½ÃÀ庸°í¼­
»óǰÄÚµå
1701948

Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA) ½ÃÀå : ¾ÆÅ°ÅØÃ³º°, ±¸¼ºº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°, Áö¿ªº°(2025-2033³â)

Field Programmable Gate Array Market Report by Architecture, Configuration, End Use Industry, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 146 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA) ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 134¾ï ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº 2033³â¿¡´Â 255¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óÇϸç, 2025-2033³â ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 7.37%¿¡ ´ÞÇÒ °ÍÀ¸·Î Àü¸ÁÇϰí ÀÖ½À´Ï´Ù. ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)ÀÇ ÅëÇÕ ¹ßÀü, ÀüÀÚ ½Ã½ºÅÛÀÇ º¹À⼺ Áõ°¡, ¿¡³ÊÁö È¿À² ¹× ºñ¿ë Àý°¨ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÀϺÎÀÔ´Ï´Ù.

Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)´Â Á¦Á¶ ÈÄ »ç¿ëÀÚ³ª ¼³°èÀÚ°¡ ÇÁ·Î±×·¡¹Ö ¹× ±¸¼ºÇÒ ¼ö ÀÖ´Â ÁýÀûȸ·Î(IC)ÀÇ ÀÏÁ¾À¸·Î, ÇÁ·Î±×·¡¸Óºí ·ÎÁ÷ ºí·Ï(PLB)°ú ÇÁ·Î±×·¡¸Óºí ÀÎÅÍÄ¿³Ø¼ÇÀ¸·Î ±¸¼ºµÇ¾î »ç¿ëÀÚ Á¤ÀÇ µðÁöÅРȸ·Î¸¦ ¸¸µé ¼ö ÀÖ½À´Ï´Ù. PLB¿¡´Â ·è¾÷Å×À̺í(LUT), Çø³Ç÷Ó, ±âŸ ³í¸® ¼ÒÀÚ°¡ Æ÷ÇԵǾî ÀÖÀ¸¸ç, »óÈ£¿¬°áÇÏ¿© ´Ù¾çÇÑ ³í¸® ¿¬»êÀ» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, VHDLÀ̳ª Verilog¿Í °°Àº Çϵå¿þ¾î ¼³¸í ¾ð¾î(HDL)¸¦ »ç¿ëÇÏ¿© ¿øÇϴ ȸ·Î ¼³°è¸¦ ÁöÁ¤ÇØ¾ß ÇÕ´Ï´Ù. µ¶ÀÚÀûÀÎ µðÁöÅРȸ·Î¿Í ³í¸® ±â´ÉÀ» Á¤ÀÇÇÏ°í ±¸ÇöÇÒ ¼ö Àֱ⠶§¹®¿¡ FPGA¿¡ ´ëÇÑ ¼ö¿ä´Â Àü ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÇöÀç FPGA´Â °í¼º´É ÄÄÇ»ÆÃ ±â´ÉÀ» Á¦°øÇÏ°í º¹ÀâÇÑ ¾Ë°í¸®Áò°ú °è»êÀ» È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö Àֱ⠶§¹®¿¡ FPGA¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç ½ÃÀå Àü¸Áµµ ÁÁ½À´Ï´Ù. ¶ÇÇÑ FPGA´Â º´·Ä 󸮸¦ Á¦°øÇÏ°í ¿©·¯ ÀÛ¾÷À» µ¿½Ã¿¡ ½ÇÇàÇÒ ¼ö ÀÖ¾î ÀΰøÁö´É(AI), µ¥ÀÌÅͼ¾ÅÍ, °í¼º´É ÄÄÇ»ÆÃ µî ±î´Ù·Î¿î ¾ÖÇø®ÄÉÀ̼ǿ¡ ÀûÇÕÇÕ´Ï´Ù. ÀÌ¿Í ´õºÒ¾î, Á¦Á¶ ÈÄ Çϵå¿þ¾î ±â´ÉÀ» Ä¿½ºÅ͸¶ÀÌ¡Çϰí ÀçÇÁ·Î±×·¡¹ÖÇϱâ À§ÇØ FPGAÀÇ »ç¿ëÀÌ Áõ°¡Çϰí ÀÖ´Â °Íµµ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Åë½Å, Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¹æÀ§ »ê¾÷¿¡¼­ ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎ, ¼³°è º¯°æ ¹× ¹Ýº¹ÀûÀÎ °³¹ß Áֱ⸦ À§ÇØ FPGAÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ±âÁ¸ ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC)¿¡ ºñÇØ ½ÃÀå Ãâ½Ã ½Ã°£ÀÌ ´ÜÃàµÇ±â ¶§¹®¿¡ FPGA¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù.

Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA) ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ:

ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´×(ML)¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÀΰøÁö´É(AI) ¹× ¸Ó½Å·¯´×(ML) ¾ÖÇø®ÄÉÀ̼ÇÀÇ »ç¿ëÀÌ Áõ°¡Çϸ鼭 °í¼º´É ÄÄÇ»ÆÃ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ±â¼úÀº ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í º¹ÀâÇÑ °è»êÀ» µ¿½Ã¿¡ ¼öÇàÇÕ´Ï´Ù. º´·Ä ó¸® ´É·ÂÀ» °®Ãá FPGA´Â AI ¹× ML ¿öÅ©·Îµå¸¦ °¡¼ÓÈ­ÇÏ°í ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU) ¹× ¿ëµµº° °¡¼Ó±â¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Çö½ÇÀûÀÎ ´ë¾ÈÀÌ µÉ ¼ö ÀÖÀ¸¸ç, FPGA´Â ƯÁ¤ ¾Ë°í¸®Áò ¹× ÀÛ¾÷¿¡ ¸Â°Ô ÇÁ·Î±×·¡¹ÖÇϰí ÃÖÀûÈ­ÇÒ ¼ö Àֱ⠶§¹®¿¡ È¿À²ÀûÀÎ ÄÄÇ»ÆÃÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÃÖÀûÈ­ÇÒ ¼ö Àֱ⠶§¹®¿¡ È¿À²ÀûÀÎ º´·Ä ó¸®¿Í ¼º´É °¡¼ÓÀÌ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ, °³¹ßÀÚ´Â FPGA·Î ¸ÂÃãÇü Çϵå¿þ¾î °¡¼Ó±â¸¦ ¼³°èÇÏ°í ±¸ÇöÇÒ ¼ö ÀÖ¾î AI ¹× ML ÀÛ¾÷ÀÇ ¼º´É°ú È¿À²¼ºÀ» Å©°Ô Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

º¹ÀâÇØÁö´Â ÀüÀÚ ½Ã½ºÅÛ

ÀüÀÚ ½Ã½ºÅÛÀÇ º¹À⼺Àº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ Áö¼ÓÀûÀ¸·Î Áõ°¡Çϰí ÀÖÀ¸¸ç, FPGA´Â ¿©·¯ ±â´É°ú ÀÎÅÍÆäÀ̽º¸¦ ´ÜÀÏ µð¹ÙÀ̽º¿¡ ÅëÇÕÇÏ´Â ¹ü¿ë Ç÷§ÆûÀ» Á¦°øÇÏ¿© ¿©·¯ ºÎǰÀÇ Çʿ伺À» ÁÙÀÌ°í ½Ã½ºÅÛ ¼³°è¸¦ °£¼ÒÈ­ÇÕ´Ï´Ù. ¸ÂÃãÇü ·ÎÁ÷À» ±¸ÇöÇÒ ¼ö ÀÖ´Â ±â´ÉÀ» ¸ðµÎ Á¦°øÇϹǷΠ¼³°èÀڴ ƯÁ¤ ¾ÖÇø®ÄÉÀ̼ǿ¡ ¸Â°Ô ¼º´ÉÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ã½ºÅÛÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó FPGA´Â º¹ÀâÇÑ ¾Ë°í¸®ÁòÀ» ±¸ÇöÇÏ°í ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ó¸®ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, ÀüÀÚ ½Ã½ºÅÛÀº ´õ ÀÌ»ó µ¶¸³ÀûÀÎ Á¸Àç°¡ ¾Æ´Ï¶ó ´õ Å« ½Ã½ºÅÛÀ̳ª ³×Æ®¿öÅ©¿¡ ¿¬°áµÇ°í ÅëÇյǴ °æ¿ì°¡ ¸¹¾ÆÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú, FPGA´Â °í¼Ó Æ®·£½Ã¹ö, ¸Þ¸ð¸® ÀÎÅÍÆäÀ̽º, ÁÖº¯±â±â ÀÎÅÍÆäÀ̽º µîÀÇ ±â´ÉÀ» ³»ÀåÇÏ¿© ½Ã½ºÅÛ ¼öÁØÀÇ ÅëÇÕ¿¡ ÀûÇÕÇÕ´Ï´Ù.

