monitoring technologies across industries is contributing to the growth of the market in the region. In line with this, favorable government initiatives for maintaining enhanced air quality are propelling the growth of the market. Besides this, the rising awareness about the adverse effects of air pollution on health is bolstering the growth of the market in the region.

Competitive Landscape:

Major manufacturers are continuously engaging in research and development (R&D) activities to develop advanced monitoring technologies and devices. They are focusing on enhancing sensor accuracy, data collection methods, and real-time analysis capabilities. This innovation drives the creation of more efficient, compact, and user-friendly monitoring systems. Apart from this, companies are rapidly improving data analytics and visualization tools by developing software and platforms that transform raw monitoring data into actionable insights, which makes it easier for users to interpret complex information and identify trends in air quality. In addition, various players are developing specialized sensors, data analysis algorithms, and monitoring strategies that cater to the unique needs of different sectors, such as industrial, residential, or commercial.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Thermo Fisher Scientific

Siemens Aktiengesellschaft

Teledyne Technologies

Emerson Electric

General Electric Company

3M Company

Horiba

Merck KGaA

Aeroqual

TSI Incorporated

Testo India Pvt. Ltd.

Honeywell International Inc.

Agilent Technologies

TE Connectivity

Tisch Environmental

Spectris plc

Key Questions Answered in This Report

  • 1. What was the size of the global air quality monitoring market in 2024?
  • 2. What is the expected growth rate of the global air quality monitoring market during 2025-2033?
  • 3. What are the key factors driving the global air quality monitoring market?
  • 4. What has been the impact of COVID-19 on the global air quality monitoring market?
  • 5. What is the breakup of the global air quality monitoring market based on the product type?
  • 6. What is the breakup of the global air quality monitoring market based on the pollutant?
  • 7. What is the breakup of the global air quality monitoring market based on the sampling method?
  • 8. What are the key regions in the global air quality monitoring market?
  • 9. Who are the key players/companies in the global air quality monitoring market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Air Quality Monitoring Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Breakup by Product Type
  • 5.5 Market Breakup by Pollutant
  • 5.6 Market Breakup by Sampling Method
  • 5.7 Market Breakup by End-User
  • 5.8 Market Breakup by Region
  • 5.9 Market Forecast

6 Market Breakup by Product Type

  • 6.1 Indoor Monitors
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Outdoor Monitors
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Wearable Monitors
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Pollutant

  • 7.1 Chemical Pollutant
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Physical Pollutant
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Biological Pollutant
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast

8 Market Breakup by Sampling Method

  • 8.1 Active/Continuous Monitoring
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Passive Monitoring
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Intermittent Monitoring
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Stack Monitoring
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by End-User

  • 9.1 Government Agencies and Academic Institutes
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Commercial and Residential Users
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Petrochemical Industry
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Power Generation Plants
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Pharmaceutical Industry
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast
  • 9.6 Other
    • 9.6.1 Market Trends
    • 9.6.2 Market Forecast

10 Market Breakup by Region

  • 10.1 Europe
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 North America
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Asia Pacific
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Middle East and Africa
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Latin America
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 Thermo Fisher Scientific
    • 15.3.2 Siemens Aktiengesellschaft
    • 15.3.3 Teledyne Technologies
    • 15.3.4 Emerson Electric
    • 15.3.5 General Electric Company
    • 15.3.6 3M Company
    • 15.3.7 Horiba
    • 15.3.8 Merck KGaA
    • 15.3.9 Aeroqual
    • 15.3.10 TSI Incorporated
    • 15.3.11 Testo India Pvt. Ltd.
    • 15.3.12 Honeywell International Inc.
    • 15.3.13 Agilent Technologies
    • 15.3.14 TE Connectivity
    • 15.3.15 Tisch Environmental
    • 15.3.16 Spectris plc
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