시장보고서
상품코드
1701844

헬스케어 분야 3D 프린팅 시장 보고서 : 재료별, 기술별, 용도별, 최종사용자별, 지역별(2025-2033년)

3D Printing in Healthcare Market Report by Material,Technology (Droplet Deposition, Photopolymerization, Laser Beam Melting, Electronic Beam Melting, Laminated Object Manufacturing, and Others), Application, End User, and Region 2025-2033

발행일: | 리서치사: IMARC | 페이지 정보: 영문 149 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

헬스케어 분야 3D 프린팅 시장 세계 시장 규모는 2024년 34억 달러에 달했습니다. 향후 IMARC Group은 2033년까지 시장 규모가 111억 달러에 달할 것으로 예상하며, 2025-2033년 연평균 성장률(CAGR)은 12.5%에 달할 것으로 전망하고 있습니다. 이미징 기술과의 통합이 진행되고 있는 점, 3D 프린팅 기업과 의료기관의 협력 관계가 증가하고 있는 점, 장기 및 조직 프린팅의 가능성이 높아지고 있는 점, 데스크톱 3D 프린터가 쉽게 구할 수 있게 된 점 등이 시장을 주도하는 요인 중 하나입니다. 시장 성장요인 중 하나입니다.

헬스케어 분야에서 3차원(3D) 프린팅은 다양한 용도를 가진 혁신적인 기술로 부상하고 있습니다. 이 최첨단 기술은 수술용 절삭 공구, 드릴 가이드, 보철물 개발을 가능하게함으로써 이 분야에 혁명을 일으키고 있습니다. 또한, 뼈, 장기, 혈관의 환자별 복제본을 만들 수 있어 정확한 수술 계획과 훈련이 용이해집니다. 또한, 3D 프린팅은 재생의료와 조직공학에도 도움이 되고 있으며, 살아있는 인간 세포와 조직을 만들 수 있습니다. 이 획기적인 기술은 맞춤형 보철물부터 환자 맞춤형 약물 처방 및 기기 맞춤화까지 맞춤형 의료 솔루션의 길을 열어줄 수 있습니다. 주요 장점 중 하나는 복잡한 수술 시 수술 위험을 줄이고, 감염 가능성을 최소화하며, 마취에 노출되는 시간을 제한할 수 있다는 점입니다. 이는 환자의 안전성을 높일 뿐만 아니라 회복 속도를 높입니다. 또한, 3D 프린팅은 시간과 비용을 절약하고, 의료 프로세스를 간소화하며, 보다 효율적인 의료 서비스 제공을 보장합니다. 그 결과, 이 기술은 전 세계 헬스케어 업계에서 놀라운 지지를 얻고 있으며, 혁신과 개인화된 치료에 전례 없는 가능성을 제공하고 있습니다. 우리가 알고 있는 의료를 변화시킬 수 있는 잠재력은 의료 기술의 발전이 계속되고 있다는 증거입니다.

세계 시장은 3D 프린팅 기술 발전의 증가에 의해 크게 견인되고 있습니다. 이에 따라 의료기기 및 임플란트 커스터마이징, 의료 연구를 위한 래피드 프로토타이핑이 시장에 크게 기여하고 있습니다. 또한, 복잡한 해부학 모델을 비용 효율적으로 제조할 수 있다는 점도 시장에 긍정적인 영향을 미치고 있습니다. 이와는 별도로, 환자별 수술 가이드에 대한 수요 증가와 만성질환의 유병률 증가로 인해 시장이 활성화되고 있습니다. 또한, 노인 인구의 증가와 의약품 개발 및 시험의 가속화가 시장을 촉진하고 있습니다. 또한, 수술 계획 및 교육 강화가 시장을 강화하고 있습니다. 인공 보조기 및 정형외과 용도의 증가, 생체적합성 재료의 생산량 증가는 시장을 활성화하고 있습니다. 또한, 의료용 3D 프린팅에 대한 규제 당국의 지원과 의료 전문가의 인식이 높아짐에 따라 시장이 성장하고 있습니다.