¿¡³ÊÁö È¿À² ¹× ºñ¿ë Àý°¨ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

FPGA´Â ¹ü¿ë ÇÁ·Î¼¼¼­³ª ASIC¿¡ ºñÇØ Àü·Â È¿À²ÀÌ ³ô½À´Ï´Ù. ƯÁ¤ ÀÛ¾÷¿¡ ÃÖÀûÈ­µÇ¾î Àü·Â ¼Òºñ¿Í Àüü ½Ã½ºÅÛ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ¿§Áö ÄÄÇ»ÆÃ, »ç¹°ÀÎÅͳÝ(IoT), ÀÓº£µðµå ½Ã½ºÅÛ µî Àü·Â È¿À²ÀÌ Áß¿äÇÑ ¾ÖÇø®ÄÉÀ̼ǿ¡ À¯¿ëÇÕ´Ï´Ù. ¶ÇÇÑ, FPGA´Â º´·Ä ¿¬»êÀ» ¼öÇàÇϵµ·Ï ¼³°èµÇ¾î ¿©·¯ ¿¬»êÀ» µ¿½Ã¿¡ ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º´·Ä¼ºÀº ¼øÂ÷ ÇÁ·Î¼¼¼­¿¡ ºñÇØ ´õ ÀûÀº Ŭ·° ÁÖ±â·Î µ¿ÀÏÇÑ ÀÛ¾÷À» ¼öÇàÇÒ ¼ö Àֱ⠶§¹®¿¡ Àüü Àü·Â ¼Òºñ¸¦ ÁÙ¿© ¿¡³ÊÁö¸¦ Àý¾àÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, FPGA´Â °³¹ß °úÁ¤¿¡¼­ ¿©·¯ ¹ø ÀçÇÁ·Î±×·¡¹Ö ¹× À籸¼ºÇÒ ¼ö ÀÖ¾î ºñ¿ë È¿À²¼ºÀÌ ³ôÀ¸¸ç, °ªºñ½Î°í ½Ã°£ÀÌ ¸¹ÀÌ ¼Ò¿äµÇ´Â Á¦Á¶ °øÁ¤ÀÌ ÇÊ¿äÇÏÁö ¾Ê¾Æ ºñ¿ë È¿À²¼ºÀÌ ³ô½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • »óÇâ½Ä Á¢±Ù
    • ÇÏÇâ½Ä Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼Ò°³

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA) ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ³»¿ª : ¾ÆÅ°ÅØÃ³º°

  • SRAM ±â¹Ý FPGA
  • ¾ÈƼǻÁî ±â¹Ý FPGA
  • Ç÷¡½Ã ±â¹Ý FPGA

Á¦7Àå ½ÃÀå ³»¿ª : ±¸¼ºº°

  • ·Î¿ì ·¹ÀÎÁö FPGA
  • ¹Ìµå ·¹ÀÎÁö FPGA
  • ÇÏÀÌ ·¹ÀÎÁö FPGA

Á¦8Àå ½ÃÀå ³»¿ª : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • IT¡¤Åë½Å
  • °¡ÀüÁ¦Ç°
  • ÀÚµ¿Â÷
  • »ê¾÷
  • ±º¡¤Ç×°ø¿ìÁÖ
  • ±âŸ

Á¦9Àå ½ÃÀå ³»¿ª : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå ³»¿ª : ±¹°¡º°

Á¦10Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå Porter's Five Forces ºÐ¼®

  • °³¿ä
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀï Á¤µµ
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • Achronix Semiconductor
    • Cypress Semiconductor Corporation(Infineon Technologies AG)
    • Efinix Inc.
    • EnSilica Limited
    • Flex Logix Technologies Inc.
    • Gidel Inc.
    • Intel Corporation
    • Lattice Semiconductor Corporation
    • Microsemi Corporation(Microchip Technology Inc.)
    • Quicklogic Corporation
    • Taiwan Semiconductor Manufacturing Company
    • Xilinx Inc.
ksm 25.05.19

The global field programmable gate array (FPGA) market size reached USD 13.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 25.5 Billion by 2033, exhibiting a growth rate (CAGR) of 7.37% during 2025-2033. The growing integration of artificial intelligence (AI) and machine learning (ML), increasing complexity of electronics systems, and rising need for energy efficient and cost saving solutions represent some of the key factors propelling the market growth.

A field programmable gate array (FPGA) is a type of integrated circuit (IC) that can be programmed and configured by the user or designer after manufacturing. It comprises programmable logic blocks (PLBs) and programmable interconnects that can be configured to create custom digital circuits, wherein PLBs contain look-up tables (LUTs), flip-flops, and other logic elements that can be interconnected to perform various logical operations. It also involves specifying the desired circuit design using a hardware description language (HDL), such as VHDL or Verilog. As it allows users to define and implement their own digital circuits and logic functions, the demand for FPGA is rising around the world.

