½ÃÀ庸°í¼­
»óǰÄÚµå
1642531

ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå º¸°í¼­ : ¼ÒÇÁÆ®¿þ¾î À¯Çüº°, ¹èÆ÷ À¯Çüº°, »ê¾÷º°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº°(2025-2033³â)

Big Data Software Market Report by Software Type, Deployment Type, Industry, End-Use, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 123 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð´Â 2024³â 2,087¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC ±×·ìÀº 2033³â±îÁö ½ÃÀåÀÌ 4,560¾ï ´Þ·¯¿¡ À̸£¸ç, 2025³âºÎÅÍ 2033³â±îÁö 8.13%ÀÇ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ½ÃÀåÀ» °ßÀÎÇÏ´Â °ÍÀº IoT µð¹ÙÀ̽º·ÎºÎÅÍÀÇ µ¥ÀÌÅÍ Áõ°¡³ª AI/MLÀÇ Áøº¸, ½ÅÈï ½ÃÀå¿¡¼­ÀÇ µðÁöÅÐÈ­, ±â¾÷ÀÇ Àü·«Àû ÀÇ»ç°áÁ¤¿¡ À־ÀÇ µ¥ÀÌÅÍÀÇ Áß¿äÇÑ ¿ªÇÒ µîÀÔ´Ï´Ù.

ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î´Â »ç¶÷, µµ±¸, ±â°è¿¡ ÀÇÇØ »ý¼ºµÈ µ¿ÀûÀ̰í ÀÌÁúÀûÀÎ ¾çÀÇ µ¥ÀÌÅ͸¦ ¼öÁý, È£½ºÆ®, ºÐ¼® ó¸®ÇÏ´Â µ¥ »ç¿ëµÇ´Â ¼ÒÇÁÆ®¿þ¾îÀÇ ÀÏÁ¾À» ÀǹÌÇÕ´Ï´Ù. ¸Å¿ì Å« µ¥ÀÌÅÍ ¼¼Æ®¿¡ ´ëÇÑ È¿À²ÀûÀÎ ºÐ¼®À» Á¦°øÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, µ¥ÀÌÅ͸¦ ºñÁî´Ï½º »óȲ°ú °ü·ÃµÈ °íǰÁú Á¤º¸·Î º¯È¯ÇÏ¿© Á¶Á÷ÀÌ ±íÀº ÀλçÀÌÆ®¸¦ ¾òµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ ÀÌ ¼ÒÇÁÆ®¿þ¾î´Â ¼û°ÜÁø ÆÐÅÏ, ¾Ë ¼ö ¾ø´Â »ó°ü°ü°è, ½ÃÀå µ¿Çâ, ¼ÒºñÀÚ ¼±È£µµ ¹× ±âŸ ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ À¯¿ëÇÑ Á¤º¸¸¦ ã´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

¼ö³â µ¿¾È, »ç¹° ÀÎÅͳÝ(IoT)¿¡¼­ ¼¾¼­¿¡ ÀÇÇØ »ý¼ºµÇ´Â ´ë·®ÀÇ µ¥ÀÌÅÍ·Î ÀÎÇØ ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ °ü¸® ¹× ºÐ¼® ¼ÒÇÁÆ®¿þ¾îÀÇ Çõ½ÅÀûÀÎ ±â¼ú·Î ÀΰøÁö´É/¸Ó½Å·¯´×(ML)ÀÌ ¼ºÀåÇÏ¿© ½ÅÈï±¹ ÀüüÀÇ ±Þ¼ÓÇÑ µðÁöÅÐÈ­¿Í ÇÔ²² ¼¼°è ½ÃÀå ¼ö¿ä¸¦ °­È­Çϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î µÞ¹ÞħµÇ´Â Çö´ë ±â¾÷¿¡¼­ µ¥ÀÌÅÍÀÇ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÇöÀçÀÇ ºñÁî´Ï½º °üÇà¿¡ ´ëÇÑ ±íÀº Æò°¡°¡ ÀÌ·ç¾îÁö°í ¾ÕÀ¸·Îµµ ½ÃÀå ¼ºÀåÀ» Áö¼ÓÀûÀ¸·Î ÀÚ±ØÇÒ °ÍÀÔ´Ï´Ù.

