![]() |
시장보고서
상품코드
1701948
필드 프로그래머블 게이트 어레이(FPGA) 시장 : 아키텍처별, 구성별, 최종 이용 산업별, 지역별(2025-2033년)Field Programmable Gate Array Market Report by Architecture, Configuration, End Use Industry, and Region 2025-2033 |
필드 프로그래머블 게이트 어레이(FPGA) 세계 시장 규모는 2024년 134억 달러에 달했습니다. 향후 IMARC Group은 2033년에는 255억 달러에 달할 것으로 예상하며, 2025-2033년 연평균 성장률(CAGR)은 7.37%에 달할 것으로 전망하고 있습니다. 인공지능(AI)과 머신러닝(ML)의 통합 발전, 전자 시스템의 복잡성 증가, 에너지 효율 및 비용 절감 솔루션에 대한 수요 증가는 시장 성장을 촉진하는 주요 요인 중 일부입니다.
필드 프로그래머블 게이트 어레이(FPGA)는 제조 후 사용자나 설계자가 프로그래밍 및 구성할 수 있는 집적회로(IC)의 일종으로, 프로그래머블 로직 블록(PLB)과 프로그래머블 인터커넥션으로 구성되어 사용자 정의 디지털 회로를 만들 수 있습니다. PLB에는 룩업테이블(LUT), 플립플롭, 기타 논리 소자가 포함되어 있으며, 상호연결하여 다양한 논리 연산을 수행할 수 있습니다. 또한, VHDL이나 Verilog와 같은 하드웨어 설명 언어(HDL)를 사용하여 원하는 회로 설계를 지정해야 합니다. 독자적인 디지털 회로와 논리 기능을 정의하고 구현할 수 있기 때문에 FPGA에 대한 수요는 전 세계적으로 증가하고 있습니다.
현재 FPGA는 고성능 컴퓨팅 기능을 제공하고 복잡한 알고리즘과 계산을 효율적으로 처리할 수 있기 때문에 FPGA에 대한 수요가 증가하고 있으며 시장 전망도 좋습니다. 또한 FPGA는 병렬 처리를 제공하고 여러 작업을 동시에 실행할 수 있어 인공지능(AI), 데이터센터, 고성능 컴퓨팅 등 까다로운 애플리케이션에 적합합니다. 이와 더불어, 제조 후 하드웨어 기능을 커스터마이징하고 재프로그래밍하기 위해 FPGA의 사용이 증가하고 있는 것도 시장 성장을 촉진하고 있습니다. 또한, 통신, 항공우주, 자동차, 방위 산업에서 신속한 프로토타이핑, 설계 변경 및 반복적인 개발 주기를 위해 FPGA의 채택이 증가하고 있으며, 이는 시장 성장을 강화하고 있습니다. 또한, 기존 주문형 집적회로(ASIC)에 비해 시장 출시 시간이 단축되기 때문에 FPGA에 대한 수요 증가는 시장에 긍정적인 영향을 미치고 있습니다.
인공지능(AI)과 머신러닝(ML)에 대한 수요 증가
인공지능(AI) 및 머신러닝(ML) 애플리케이션의 사용이 증가하면서 고성능 컴퓨팅 플랫폼에 대한 수요가 증가하고 있습니다. 또한, 이러한 기술은 대량의 데이터를 처리하고 복잡한 계산을 동시에 수행합니다. 병렬 처리 능력을 갖춘 FPGA는 AI 및 ML 워크로드를 가속화하고 그래픽 처리 장치(GPU) 및 용도별 가속기를 대체할 수 있는 현실적인 대안이 될 수 있으며, FPGA는 특정 알고리즘 및 작업에 맞게 프로그래밍하고 최적화할 수 있기 때문에 효율적인 컴퓨팅을 가능하게 합니다. 최적화할 수 있기 때문에 효율적인 병렬 처리와 성능 가속이 가능합니다. 또한, 개발자는 FPGA로 맞춤형 하드웨어 가속기를 설계하고 구현할 수 있어 AI 및 ML 작업의 성능과 효율성을 크게 향상시킬 수 있습니다.