헬스케어 분야 3D 프린팅 시장 동향/촉진요인:

재생의료, 줄기세포 솔루션, 암 치료에 대한 니즈 증대

재생의료, 줄기세포 솔루션, 암 치료제에 대한 수요 증가로 시장이 강화되고 있습니다. 재생의료는 3D 프린팅이 강점을 가진 정밀한 조직 공학 및 장기 복제에 의존하고 있습니다. 생체적합성 재료로 환자 맞춤형 구조물을 만드는 능력은 재생 의학의 목표와 완벽하게 일치하며, 조직 대체 및 재생이 필요한 사람들에게 희망을 줍니다. 또한, 맞춤형 치료 접근법에 자주 사용되는 줄기세포 솔루션은 세포의 성장과 분화를 지원하는 맞춤형 스캐폴딩 및 구조물을 제작할 때 3D 프린팅의 정확성을 활용할 수 있습니다. 또한, 암 치료제 개발은 종양 환경을 모방하기 위해 3D 프린터로 모델을 제작하는 경우가 증가하고 있습니다. 이러한 모델은 약물 시험을 돕고, 궁극적으로 보다 효과적이고 맞춤화된 암 치료로 이어질 수 있습니다.

연구개발(R&D) 활동에 대한 투자 증가

연구개발(R&D) 투자 증가는 시장 전망을 밝게 합니다. R&D에 대한 투자는 종종 업계에 혁명을 일으킬 수 있는 첨단 기술 및 혁신의 개발로 이어집니다. R&D 투자를 통해 기업은 신제품과 개선된 제품을 만들어 경쟁력을 유지하고 진화하는 고객 수요를 충족시킬 수 있습니다. 연구 노력은 보다 효율적인 생산 공정으로 이어져 비용과 자원 소비를 줄일 수 있습니다. 또한 기업이 새로운 시장을 개발하고, 제품을 확장하고, 더 넓은 고객층에게 다가갈 수 있도록 도와줍니다. 또한, 환경 친화적인 기술과 방법을 개발하여 환경 문제를 해결할 수 있습니다. R&D 자금은 의료 분야의 의학적 발견을 촉진하고 새로운 치료법, 의약품 및 치료법을 창출합니다. 탄탄한 R&D 생태계는 고용을 창출하고, 혁신을 촉진하며, 투자를 유치함으로써 경제 성장을 촉진할 수 있습니다.

확대되는 의약품 용도

3D 프린팅의 제약 응용 분야가 확대됨에 따라 헬스케어 시장이 크게 성장하고 있습니다. 3D 프린팅은 의약품의 정확한 맞춤화를 가능하게함으로써 의약품 개발 및 전달에 혁명을 일으키고 있으며, 3D 프린팅을 통해 개별 환자의 요구에 맞게 의약품을 조정할 수 있기 때문에 보다 효과적인 치료를 가능하게 하고 환자 결과를 개선할 수 있습니다. 또한, 3D 프린팅은 복잡한 약물전달 시스템을 쉽게 만들 수 있어 약물 방출을 제어하고 약효를 개선할 수 있습니다. 새로운 약물 제제를 신속하게 시제품을 제작할 수 있는 이 기술은 약물 개발을 가속화하고 시간과 비용을 절감할 수 있습니다. 또한, 3D 프린팅을 통해 소아용 의약품 및 희귀 질환을 위한 특수 의약품의 제조가 더욱 실현 가능하고 비용 효율적일 수 있습니다. 규제 기관이 이러한 기술 혁신에 대응함에 따라 헬스케어 산업은 의약품 생산과 환자 치료의 근본적인 변화를 목격하고 있으며, 이는 시장 성장을 촉진하고 보다 개인화되고 효율적인 헬스케어 솔루션의 미래를 약속하고 있습니다.

목차

제1장 서문

제2장 조사 범위와 조사 방법

  • 조사 목적
  • 이해관계자
  • 데이터 소스
    • 1차 정보
    • 2차 정보
  • 시장 추정
    • 상향식 접근
    • 하향식 접근
  • 조사 방법

제3장 주요 요약

제4장 소개

  • 개요
  • 주요 업계 동향

제5장 세계의 헬스케어 분야 3D 프린팅 시장

  • 시장 개요
  • 시장 실적
  • COVID-19의 영향
  • 시장 예측

제6장 시장 내역 : 재료별

  • 폴리머
  • 금속
  • 세라믹
  • 유기농

제7장 시장 내역 : 기술별

  • 액적 증착
    • 주요 부문
      • 용융 필라멘트 소성(FFF) 기술
      • 저온 증착 제조(LDM)
      • 다면 제트 고형화(MJS)
  • 광중합
    • 주요 부문
      • 스테레오리소그래피(SLA)
      • 상용 액체계면생산(CLIP)
      • 이광자 중합(2 PP)
  • 레이저 빔 용융
    • 주요 부문
      • 선택적 레이저 소결(SLS)
      • 선택적 레이저 용융(SLM)
      • 직접 금속 레이저 소결(DMLS)
  • 전자빔 용해(EBM)
  • 적층물 제조
  • 기타