ÀÌ º¸°í¼­¿¡¼­ ´Ù·ç´Â ÁÖ¿ä Áú¹®

  • 2024³â ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå ±Ô¸ð´Â?
  • 2025³âºÎÅÍ 2033³â±îÁö ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¿¹»ó ¼ºÀå·üÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀ» °ßÀÎÇÏ´Â ÁÖ¿ä ¿äÀÎÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå¿¡ ´ëÇÑ COVID-19ÀÇ ¿µÇâÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¼ÒÇÁÆ®¿þ¾î À¯Çüº° ³»¿ªÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ¹èÆ÷ À¯Çüº° ³»¿ªÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ »ê¾÷º° ³»¿ªÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ÃÖÁ¾ ¿ëµµº° ³»¿ªÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ÁÖ¿ä Áö¿ªÀº?
  • ¼¼°è ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷/±â¾÷Àº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»çÀÇ ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ºòµ¥ÀÌÅÍ ¼ÒÇÁÆ®¿þ¾î ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª : ¼ÒÇÁÆ®¿þ¾î À¯Çüº°

  • µ¥ÀÌÅͺ£À̽º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • µ¥ÀÌÅÍ ºÐ¼®¡¤µµ±¸
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • µ¥ÀÌÅÍ °ü¸®
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • µ¥ÀÌÅÍ ¾ÖÇø®ÄÉÀ̼Ç
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇÙ½É ±â¼ú
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦7Àå ½ÃÀå ³»¿ª : ¹èÆ÷ À¯Çüº°

  • ¿ÂÇÁ·¹¹Ì½º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Ŭ¶ó¿ìµå
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦8Àå ½ÃÀå ºÐ¼® : »ê¾÷º°

  • ¹ðÅ·
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • °³º° Á¦Á¶¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Àü¹® ¼­ºñ½º
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ÇÁ·Î¼¼½º Á¦Á¶
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ¿¬¹æÁ¤ºÎ/Áß¾ÓÁ¤ºÎ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • ±âŸ
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦9Àå ½ÃÀå ³»¿ª : ÃÖÁ¾ ¿ëµµº°

  • ´ë±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø
  • Áß¼Ò±â¾÷
    • ½ÃÀå µ¿Çâ
    • ½ÃÀå ¿¹Ãø

Á¦10Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • À¯·´
    • ¿µ±¹
    • µ¶ÀÏ
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ÇÁ¶û½º
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • º£Æ®³²
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ
    • Ä¥·¹
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ

Á¦11Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

  • °³¿ä
  • Àιٿîµå ¹°·ù
  • ¿ÀÆÛ·¹À̼Ç
  • ¾Æ¿ô¹Ù¿îµå ¹°·ù
  • ¸¶ÄÉÆÃ¡¤ ÆÇ¸Å
  • ¼­ºñ½º

Á¦13Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • °æÀïµµ
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • AWS
    • Cloudera
    • Hortonworks
    • IBM
    • Informatica
    • Microsoft
    • Oracle
    • Palantir
    • SAP
    • SAS
    • Splunk
KTH 25.03.07

The global big data software market size reached USD 208.7 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 456.0 Billion by 2033, exhibiting a growth rate (CAGR) of 8.13% during 2025-2033. The market is driven by increased data from IoT devices and advancements in AI/ML, digitalization in emerging markets and the crucial role of data in strategic enterprise decisions.

Big data software refers to a type of software that is used to collect, host, and analytically process the dynamic and disparate volume of data created by people, tools, or machines. It focuses on providing efficient analytics for extremely large datasets that assist the organization in gaining deep insight by converting the data into high-quality information, pertaining to the business situation. Furthermore, the software also helps in discovering hidden patterns, unknown correlation, market trends, consumer preferences, and other useful information from a wide variety of data sets.

