½ÃÀ庸°í¼­
»óǰÄÚµå
1675309

¼¼°èÀÇ ATaaS(Agriculture Technology as a Service) ½ÃÀå : ¼­ºñ½º À¯Çüº°, ±â¼úº°, °¡°Ýº°, ¿ëµµº°, Áö¿ªº°(2025-2033³â)

Agriculture Technology as a Service Market Report by Service Type (Software-as-a-Service, Equipment-as-a-Service ), Technology, Pricing, Application, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 142 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ATaaS(Agriculture Technology as a Service) ½ÃÀå ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 23¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº ÀÌ ½ÃÀåÀÌ 2033³â±îÁö 91¾ï ´Þ·¯¿¡ ´ÞÇϰí, 2025³âºÎÅÍ 2033³â±îÁö 16.01%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)À» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøÇß½À´Ï´Ù. ÀÌ ½ÃÀåÀº Àα¸ Áõ°¡·Î ÀÎÇÑ ¼¼°è ½Ä·® ¼ö¿ä Áõ°¡, ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½É Áõ°¡·Î ÀÎÇÑ Áö¼Ó °¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡, ³óºÎµéÀÌ ³ó¹ý¿¡ ±â¼úÀ» ÅëÇÕÇÏ´Â °ÍÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ²ÙÁØÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.

ATaaS ½ÃÀå ºÐ¼® :

½ÃÀå ¼ºÀå°ú ±Ô¸ð: ¼¼°è ½ÃÀåÀº Á¤¹Ð ³ó¾÷°ú Áö¼Ó °¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¼¼°è Àα¸ Áõ°¡¿Í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ º¸´Ù È¿À²ÀûÀÌ°í »ý»ê¼ºÀÌ ³ôÀº ³ó¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁ® ½ÃÀåÀÌ Å©°Ô È®´ëµÉ Àü¸ÁÀÔ´Ï´Ù.

±â¼ú ¹ßÀü: IoT, AI, ¿ø°Ý °¨Áö ±â¼úÀÇ ¹ßÀüÀº ÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀÇ ÅëÇÕÀº ³ó¾÷ Ȱµ¿ÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú °ü¸®¸¦ ¿ëÀÌÇÏ°Ô ÇÏ¿© ÀÛ¹° ¼öÈ®·®°ú È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ³ó¾÷¿¡¼­ ºòµ¥ÀÌÅÍ¿Í ºÐ¼®ÀÇ Ã¤ÅÃÀº ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ ºÐ¼®À» ÅëÇØ ´õ ³ªÀº ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ÇÏ´Â µ¥¿¡µµ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

»ê¾÷¿ëµµ: ÀÌ ½ÃÀåÀº ³óÀÛ¹° ¸ð´ÏÅ͸µ, ³óÀå °ü¸®, ¼öÈ®·® ÃÖÀûÈ­¸¦ À§ÇÑ ¿¹Ãø ºÐ¼® µî ´Ù¾çÇÑ ³ó¾÷ ºÐ¾ß¿¡ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ´ë±Ô¸ð ³ó¾÷ °ü·Ã ±â¾÷ ¹× Áß¼Ò±Ô¸ð ³óÀå¿¡ ¼­ºñ½º¸¦ Á¦°øÇϰí, ±â¼ú °ÝÂ÷¸¦ ÇØ¼ÒÇÏ¿© ³ó¾÷ »ý»ê¼º Àü¹ÝÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå µ¿Çâ : ÀÌ ½ÃÀåÀÇ Å« È帧Àº ±â¼ú ¼Ö·ç¼ÇÀ» ±¸µ¶ ±â¹ÝÀ¸·Î Á¦°øÇÏ´Â ¼­ºñ½º ±â¹Ý ¸ðµ¨·ÎÀÇ ÀüȯÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ º¸´Ù ¸¹Àº ³óºÎµéÀÌ Ã·´Ü ±â¼úÀ» ½±°Ô ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ¶ÇÇÑ, Áö¼Ó °¡´ÉÇϰí Á¤¹ÐÇÑ ³ó¹ý¿¡ ´ëÇÑ °ü½ÉÀº ¼¼°è ȯ°æ ¹× ½Ä·® ¾Èº¸ ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Å« Ãß¼¼ÀÔ´Ï´Ù.