제8장 시장 내역 : 용도별

  • 외장 웨어러블 디바이스
    • 주요 부문
      • 보청기
      • 의지 보조기
      • 치과 제품
  • 임상시험 디바이스
    • 주요 부문
      • 약물 검사
      • 해부 모델
  • 임플란트
    • 주요 부문
      • 외과 가이드
      • 두개악안면 임플란트
      • 정형외과 임플란트
  • 조직공학

제9장 시장 내역 : 최종사용자별

  • 의료 및 외과 센터
  • 제약 및 바이오테크놀러지 기업
  • 학술기관

제10장 시장 내역 : 지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 한국
    • 호주
    • 인도네시아
    • 기타
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 스페인
    • 러시아
    • 기타
  • 라틴아메리카
    • 브라질
    • 멕시코
    • 기타
  • 중동 및 아프리카
    • 시장 내역 : 국가별

제11장 SWOT 분석

  • 개요
  • 강점
  • 약점
  • 기회
  • 위협

제12장 밸류체인 분석

제13장 Porter's Five Forces 분석

  • 개요
  • 구매자의 교섭력
  • 공급 기업의 교섭력
  • 경쟁 정도
  • 신규 참여업체의 위협
  • 대체품의 위협

제14장 가격 분석

제15장 경쟁 구도

  • 시장 구조
  • 주요 기업
  • 주요 기업 개요
    • 3D Systems Inc.
    • Desktop Metal Inc.
    • EOS GmbH
    • Formlabs
    • Materialise NV
    • Organovo Holding Inc.
    • Oxford Performance Materials Inc.
    • Prodways Tech
    • Proto Labs Inc.
    • Renishaw plc
    • SLM Solutions Group AG
    • Stratasys Ltd.
ksm 25.04.22

The global 3D printing in healthcare market size reached USD 3.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 11.1 Billion by 2033, exhibiting a growth rate (CAGR) of 12.5% during 2025-2033. The increasing integration with imaging technologies, the rising collaborations between 3D printing companies and healthcare institutions, the growing potential for organ and tissue printing, and the easy accessibility of desktop 3D printers are some of the factors propelling the market.

In healthcare, three-dimensional (3D) printing has emerged as a transformative technology with diverse applications. This cutting-edge technology is revolutionizing the field by enabling the development of surgical cutting tools, drill guides, and prosthetics. Additionally, it can craft patient-specific replicas of bones, organs, and blood vessels, facilitating precise surgical planning and training. Moreover, 3D printing is instrumental in regenerative medicine and tissue engineering, where it can create living human cells and tissues. This breakthrough paves the way for customized medical solutions, from tailored prosthetics to patient-specific drug formulations and equipment adaptations. One of its key advantages lies in reducing operative risks during intricate procedures, minimizing the likelihood of infections, and limiting the duration of anesthesia exposure. This not only enhances patient safety but also expedites recovery. Furthermore, 3D printing contributes to time and cost savings, streamlining the healthcare process and ensuring more efficient delivery of medical services. As a result, this technology is gaining remarkable traction across the global healthcare industry, offering unprecedented possibilities for innovation and personalized care. Its potential to transform healthcare as we know it is a testament to the ongoing advancements in medical technology.

The global market is majorly driven by the increasing advancements in 3D printing technology. In line with this, the customization of medical devices and implants and the rapid prototyping for medical research are significantly contributing to the market. Furthermore, the cost-effective production of complex anatomical models is positively influencing the market. Apart from this, the rising demand for patient-specific surgical guides and the growing prevalence of chronic diseases are catalyzing the market. Moreover, the escalating elderly population and the accelerating drug development and testing are propelling the market. Besides, enhanced surgical planning and training are strengthening the market. The increasing prosthetics and orthopedic applications and the rising production of biocompatible materials are fueling the market. Additionally, the regulatory support for medical 3D printing and the growing awareness among healthcare professionals are providing a boost to the market.