Over the years, there has been a rise in the demand for big data software owing to the significant amount of data being generated by sensors from the Internet of Things (IoT). Moreover, the growth of artificial intelligence/machine learning (ML) as an innovative technology within data management and analytics software, coupled with the rapid digitalization across emerging nations, is bolstering the market demand globally. Furthermore, the increasing significance of data in modern enterprises backed by the rising investments in technology, resulting in deep assessments of current business practices will continue to stimulate the market growth in the upcoming times.

Key Market Segmentation:

Breakup by Software Type:

Database

Data Analytics and Tools

Data Management

Data Applications

Core Technologies

Breakup by Deployment Type:

On-Premise

Cloud

Breakup by Industry:

Banking

Discrete Manufacturing

Professional Services

Process Manufacturing

Federal/Central Government

Others

Breakup by End-Use:

Large Enterprises

SMEs

Breakup by Region:

North America

United States

Canada

Europe

United Kingdom

Germany

Italy

Spain

France

Russia

Others

Asia Pacific

China

Japan

India

South Korea

Australia

Vietnam

Others

Latin America

Brazil

Mexico

Argentina

Colombia

Chile

Others

Middle East and Africa

Saudi Arabia

United Arab Emirates

South Africa

Others

Competitive Landscape:

The competitive landscape of the industry has also been examined with some of the key players being AWS, Cloudera, Hortonworks, IBM, Informatica, Microsoft, Oracle, Palantir, SAP, SAS, and Splunk.

Key Questions Answered in This Report

  • 1. What was the size of the global big data software market in 2024?
  • 2. What is the expected growth rate of the global big data software market during 2025-2033?
  • 3. What are the key factors driving the global big data software market?
  • 4. What has been the impact of COVID-19 on the global big data software market?
  • 5. What is the breakup of the global big data software market based on the software type?
  • 6. What is the breakup of the global big data software market based on the deployment type?
  • 7. What is the breakup of the global big data software market based on the industry?
  • 8. What is the breakup of the global big data software market based on the end-use?
  • 9. What are the key regions in the global big data software market?
  • 10. Who are the key players/companies in the global big data software market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Big Data Software Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Software Type

  • 6.1 Database
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Data Analytics and Tools
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Data Management
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Data Applications
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Core Technologies
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast

7 Market Breakup by Deployment Type

  • 7.1 On-Premise
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Cloud
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Industry

  • 8.1 Banking
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Discrete Manufacturing
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Professional Services
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Process Manufacturing
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Federal/Central Government
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Others
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast

9 Market Breakup by End-Use

  • 9.1 Large Enterprises
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 SMEs
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Europe
    • 10.2.1 United Kingdom
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Germany
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 Italy
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 Spain
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 France
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Russia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Asia Pacific
    • 10.3.1 China
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 Japan
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 India
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Vietnam
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Australia
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 South Korea
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Argentina
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
    • 10.4.4 Colombia
      • 10.4.4.1 Market Trends
      • 10.4.4.2 Market Forecast
    • 10.4.5 Chile
      • 10.4.5.1 Market Trends
      • 10.4.5.2 Market Forecast
    • 10.4.6 Others
      • 10.4.6.1 Market Trends
      • 10.4.6.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Saudi Arabia
      • 10.5.1.1 Market Trends
      • 10.5.1.2 Market Forecast
    • 10.5.2 United Arab Emirates
      • 10.5.2.1 Market Trends
      • 10.5.2.2 Market Forecast
    • 10.5.3 South Africa
      • 10.5.3.1 Market Trends
      • 10.5.3.2 Market Forecast
    • 10.5.4 Others
      • 10.5.4.1 Market Trends
      • 10.5.4.2 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

  • 12.1 Overview
  • 12.2 Inbound Logistics
  • 12.3 Operations
  • 12.4 Outbound Logistics
  • 12.5 Marketing and Sales
  • 12.6 Service

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 AWS
    • 14.3.2 Cloudera
    • 14.3.3 Hortonworks
    • 14.3.4 IBM
    • 14.3.5 Informatica
    • 14.3.6 Microsoft
    • 14.3.7 Oracle
    • 14.3.8 Palantir
    • 14.3.9 SAP
    • 14.3.10 SAS
    • 14.3.11 Splunk
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