복잡해지는 전자 시스템
전자 시스템의 복잡성은 다양한 산업 분야에서 지속적으로 증가하고 있으며, FPGA는 여러 기능과 인터페이스를 단일 디바이스에 통합하는 범용 플랫폼을 제공하여 여러 부품의 필요성을 줄이고 시스템 설계를 간소화합니다. 맞춤형 로직을 구현할 수 있는 기능을 모두 제공하므로 설계자는 특정 애플리케이션에 맞게 성능을 최적화할 수 있습니다. 시스템의 복잡성이 증가함에 따라 FPGA는 복잡한 알고리즘을 구현하고 대량의 데이터를 실시간으로 처리할 수 있도록 지원합니다. 또한, 전자 시스템은 더 이상 독립적인 존재가 아니라 더 큰 시스템이나 네트워크에 연결되고 통합되는 경우가 많아지고 있습니다. 그 결과, FPGA는 고속 트랜시버, 메모리 인터페이스, 주변기기 인터페이스 등의 기능을 내장하여 시스템 수준의 통합에 적합합니다.
에너지 효율 및 비용 절감 솔루션에 대한 수요 증가
FPGA는 범용 프로세서나 ASIC에 비해 전력 효율이 높습니다. 특정 작업에 최적화되어 전력 소비와 전체 시스템 비용을 절감할 수 있습니다. 따라서 엣지 컴퓨팅, 사물인터넷(IoT), 임베디드 시스템 등 전력 효율이 중요한 애플리케이션에 유용합니다. 또한, FPGA는 병렬 연산을 수행하도록 설계되어 여러 연산을 동시에 실행할 수 있습니다. 이러한 병렬성은 순차 프로세서에 비해 더 적은 클럭 주기로 동일한 작업을 수행할 수 있기 때문에 전체 전력 소비를 줄여 에너지를 절약할 수 있습니다. 또한, FPGA는 개발 과정에서 여러 번 재프로그래밍 및 재구성할 수 있어 비용 효율성이 높으며, 값비싸고 시간이 많이 소요되는 제조 공정이 필요하지 않아 비용 효율성이 높습니다.
The global field programmable gate array (FPGA) market size reached USD 13.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 25.5 Billion by 2033, exhibiting a growth rate (CAGR) of 7.37% during 2025-2033. The growing integration of artificial intelligence (AI) and machine learning (ML), increasing complexity of electronics systems, and rising need for energy efficient and cost saving solutions represent some of the key factors propelling the market growth.
A field programmable gate array (FPGA) is a type of integrated circuit (IC) that can be programmed and configured by the user or designer after manufacturing. It comprises programmable logic blocks (PLBs) and programmable interconnects that can be configured to create custom digital circuits, wherein PLBs contain look-up tables (LUTs), flip-flops, and other logic elements that can be interconnected to perform various logical operations. It also involves specifying the desired circuit design using a hardware description language (HDL), such as VHDL or Verilog. As it allows users to define and implement their own digital circuits and logic functions, the demand for FPGA is rising around the world.
At present, the growing demand for FPGAs, as they can provide high-performance computing capabilities and can handle complex algorithms and computations efficiently, is offering a favorable market outlook. Besides this, FPGAs offer parallel processing and can execute multiple tasks simultaneously, which makes them suitable for demanding applications like artificial intelligence (AI), data centers, and high-performance computing. This, along with the rising utilization of FPGAs to customize and reprogram the hardware functionality after fabrication, is propelling the growth of the market. In addition, the increasing adoption of FPGAs in the telecommunications, aerospace, automotive, and defense industries for rapid prototyping, design modifications, and iterative development cycles is strengthening the growth of the market. Moreover, the growing demand for FPGAs, as they offer a faster time-to-market compared to traditional application-specific integrated circuits (ASICs), is positively influencing the market.
Growing demand for artificial intelligence (AI) and machine learning (ML)
A rise in the use of artificial intelligence (AI) and machine learning (ML) applications is catalyzing the demand for high-performance computing platforms. Moreover, these technologies process a large amount of data and perform complex calculations simultaneously. FPGAs, with their parallel processing capabilities, can accelerate AI and ML workloads and offer a viable alternative to graphics processing units (GPUs) or application-specific accelerators. They can be programmed and optimized for specific algorithms and tasks, thereby allowing efficient parallel processing and accelerated performance. In addition, developers can design and implement custom hardware accelerators with FPGAs, which can significantly enhance the performance and efficiency of AI and ML tasks.