Áö¸®Àû µ¿Çâ : ºÏ¹Ì¿Í À¯·´ µî ÷´Ü ±â¼ú µµÀÔÀÌ È°¹ßÇϰí Á¤ºÎ Á¤Ã¥ÀÌ µÞ¹ÞħµÇ´Â Áö¿ª¿¡¼­´Â °­·ÂÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ±×·¯³ª ´ë±Ô¸ð ³ó¾÷ ºÎ¹®°ú ±â¼ú µµÀÔ Áõ°¡·Î ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ºÀåÇÏ´Â ½ÃÀåÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

°æÀï»óȲ: ÀÌ ½ÃÀåÀº ±âÁ¸ ±â¼ú±â¾÷°ú ½Å»ý º¥Ã³±â¾÷ÀÌ È¥ÀçµÇ¾î ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. °æÀïÀÇ ÇÙ½ÉÀº ±â¼ú Çõ½Å°ú ÆÄÆ®³Ê½ÊÀ̸ç, °¢ ±â¾÷Àº º¸´Ù È¿À²ÀûÀÌ°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇϱâ À§ÇØ ²÷ÀÓ¾øÀÌ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

°úÁ¦¿Í ±âȸ: °¡Àå Å« µµÀü Áß Çϳª´Â ÷´Ü ³ó¾÷ ±â¼úÀÇ ³ôÀº Ãʱ⠺ñ¿ë°ú º¹À⼺À¸·Î ÀÎÇØ ¼Ò±Ô¸ð ³ó°¡¿¡ À庮ÀÌ µÉ ¼ö ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ±×·¯³ª ¼­ºñ½º ±â¹Ý ¸ðµ¨°ú Á¤ºÎ º¸Á¶±ÝÀÌ ÀÌ·¯ÇÑ ±â¼ú¿¡ ´ëÇÑ Á¢±ÙÀ» ¹ÎÁÖÈ­ÇÏ´Â ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ´Â ±âȸÀ̱⵵ ÇÕ´Ï´Ù. ¶ÇÇÑ, ±â¼ú µµÀÔÀÌ ¸· ½ÃÀÛµÈ ½ÅÈï±¹ ½ÃÀå¿¡µµ Å« ÀáÀç·ÂÀÌ ÀÖ¾î ½ÃÀå È®´ëÀÇ Å« ±âȸ°¡ µÉ ¼ö ÀÖ½À´Ï´Ù.

ATaaS ½ÃÀå µ¿Çâ :

Á¤¹Ð³ó¾÷¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

¼¼°è ½ÃÀåÀº Á¤¹Ð ³ó¾÷ ±â¼úÀÇ Ã¤Åà Áõ°¡·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº µ¥ÀÌÅÍ ±â¹Ý ÅëÂû·Â°ú IoT, AI, ¿ø°Ý °¨Áö µîÀÇ Ã·´Ü ±â¼úÀ» Ȱ¿ëÇÏ¿© ³óÀÛ¹° ¼öÈ®·®°ú È¿À²¼ºÀ» Çâ»ó½ÃÄÑ ³óÀÛ¹° ¼öÈ®·®À» ÃÖÀûÈ­ÇÏ´Â µ¥ µµ¿òÀ» ÁÝ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±â¼úÀÇ ÅëÇÕÀº ³óÀå Ȱµ¿À» Á¤È®ÇÏ°Ô ¸ð´ÏÅ͸µÇÏ°í °ü¸®ÇÏ¿© ÀÚ¿ø ³¶ºñ¸¦ ÁÙÀ̰í Àü¹ÝÀûÀÎ »ý»ê¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ȯ°æ ¹®Á¦ Áõ°¡¿Í ±ÞÁõÇÏ´Â ¼¼°è Àα¸¿¡ ´ëÇÑ ½Ä·® °ø±ÞÀ̶ó´Â ½Ã±ÞÇÑ °úÁ¦ ¼Ó¿¡¼­ Áö¼Ó °¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ´Ù´Â Á¡¿¡¼­ ´õ¿í °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ³óºÎµé°ú ³ó¾÷ °ü·Ã ±â¾÷µéÀÌ º¸´Ù È¿À²ÀûÀ̰í È¿°úÀûÀÎ °æ¿µ °ü¸® ¹æ¹ýÀ» ¸ð»öÇÏ´Â °¡¿îµ¥, ½Ç½Ã°£À¸·Î ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÒ ¼ö ÀÖ´Â ±â¼ú ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù.

Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í Áö¿ø

½ÃÀåÀ» À̲ô´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿äÀÎÀº ³ó¾÷ ±â¼ú ÃßÁø¿¡ ÀÖ¾î ¼¼°è °¢±¹ Á¤ºÎÀÇ Àû±ØÀûÀÎ ¿ªÇÒÀÔ´Ï´Ù. °¢±¹ Á¤ºÎ´Â ÷´Ü ³ó¾÷ ±â¼ú äÅÃÀ» Àå·ÁÇÏ´Â Á¤Ã¥À» ½ÃÇàÇÏ°í º¸Á¶±ÝÀ» Áö±ÞÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿øÀº ³óºÎµéÀÌ ÀÌ·¯ÇÑ ±â¼ú¿¡ µû¸¥ ³ôÀº Ãʱ⠺ñ¿ëÀ» ±Øº¹ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. Á¤¹Ð ³ó¾÷ Àåºñ¿¡ ´ëÇÑ º¸Á¶±Ý, ³ó¾÷ ±â¼ú ¿¬±¸ ¹× °³¹ß ÀÚ±Ý Áö¿ø, ±â¼ú µµÀÔÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ³ó¹Î ±³À° ÇÁ·Î±×·¥ µîÀÌ ÀÌ·¯ÇÑ ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¤ºÎÀÇ °³ÀÔÀº ³ó¾÷ÀÇ Çö´ëÈ­¸¦ °¡´ÉÇÏ°Ô ÇÏ°í ½Ä·® ¾Èº¸¿Í Áö¼Ó°¡´É¼ºÀ» º¸ÀåÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ´õ ¸¹Àº ³óºÎµé°ú ³ó¾÷ °ü·Ã ±â¾÷µéÀÌ Ã·´Ü ±â¼ú ¼Ö·ç¼Ç¿¡ Á¢±ÙÇϰí ÅõÀÚÇÏ°Ô µÇ¾úÀ¸¸ç, ÀÌ·¯ÇÑ ³ë·ÂÀº ½ÃÀå È®´ë¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù.

ºòµ¥ÀÌÅÍ¿Í ºÐ¼®ÀÇ ÅëÇÕ

³ó¾÷ ºÐ¾ß¿¡¼­ ºòµ¥ÀÌÅÍ¿Í ºÐ¼®ÀÇ ÅëÇÕÀº ÀÌ ºÐ¾ß¿¡ Çõ¸íÀ» °¡Á®¿Ô°í, ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©Çϰí ÀÖ½À´Ï´Ù. ºòµ¥ÀÌÅÍÀÇ ÈûÀ» Ȱ¿ëÇÔÀ¸·Î½á ³óºÎµé°ú ³ó¾÷ °ü·Ã ±â¾÷µéÀº ´õ ¸¹Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ÀÛ¹° ¼öÈ®·® ¹× ¿î¿µ È¿À²¼º Çâ»óÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ºÐ¼®À» ÅëÇØ Åä¾çÀÇ °Ç°­ »óÅÂ¿Í ³¯¾¾ ÆÐÅÏ¿¡¼­ ÀÛ¹°ÀÇ °Ç°­ »óÅÂ¿Í ½ÃÀå µ¿Çâ¿¡ À̸£±â±îÁö ¹æ´ëÇÑ Á¤º¸¸¦ ºÐ¼®ÇÒ ¼ö ÀÖ¾î ³óÀÛ¾÷ÀÇ Á¤È®¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ÆÐÅÏÀ» ½Äº°ÇÏ°í °á°ú¸¦ ¿¹ÃøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇϸç, ³ó¾÷°ú °ü·ÃµÈ À§Çè°ú ºÒÈ®½Ç¼ºÀ» ÁÙ¿©ÁÝ´Ï´Ù. ¶ÇÇÑ, ³ó¾÷ ºÐ¾ß¿¡¼­´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ºÐ¼®Çϰí ÇØ¼®ÇÏ´Â ´É·ÂÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ´É·ÂÀ» Á¦°øÇÏ´Â ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤ÀÌ Çö´ë ³ó¾÷ÀÇ ÇÙ½É ¿ä¼Ò¶ó´Â ÀνÄÀÌ È®»êµÇ°í ÀÖÀ½À» ¹Ý¿µÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ATaaS ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : ¼­ºñ½º À¯Çüº°