3D Printing in Healthcare Market Trends/Drivers:

Increasing need for regenerative medicines, stem cell solutions, and cancer therapeutics

The increasing need for regenerative medicines, stem cell solutions, and cancer therapeutics is bolstering the market. Regenerative medicine relies on precise tissue engineering and organ replication, where 3D printing excels. The ability to create patient-specific constructs with biocompatible materials aligns perfectly with regenerative medicine's goals, offering hope for those in need of tissue replacement or regeneration. Furthermore, stem cell solutions, often used for personalized treatment approaches, benefit from 3D printing's precision in creating custom scaffolds and structures that support cell growth and differentiation. Moreover, the development of cancer therapeutics increasingly involves 3D-printed models to mimic tumor environments. These models aid drug testing, ultimately leading to more effective and tailored cancer treatments.

Rising investments in research and development (R&D) activities

Rising research and development (R&D) investments create a positive market outlook. Investment in R&D often results in the development of cutting-edge technologies and innovations that can revolutionize industries. It allows companies to create new and improved products, stay competitive, and meet evolving customer demands. Research efforts can lead to more efficient production processes, reducing costs and resource consumption. It can help companies explore new markets, expand their product offerings, and reach a broader customer base. It can also lead to the development of eco-friendly technologies and practices, addressing environmental concerns. R&D funding drives medical discoveries in healthcare, leading to new treatments, drugs, and therapies. A robust R&D ecosystem can stimulate economic growth by creating jobs, fostering innovation, and attracting investment.

Expanding pharmaceutical applications

The expanding pharmaceutical applications of 3D printing are propelling significant growth in the healthcare market. This transformative factor is revolutionizing drug development and delivery by allowing for the precise customization of pharmaceuticals. With 3D printing, medications can be tailored to meet individual patient needs, resulting in more effective treatments and enhanced patient outcomes. Moreover, 3D printing facilitates the creation of complex drug delivery systems, enabling controlled release and improved drug efficacy. The technology's ability to rapidly prototype new drug formulations accelerates drug development, reducing time and costs. Additionally, the production of pediatric medications and specialized drugs for rare diseases is made more feasible and cost-effective through 3D printing. As regulatory bodies adapt to accommodate these innovations, the healthcare industry is witnessing a fundamental shift in pharmaceutical production and patient care, driving substantial market growth and promising a future of more personalized and efficient healthcare solutions.

3D Printing in Healthcare Industry Segmentation:

Breakup by Material:

  • Polymer
  • Metals
  • Ceramic
  • Organic

Polymer dominates the market

Polymer-based 3D printing is instrumental in creating various medical devices, prosthetics, and customized implants. Biocompatible polymers like PLA and PEEK are widely used in creating patient-specific anatomical models and dental applications. Moreover, they are suitable materials for cost-effective prosthetic limbs and orthopedic implants, enhancing patient mobility and comfort.

On the other hand, metal 3D printing is revolutionizing the production of intricate and durable medical components. Titanium and stainless steel alloys are commonly employed in manufacturing orthopedic implants, cranial implants, and dental prosthetics. These metals offer exceptional strength and biocompatibility, ensuring the longevity and reliability of implanted devices. Additionally, metal 3D printing's precision allows for intricate lattice structures that promote osseointegration, enabling faster healing and improved patient outcomes.

Breakup by Technology:

  • Droplet Deposition
  • Fused Filament Fabrication (FFF) Technology
  • Low-temperature Deposition Manufacturing (LDM)
  • Multiphase Jet Solidification (MJS)
  • Photopolymerization
  • Stereolithography (SLA)
  • Continuous Liquid Interface Production (CLIP)
  • Two-photon Polymerization (2PP)
  • Laser Beam Melting
  • Selective Laser Sintering (SLS)
  • Selective Laser Melting (SLM)
  • Direct Metal Laser Sintering (DMLS)
  • Electronic Beam Melting (EBM)
  • Laminated Object Manufacturing
  • Others

Droplet deposition dominates the market

Droplet Deposition technology, also known as Fused Deposition Modeling (FDM), is cost-effective and widely used for producing patient-specific anatomical models, custom prosthetics, and orthopedic implants. It offers versatility and accessibility, making it suitable for various healthcare applications, including educational purposes.

On the other hand, utilizing photoreactive polymers, photopolymerization, exemplified by stereolithography (SLA) and Digital Light Processing (DLP), excels in creating highly detailed and intricate medical models and dental devices. It enables the production of accurate prototypes, dental crowns, and surgical guides, supporting precise and personalized healthcare solutions.