Increasing complexity of electronics systems
The complexity of electronic systems is continuously growing across various industries. FPGAs provide a versatile platform for integrating multiple functions and interfaces into a single device, reducing the need for multiple components, and simplifying system design. They offer both parallel processing capabilities and the ability to implement custom logic, which allows designers to optimize performance for specific applications. As system complexity increases, FPGAs also assist in implementing complex algorithms and processing large amounts of data in real time. In addition, electronic systems are no longer standalone entities but are increasingly connected and integrated into larger systems or networks. As a result, FPGAs offer built-in features, such as high-speed transceivers, memory interfaces, and peripheral interfaces, which makes them suitable for system-level integration.
Rising demand for energy efficient and cost saving solutions
FPGAs can be power-efficient compared to general-purpose processors or ASICs. They can be optimized for specific tasks and reduce power consumption and overall system costs. This makes them useful for applications wherein power efficiency is critical, such as edge computing, the Internet of Things (IoT), and embedded systems. In addition, FPGAs are designed to perform parallel computations, allowing multiple operations to be executed simultaneously. This parallelism can lead to energy savings, as the same task can be accomplished with fewer clock cycles as compared to a sequential processor, which reduces overall power consumption. Moreover, FPGAs are more cost-effective, as they can be reprogrammed and reconfigured multiple times during the development process, eliminating the need for expensive and time-consuming fabrication processes.
SRAM-based FPGA dominate the market
Moreover, SRAM-based FPGAs offer high-performance capabilities, as they use static random-access memory (SRAM) cells for configuration storage. SRAM cells can be quickly and easily reprogrammed, which allows for the efficient implementation of complex logic functions, memory structures, and high-speed interfaces. They also provide the ability to reprogram the device on the fly and enables designers to perform design iterations and debugging at the hardware level. The flexibility of SRAM-based FPGAs also allows for faster time-to-market. With SRAM-based FPGAs, designers can implement and validate their designs without the need for custom ASIC development or lengthy fabrication processes.
Low-range FPGA holds the biggest market share
It consumes less power as compared to high-end FPGA. This lower power consumption can be advantageous in applications wherein power efficiency is critical, such as battery-powered devices or embedded systems. Moreover, it has simpler architecture and fewer features compared to high-end FPGAs, which can make it easier to understand, program, and integrate into designs, especially for beginners or projects with less complex requirements. It is also available in smaller form factors and makes them suitable for space-constrained applications.
IT and telecommunication accounts for the majority of the market share
FPGAs offer a high degree of flexibility in hardware design and functionality. They can be reprogrammed or reconfigured after manufacturing, allowing for quick prototyping, iterative design changes, and customization to meet specific application requirements. This flexibility is particularly valuable in the IT and telecommunication industry that experiences rapid technological advancements and evolving standards. FPGAs also provide parallel processing capabilities that can be tailored to match the requirements of specific applications, making them suitable for demanding tasks, such as signal processing, data analytics, cryptography, and high-speed networking. Moreover, in telecommunications, they can be used in network switches, routers, and base stations to handle data packet routing and processing with minimal delay.
Asia Pacific exhibits a clear dominance, accounting for the largest field programmable gate array (FPGA) market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa.
Asia Pacific held the biggest market share as it is a major manufacturing hub for electronic devices and components. As FPGAs are crucial components in various electronic systems, the demand for FPGAs is increasing in parallel with the growth of the semiconductor industry. Moreover, the growing adoption of advanced technologies and automation in industries, such as telecommunications, automotive, consumer electronics, and healthcare, is catalyzing the demand for FPGAs in the region, as they offer flexible and customizable solutions for these industries, which enables them to implement complex functionalities, enhance performance, and reduce time-to-market for their products.
The level of competition in the market is moderate with a moderate threat of new entrants. Established players have a long history of developing and refining FPGA technologies, which provides them with a competitive advantage. As for the threat of new entrants, it can be somewhat challenging for new companies to enter the FPGA market, as developing FPGA technology requires significant research and development (R&D) investments, as well as expertise in semiconductor design and manufacturing. The established players in the market have made substantial investments in these areas over many years, giving them a strong technological advantage. However, numerous advancements in technology and evolving market dynamics can create opportunities for new entrants, such as hybrid FPGAs, machine learning (ML) accelerators, and high-performance computing solutions.