At present, the growing demand for FPGAs, as they can provide high-performance computing capabilities and can handle complex algorithms and computations efficiently, is offering a favorable market outlook. Besides this, FPGAs offer parallel processing and can execute multiple tasks simultaneously, which makes them suitable for demanding applications like artificial intelligence (AI), data centers, and high-performance computing. This, along with the rising utilization of FPGAs to customize and reprogram the hardware functionality after fabrication, is propelling the growth of the market. In addition, the increasing adoption of FPGAs in the telecommunications, aerospace, automotive, and defense industries for rapid prototyping, design modifications, and iterative development cycles is strengthening the growth of the market. Moreover, the growing demand for FPGAs, as they offer a faster time-to-market compared to traditional application-specific integrated circuits (ASICs), is positively influencing the market.

Field Programmable Gate Array (FPGA) Market Trends/Drivers:

Growing demand for artificial intelligence (AI) and machine learning (ML)

A rise in the use of artificial intelligence (AI) and machine learning (ML) applications is catalyzing the demand for high-performance computing platforms. Moreover, these technologies process a large amount of data and perform complex calculations simultaneously. FPGAs, with their parallel processing capabilities, can accelerate AI and ML workloads and offer a viable alternative to graphics processing units (GPUs) or application-specific accelerators. They can be programmed and optimized for specific algorithms and tasks, thereby allowing efficient parallel processing and accelerated performance. In addition, developers can design and implement custom hardware accelerators with FPGAs, which can significantly enhance the performance and efficiency of AI and ML tasks.

Increasing complexity of electronics systems

The complexity of electronic systems is continuously growing across various industries. FPGAs provide a versatile platform for integrating multiple functions and interfaces into a single device, reducing the need for multiple components, and simplifying system design. They offer both parallel processing capabilities and the ability to implement custom logic, which allows designers to optimize performance for specific applications. As system complexity increases, FPGAs also assist in implementing complex algorithms and processing large amounts of data in real time. In addition, electronic systems are no longer standalone entities but are increasingly connected and integrated into larger systems or networks. As a result, FPGAs offer built-in features, such as high-speed transceivers, memory interfaces, and peripheral interfaces, which makes them suitable for system-level integration.

Rising demand for energy efficient and cost saving solutions

FPGAs can be power-efficient compared to general-purpose processors or ASICs. They can be optimized for specific tasks and reduce power consumption and overall system costs. This makes them useful for applications wherein power efficiency is critical, such as edge computing, the Internet of Things (IoT), and embedded systems. In addition, FPGAs are designed to perform parallel computations, allowing multiple operations to be executed simultaneously. This parallelism can lead to energy savings, as the same task can be accomplished with fewer clock cycles as compared to a sequential processor, which reduces overall power consumption. Moreover, FPGAs are more cost-effective, as they can be reprogrammed and reconfigured multiple times during the development process, eliminating the need for expensive and time-consuming fabrication processes.

Field Programmable Gate Array (FPGA) Industry Segmentation:

Breakup by Architecture:

  • SRAM-Based FPGA
  • Anti-Fuse Based FPGA
  • Flash-Based FPGA

SRAM-based FPGA dominate the market

Moreover, SRAM-based FPGAs offer high-performance capabilities, as they use static random-access memory (SRAM) cells for configuration storage. SRAM cells can be quickly and easily reprogrammed, which allows for the efficient implementation of complex logic functions, memory structures, and high-speed interfaces. They also provide the ability to reprogram the device on the fly and enables designers to perform design iterations and debugging at the hardware level. The flexibility of SRAM-based FPGAs also allows for faster time-to-market. With SRAM-based FPGAs, designers can implement and validate their designs without the need for custom ASIC development or lengthy fabrication processes.

Breakup by Configuration:

  • Low-range FPGA
  • Mid-range FPGA
  • High-range FPGA

Low-range FPGA holds the biggest market share

It consumes less power as compared to high-end FPGA. This lower power consumption can be advantageous in applications wherein power efficiency is critical, such as battery-powered devices or embedded systems. Moreover, it has simpler architecture and fewer features compared to high-end FPGAs, which can make it easier to understand, program, and integrate into designs, especially for beginners or projects with less complex requirements. It is also available in smaller form factors and makes them suitable for space-constrained applications.