Moreover, laser-based technologies like Selective Laser Sintering (SLS) and Direct Metal Laser Sintering (DMLS) are vital for manufacturing complex metal components such as orthopedic implants, prosthetics, and dental restorations. The exceptional accuracy and material strength provided by laser beam melting is essential for critical medical applications, ensuring durability and biocompatibility.

Breakup by Application:

  • External Wearable Devices
  • Hearing Aids
  • Prosthesis and Orthotics
  • Dental Products
  • Clinical Study Devices
  • Drug Testing
  • Anatomical Models
  • Implants
  • Surgical Guides
  • Cranio-maxillofacial Implants
  • Orthopedic Implants
  • Tissue Engineering

External Wearable Devices dominates the market

3D printing technology facilitates the production of custom-fit external wearable devices such as prosthetic limbs, orthopedic braces, and hearing aids. These personalized devices enhance patient comfort, mobility, and quality of life, driving growth in this segment.

On the contrary, 3D printing creates patient-specific models, surgical guides, and anatomical replicas in medical research and clinical trials. These devices are instrumental in enhancing surgical training, medical education, and preoperative planning, thus contributing to the growth of this segment.

Moreover, the production of implants, including orthopedic, dental, and cranial implants, is a critical application of 3D printing in healthcare. These patient-specific implants offer improved functionality, durability, and biocompatibility, driving significant growth in the market.

Breakup by End User:

  • Medical and Surgical Centers
  • Pharmaceutical and Biotechnology Companies
  • Academic Institutions

Medical and surgical centers dominates the market

Medical and surgical centers include hospitals, clinics, and specialized healthcare facilities. These institutions widely utilize 3D printing for applications such as patient-specific anatomical models, surgical guides, custom prosthetics, and orthopedic implants. The technology empowers healthcare providers with tools for precise diagnosis, treatment planning, and patient-specific interventions, enhancing overall patient care and surgical outcomes. The growing adoption of 3D printing in medical and surgical centers drives market growth by improving healthcare delivery.

Furthermore, the pharmaceutical and biotechnology sector leverages 3D printing for drug development, personalized medicine, and drug delivery systems. 3D-printed pills, tablets, and drug-loaded implants enable precise dosing, improved drug release profiles, and customized therapies. This segment fosters market growth by advancing drug development processes and enhancing the efficacy and safety of pharmaceutical products.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

North America exhibits a clear dominance, accounting for the largest market share

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.

North America, encompassing the United States and Canada, is a significant driver of growth in 3D printing in healthcare market due to several key factors. It is a hub for technological advancements and innovation, fostering the development and adoption of 3D printing in healthcare applications. The region boasts advanced healthcare facilities and research institutions that actively utilize 3D printing for patient-specific models, surgical planning, and medical device production. Regulatory bodies in North America have been receptive to 3D printing technologies in healthcare, expediting approvals for medical devices and implants.

Ongoing investment in research and development activities fuels continuous innovation and growth in 3D printing applications, benefiting both the medical and pharmaceutical sectors. The region is home to leading 3D printing companies and healthcare providers that drive market growth through collaborations and investments in cutting-edge technologies. Furthermore, patients increasingly seek personalized healthcare solutions, escalating the adoption of 3D printing for customized implants, prosthetics, and medical models.

Competitive Landscape:

Top companies are strengthening the market growth through their innovative approaches and unwavering commitment to advancing medical technology. These industry leaders are contributing to growth in several key ways. They are at the forefront of research and development, investing heavily in cutting-edge technologies that enhance the capabilities of 3D printing in healthcare. These innovations expand the scope of applications, from patient-specific implants to drug delivery systems. Top companies actively collaborate with healthcare institutions and research organizations to drive progress. These collaborations result in groundbreaking solutions and foster a deeper understanding of 3D printing's potential in medicine. They work closely with regulatory authorities to ensure compliance with evolving healthcare standards, facilitating the adoption of 3D-printed medical devices and pharmaceuticals. These companies invest in educational initiatives to train healthcare professionals to use 3D printing technology effectively. They contribute to global awareness, demonstrating the transformative impact of 3D printing in healthcare through case studies and success stories. Their dedication to pushing the boundaries of what's possible in the medical field ensures the continued growth and evolution of 3D printing in healthcare market.

The report has provided a comprehensive analysis of the competitive landscape of 3D printing in healthcare market. Detailed profiles of all major companies have also been provided.