  • SaaS
  • EaaS

Á¦7Àå ½ÃÀå ºÐ¼® : ±â¼úº°

  • °¡ÀÌ´ø½º ±â¼ú
  • µ¥ÀÌÅÍ ¾Ö³Î¸®Æ½½º ¹× ÀÎÅÚ¸®Àü½º
  • °¡º¯ ¿ä±Ý Àû¿ë ±â¼ú
  • ¼¾½Ì ±â¼ú
  • ±âŸ

Á¦8Àå ½ÃÀå ºÐ¼® : °¡°Ýº°

  • »ç¿ë·® ±â¹Ý ¿ä±ÝÁ¦
  • ±¸µ¶

Á¦9Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ¼öÈ®·® ¸ÅÇÎ ¹× ¸ð´ÏÅ͸µ
  • Åä¾ç °ü¸® ¹× °Ë»ç
  • ÀÛ¹° °Ç°­ ¸ð´ÏÅ͸µ
  • °ü°³
  • ±âŸ

Á¦10Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå ºÐ¼® : ±¹°¡º°

Á¦11Àå ¼ºÀå ÃËÁø¿äÀÎ ¹× ¾ïÁ¦¿äÀÎ, ±âȸ

  • °³¿ä
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ

Á¦12Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦13Àå PorterÀÇ Five Forces ºÐ¼®

  • °³¿ä
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀï Á¤µµ
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦14Àå °¡°Ý ºÐ¼®

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • AGCO Corporation
    • Agrivi Ltd.
    • CLAAS KGaA mbH
    • CropIn Technology Solutions Pvt. Ltd.
    • Deere & Company
    • Hexagon AB
    • Naio Technologies
    • Raven Industries Inc.(CNH Industrial N.V.)
    • SZ DJI Technology Co. Ltd.(iFlight Technology Company Limited)
    • Topcon Corporation
    • Trimble Inc.
LSH 25.04.02

The global agriculture technology as a service market size reached USD 2.3 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 9.1 Billion by 2033, exhibiting a growth rate (CAGR) of 16.01% during 2025-2033. The market is experiencing steady growth driven by the increasing global demand for food due to population growth, the rising need for sustainable farming practices amidst rising environmental concerns, and the growing awareness among farmers of the benefits of integrating technology into their farming practices.

Agriculture Technology as a Service Market Analysis:

Market Growth and Size: The global market is experiencing rapid growth, fueled by the rising demand for precision agriculture and sustainable farming practices. With a growing global population and heightened environmental concerns, the market is poised for significant expansion, driven by the need for more efficient and productive agricultural methods.

Technological Advancements: Advances in IoT, AI, and remote sensing are key drivers in this market. The integration of these technologies facilitates real-time monitoring and management of agricultural activities, enhancing crop yields and efficiency. The adoption of big data and analytics in agriculture is also pivotal, enabling better decision-making through the analysis of diverse data sets.