Breakup by End Use Industry:

  • IT and Telecommunication
  • Consumer Electronics
  • Automotive
  • Industrial
  • Military and Aerospace
  • Others

IT and telecommunication accounts for the majority of the market share

FPGAs offer a high degree of flexibility in hardware design and functionality. They can be reprogrammed or reconfigured after manufacturing, allowing for quick prototyping, iterative design changes, and customization to meet specific application requirements. This flexibility is particularly valuable in the IT and telecommunication industry that experiences rapid technological advancements and evolving standards. FPGAs also provide parallel processing capabilities that can be tailored to match the requirements of specific applications, making them suitable for demanding tasks, such as signal processing, data analytics, cryptography, and high-speed networking. Moreover, in telecommunications, they can be used in network switches, routers, and base stations to handle data packet routing and processing with minimal delay.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

Asia Pacific exhibits a clear dominance, accounting for the largest field programmable gate array (FPGA) market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.

Asia Pacific held the biggest market share as it is a major manufacturing hub for electronic devices and components. As FPGAs are crucial components in various electronic systems, the demand for FPGAs is increasing in parallel with the growth of the semiconductor industry. Moreover, the growing adoption of advanced technologies and automation in industries, such as telecommunications, automotive, consumer electronics, and healthcare, is catalyzing the demand for FPGAs in the region, as they offer flexible and customizable solutions for these industries, which enables them to implement complex functionalities, enhance performance, and reduce time-to-market for their products.

Competitive Landscape:

The level of competition in the market is moderate with a moderate threat of new entrants. Established players have a long history of developing and refining FPGA technologies, which provides them with a competitive advantage. As for the threat of new entrants, it can be somewhat challenging for new companies to enter the FPGA market, as developing FPGA technology requires significant research and development (R&D) investments, as well as expertise in semiconductor design and manufacturing. The established players in the market have made substantial investments in these areas over many years, giving them a strong technological advantage. However, numerous advancements in technology and evolving market dynamics can create opportunities for new entrants, such as hybrid FPGAs, machine learning (ML) accelerators, and high-performance computing solutions.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Achronix Semiconductor
  • Cypress Semiconductor Corporation (Infineon Technologies AG)
  • Efinix Inc.
  • EnSilica Limited
  • Flex Logix Technologies Inc.
  • Gidel Inc.
  • Intel Corporation
  • Lattice Semiconductor Corporation
  • Microsemi Corporation (Microchip Technology Inc.)
  • Quicklogic Corporation
  • Taiwan Semiconductor Manufacturing Company
  • Xilinx Inc.

Key Questions Answered in This Report

  • 1.What was the size of the global field programmable gate array (FPGA) market in 2024?
  • 2.What is the expected growth rate of the global field programmable gate array (FPGA) market during 2025-2033?
  • 3.What are the key factors driving the global field programmable gate array (FPGA) market?
  • 4.What has been the impact of COVID-19 on the global field programmable gate array (FPGA) market?
  • 5.What is the breakup of the global field programmable gate array (FPGA) market based on the architecture?
  • 6.What is the breakup of the global field programmable gate array (FPGA) market based on the configuration?
  • 7.What is the breakup of the global field programmable gate array (FPGA) market based on the end use industry?
  • 8.What are the key regions in the global field programmable gate array (FPGA) market?
  • 9.Who are the key players/companies in the global field programmable gate array (FPGA) market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Field Programmable Gate Array (FPGA) Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Architecture

  • 6.1 SRAM-Based FPGA
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Anti-Fuse Based FPGA
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Flash-Based FPGA
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Configuration

  • 7.1 Low-range FPGA
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Mid-range FPGA
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 High-range FPGA
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast

8 Market Breakup by End Use Industry

  • 8.1 IT and Telecommunication
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Consumer Electronics
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Automotive
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Industrial
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Military and Aerospace
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast
  • 8.6 Others
    • 8.6.1 Market Trends
    • 8.6.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Achronix Semiconductor
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
    • 14.3.2 Cypress Semiconductor Corporation (Infineon Technologies AG)
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 SWOT Analysis
    • 14.3.3 Efinix Inc.
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 EnSilica Limited
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
    • 14.3.5 Flex Logix Technologies Inc.
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 Gidel Inc.
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
    • 14.3.7 Intel Corporation
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
      • 14.3.7.4 SWOT Analysis
    • 14.3.8 Lattice Semiconductor Corporation
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
      • 14.3.8.4 SWOT Analysis
    • 14.3.9 Microsemi Corporation (Microchip Technology Inc.)
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
      • 14.3.9.3 SWOT Analysis
    • 14.3.10 Quicklogic Corporation
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
      • 14.3.10.3 Financials
      • 14.3.10.4 SWOT Analysis
    • 14.3.11 Taiwan Semiconductor Manufacturing Company
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
      • 14.3.11.3 Financials
      • 14.3.11.4 SWOT Analysis
    • 14.3.12 Xilinx Inc.
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials
      • 14.3.12.4 SWOT Analysis
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