  • 3D Systems Inc.
  • Desktop Metal Inc.
  • EOS GmbH
  • Formlabs
  • Materialise NV
  • Organovo Holding Inc.
  • Oxford Performance Materials Inc.
  • Prodways Tech
  • Proto Labs Inc.
  • Renishaw plc
  • SLM Solutions Group AG
  • Stratasys Ltd

Key Questions Answered in This Report

  • 1.What was the size of the global 3D printing in healthcare market in 2024?
  • 2.What is the expected growth rate of the global 3D printing in healthcare market during 2025-2033?
  • 3.What are the key factors driving the global 3D printing in healthcare market?
  • 4.What has been the impact of COVID-19 on the global 3D printing in healthcare market?
  • 5.What is the breakup of the global 3D printing in healthcare market based on the material?
  • 6.What is the breakup of the global 3D printing in healthcare market based on the technology?
  • 7.What is the breakup of the global 3D printing in healthcare market based on the application?
  • 8. What is the breakup of the global 3D printing in healthcare market based on the end user?
  • 9.What are the key regions in the global 3D printing in healthcare market?
  • 10.Who are the key players/companies in the global 3D printing in healthcare market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global 3D Printing in Healthcare Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Material

  • 6.1 Polymer
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Metals
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Ceramic
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Organic
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast

7 Market Breakup by Technology

  • 7.1 Droplet Deposition
    • 7.1.1 Market Trends
    • 7.1.2 Key Segments
      • 7.1.2.1 Fused Filament Febrication (FFF) Technology
      • 7.1.2.2 Low-temperature Deposition Manufacturing (LDM)
      • 7.1.2.3 Multiface Jet Solidification (MJS)
    • 7.1.3 Market Forecast
  • 7.2 Photopolymerization
    • 7.2.1 Market Trends
    • 7.2.2 Key Segments
      • 7.2.2.1 Stereolithography (SLA)
      • 7.2.2.2 Continuous Liquid Interface Production (CLIP)
      • 7.2.2.3 Two-photon Polymerization (2PP)
    • 7.2.3 Market Forecast
  • 7.3 Laser Beam Melting
    • 7.3.1 Market Trends
    • 7.3.2 Key Segments
      • 7.3.2.1 Selective Laser Sintering (SLS)
      • 7.3.2.2 Selective Laser Melting (SLM)
      • 7.3.2.3 Direct Metal Laser Sintering (DMLS)
    • 7.3.3 Market Forecast
  • 7.4 Electronic Beam Melting (EBM)
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Laminated Object Manufacturing
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Others
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast

8 Market Breakup by Application

  • 8.1 External Wearable Devices
    • 8.1.1 Market Trends
    • 8.1.2 Key Segments
      • 8.1.2.1 Hearing Aids
      • 8.1.2.2 Prosthesis and Orthotics
      • 8.1.2.3 Dental Products
    • 8.1.3 Market Forecast
  • 8.2 Clinical Study Devices
    • 8.2.1 Market Trends
    • 8.2.2 Key Segments
      • 8.2.2.1 Drug Testing
      • 8.2.2.2 Anatomical Models
    • 8.2.3 Market Forecast
  • 8.3 Implants
    • 8.3.1 Market Trends
    • 8.3.2 Key Segments
      • 8.3.2.1 Surgical Guides
      • 8.3.2.2 Cranio-maxillofacial Implants
      • 8.3.2.3 Orthopedic Implants
    • 8.3.3 Market Forecast
  • 8.4 Tissue Engineering
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by End User

  • 9.1 Medical and Surgical Centers
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Pharmaceutical and Biotechnology Companies
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Academic Institutions
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast

10 Market Breakup by Region

  • 10.1 North America
    • 10.1.1 United States
      • 10.1.1.1 Market Trends
      • 10.1.1.2 Market Forecast
    • 10.1.2 Canada
      • 10.1.2.1 Market Trends
      • 10.1.2.2 Market Forecast
  • 10.2 Asia-Pacific
    • 10.2.1 China
      • 10.2.1.1 Market Trends
      • 10.2.1.2 Market Forecast
    • 10.2.2 Japan
      • 10.2.2.1 Market Trends
      • 10.2.2.2 Market Forecast
    • 10.2.3 India
      • 10.2.3.1 Market Trends
      • 10.2.3.2 Market Forecast
    • 10.2.4 South Korea
      • 10.2.4.1 Market Trends
      • 10.2.4.2 Market Forecast
    • 10.2.5 Australia
      • 10.2.5.1 Market Trends
      • 10.2.5.2 Market Forecast
    • 10.2.6 Indonesia
      • 10.2.6.1 Market Trends
      • 10.2.6.2 Market Forecast
    • 10.2.7 Others
      • 10.2.7.1 Market Trends
      • 10.2.7.2 Market Forecast
  • 10.3 Europe
    • 10.3.1 Germany
      • 10.3.1.1 Market Trends
      • 10.3.1.2 Market Forecast
    • 10.3.2 France
      • 10.3.2.1 Market Trends
      • 10.3.2.2 Market Forecast
    • 10.3.3 United Kingdom
      • 10.3.3.1 Market Trends
      • 10.3.3.2 Market Forecast
    • 10.3.4 Italy
      • 10.3.4.1 Market Trends
      • 10.3.4.2 Market Forecast
    • 10.3.5 Spain
      • 10.3.5.1 Market Trends
      • 10.3.5.2 Market Forecast
    • 10.3.6 Russia
      • 10.3.6.1 Market Trends
      • 10.3.6.2 Market Forecast
    • 10.3.7 Others
      • 10.3.7.1 Market Trends
      • 10.3.7.2 Market Forecast
  • 10.4 Latin America
    • 10.4.1 Brazil
      • 10.4.1.1 Market Trends
      • 10.4.1.2 Market Forecast
    • 10.4.2 Mexico
      • 10.4.2.1 Market Trends
      • 10.4.2.2 Market Forecast
    • 10.4.3 Others
      • 10.4.3.1 Market Trends
      • 10.4.3.2 Market Forecast
  • 10.5 Middle East and Africa
    • 10.5.1 Market Trends
    • 10.5.2 Market Breakup by Country
    • 10.5.3 Market Forecast

11 SWOT Analysis

  • 11.1 Overview
  • 11.2 Strengths
  • 11.3 Weaknesses
  • 11.4 Opportunities
  • 11.5 Threats

12 Value Chain Analysis

13 Porters Five Forces Analysis

  • 13.1 Overview
  • 13.2 Bargaining Power of Buyers
  • 13.3 Bargaining Power of Suppliers
  • 13.4 Degree of Competition
  • 13.5 Threat of New Entrants
  • 13.6 Threat of Substitutes

14 Price Analysis

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 3D Systems Inc.
      • 15.3.1.1 Company Overview
      • 15.3.1.2 Product Portfolio
      • 15.3.1.3 Financials
      • 15.3.1.4 SWOT Analysis
    • 15.3.2 Desktop Metal Inc.
      • 15.3.2.1 Company Overview
      • 15.3.2.2 Product Portfolio
    • 15.3.3 EOS GmbH
      • 15.3.3.1 Company Overview
      • 15.3.3.2 Product Portfolio
      • 15.3.3.3 SWOT Analysis
    • 15.3.4 Formlabs
      • 15.3.4.1 Company Overview
      • 15.3.4.2 Product Portfolio
    • 15.3.5 Materialise NV
      • 15.3.5.1 Company Overview
      • 15.3.5.2 Product Portfolio
      • 15.3.5.3 Financials
    • 15.3.6 Organovo Holding Inc.
      • 15.3.6.1 Company Overview
      • 15.3.6.2 Product Portfolio
      • 15.3.6.3 Financials
    • 15.3.7 Oxford Performance Materials Inc.
      • 15.3.7.1 Company Overview
      • 15.3.7.2 Product Portfolio
    • 15.3.8 Prodways Tech
      • 15.3.8.1 Company Overview
      • 15.3.8.2 Product Portfolio
      • 15.3.8.3 Financials
    • 15.3.9 Proto Labs Inc.
      • 15.3.9.1 Company Overview
      • 15.3.9.2 Product Portfolio
      • 15.3.9.3 Financials
    • 15.3.10 Renishaw plc
      • 15.3.10.1 Company Overview
      • 15.3.10.2 Product Portfolio
      • 15.3.10.3 Financials
    • 15.3.11 SLM Solutions Group AG
      • 15.3.11.1 Company Overview
      • 15.3.11.2 Product Portfolio
      • 15.3.11.3 Financials
    • 15.3.12 Stratasys Ltd.
      • 15.3.12.1 Company Overview
      • 15.3.12.2 Product Portfolio
      • 15.3.12.3 Financials
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제