Industry Applications: This market finds applications across various agricultural sectors, including crop monitoring, farm management, and predictive analytics for yield optimization. The technology serves large-scale agribusinesses and small and medium-sized farms, helping to bridge technological gaps and improve overall agricultural productivity.

Key Market Trends: A significant trend in this market is the shift towards service-based models, offering technology solutions on a subscription basis. This approach makes advanced technologies more accessible to a wider range of farmers. Additionally, the focus on sustainable and precision farming practices is a major trend, aligning with global environmental and food security goals.

Geographical Trends: The market shows strong growth in regions such as North America and Europe, where there is high adoption of advanced technologies and supportive government policies. However, Asia-Pacific is emerging as a fast-growing market, due to its large agricultural sector and increasing technological adoption.

Competitive Landscape: The market is characterized by a mix of established technology companies and emerging startups. Competition is centered around innovation and partnerships, with companies constantly striving to offer more efficient and cost-effective solutions.

Challenges and Opportunities: One major challenge is the high initial cost and complexity of advanced agricultural technologies, which can be a barrier for small-scale farmers. However, this challenge presents an opportunity for service-based models and government subsidies to play a role in democratizing access to these technologies. There is also significant potential in developing regions, where technology adoption is just beginning to take off, offering vast opportunities for market expansion.

Agriculture Technology as a Service Market Trends:

Rising demand for precision agriculture

The global market is experiencing significant growth, primarily driven by the increasing adoption of precision agriculture techniques. This approach utilizes data-driven insights and advanced technologies such as IoT, AI, and remote sensing to optimize farm operations, leading to increased crop yields and efficiency. Additionally, the integration of these technologies helps in precise monitoring and management of farm activities, reducing resource wastage and enhancing overall productivity. This trend is further fueled by the growing need for sustainable farming practices amidst rising environmental concerns and the pressing challenge of feeding a rapidly growing global population. As farmers and agribusinesses seek more efficient and effective ways to manage their operations, the demand for technology solutions that can provide real-time, actionable insights is rising, thereby propelling the market.

Government initiatives and support

Another key factor driving the market is the proactive role of governments worldwide in promoting agricultural technology. Various governments are implementing policies and providing subsidies to encourage the adoption of advanced agricultural technologies. This support is essential in helping farmers overcome the high initial costs associated with these technologies. Initiatives such as grants for precision farming equipment, funding for research and development in agricultural technologies, and education programs for farmers on the benefits of technology adoption are instrumental in this growth. Such government interventions are enabling the modernization of agriculture and ensuring food security and sustainability. Consequently, these efforts are substantially contributing to the expansion of the market, as more farmers and agribusinesses gain access to and invest in advanced technological solutions.

Integration of Big Data and analytics

The integration of big data and analytics in agriculture is revolutionizing the sector and significantly contributing to the growth of the market. By harnessing the power of big data, farmers and agribusinesses can make more informed decisions, leading to improved crop yields and operational efficiencies. In addition, data analytics enables the analysis of a vast array of information, from soil health and weather patterns to crop health and market trends, allowing for precision in farming practices. This technology is pivotal in identifying patterns and predicting outcomes, thus reducing risks and uncertainties associated with farming. Moreover, the ability to analyze and interpret large volumes of data is becoming increasingly important in the agricultural sector, driving the demand for solutions that offer these capabilities. This trend reflects the growing recognition of data-driven decision-making as a critical component in modern agriculture.

Agriculture Technology as a Service Industry Segmentation:

Breakup by Service Type:

  • Software-as-a-Service (SaaS)
  • Equipment-as-a-Service (EaaS)

Software-as-a-Service (SaaS) accounts for the majority of the market share

Breakup by Technology:

  • Guidance Technology
  • Data Analytics and Intelligence
  • Variable Rate Application Technology
  • Sensing Technology
  • Others

Data analytics and intelligence holds the largest share in the industry

Breakup by Pricing:

  • Pay-Per-Use
  • Subscription

Pay-per-use represents the leading market segment

Breakup by Application:

  • Yield Mapping and Monitoring
  • Soil Management and Testing
  • Crop Health Monitoring
  • Irrigation
  • Others

Yield mapping and monitoring exhibits a clear dominance in the market

Breakup by Region:

  • North America
  • United States
  • Canada
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Asia Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

North America leads the market, accounting for the largest agriculture technology as a service market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • AGCO Corporation
  • Agrivi Ltd.
  • CLAAS KGaA mbH
  • CropIn Technology Solutions Pvt. Ltd.
  • Deere & Company
  • Hexagon AB
  • Naio Technologies
  • Raven Industries Inc. (CNH Industrial N.V.)
  • SZ DJI Technology Co. Ltd. (iFlight Technology Company Limited)
  • Topcon Corporation
  • Trimble Inc.

Key Questions Answered in This Report:

  • How has the global agriculture technology as a service market performed so far, and how will it perform in the coming years?
  • What are the drivers, restraints, and opportunities in the global agriculture technology as a service market?
  • What is the impact of each driver, restraint, and opportunity on the global agriculture technology as a service market?
  • What are the key regional markets?
  • Which countries represent the most attractive agriculture technology as a service market?
  • What is the breakup of the market based on the service type?
  • Which is the most attractive service type in the agriculture technology as a service market?
  • What is the breakup of the market based on the technology?
  • Which is the most attractive technology in the agriculture technology as a service market?
  • What is the breakup of the market based on the pricing?
  • Which is the most attractive pricing in the agriculture technology as a service market?
  • What is the breakup of the market based on the application?
  • Which is the most attractive application in the agriculture technology as a service market?
  • What is the competitive structure of the market?
  • Who are the key players/companies in the global agriculture technology as a service market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Agriculture Technology as a Service Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Service Type

  • 6.1 Software-as-a-Service (SaaS)
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Equipment-as-a Service (EaaS)
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by Technology

  • 7.1 Guidance Technology
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Data Analytics and Intelligence
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Variable Rate Application Technology
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Sensing Technology
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Others
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast

8 Market Breakup by Pricing

  • 8.1 Pay-Per-Use
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Subscription
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast

9 Market Breakup by Application

  • 9.1 Yield Mapping and Monitoring
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Soil Management and Testing
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Crop Health Monitoring
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Irrigation
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Others
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Asia-Pacific
    • 10.2.1 China
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Japan
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 India
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 South Korea
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 Australia
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Indonesia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Europe
    • 10.3.1 Germany
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 France
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 United Kingdom
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Italy
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Spain
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 Russia
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Others
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Market Trends
    • 10.5.2 Market Breakup by Country
    • 10.5.3 Market Forecast

11 Drivers, Restraints, and Opportunities

  • 11.1 Overview
  • 11.2 Drivers
  • 11.3 Restraints
  • 11.4 Opportunities

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 AGCO Corporation
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 Agrivi Ltd.
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
    • 15.3.3 CLAAS KGaA mbH
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
    • 15.3.4 CropIn Technology Solutions Pvt. Ltd.
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
    • 15.3.5 Deere & Company
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
      • 15.3.5.4 SWOT Analysis
    • 15.3.6 Hexagon AB
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
      • 15.3.6.3 Financials
      • 15.3.6.4 SWOT Analysis
    • 15.3.7 Naio Technologies
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
    • 15.3.8 Raven Industries Inc. (CNH Industrial N.V.)
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
    • 15.3.9 SZ DJI Technology Co. Ltd. (iFlight Technology Company Limited)
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio
    • 15.3.10 Topcon Corporation
      • 15.3.10.1 Company Overview
      • 15.3.10.2 Product Portfolio
      • 15.3.10.3 Financials
      • 15.3.10.4 SWOT Analysis
    • 15.3.11 Trimble Inc.
      • 15.3.11.1 Company Overview
      • 15.3.11.2 Product Portfolio
      • 15.3.11.3 Financials
      • 15.3.11.4 SWOT Analysis

Kindly note that this only represents a partial list of companies, and the complete list has been provided in the report.

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