시장보고서
상품코드
1722400

그래프 데이터베이스 시장 보고서 : 컴포넌트별, 데이터베이스 유형별, 분석 유형별, 전개 모델별, 용도별, 업계별, 지역별(2025-2033년)

Graph Database Market Report by Component, Type of Database (Relational, Non-Relational ), Analysis Type, Deployment Model, Application, Industry Vertical, and Region 2025-2033

발행일: | 리서치사: IMARC | 페이지 정보: 영문 150 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

그래프 데이터베이스 세계 시장 규모는 2024년에 20억 달러에 달했습니다. 향후 IMARC Group은 이 시장이 2033년까지 86억 달러에 달하고, 2025-2033년 연평균 성장률(CAGR)은 17.57%를 보일 것으로 전망하고 있습니다. 사이버 보안에서 위협 감지 및 네트워크 분석을 위한 그래프 데이터베이스의 채택 증가, 실시간 분석 및 AI 기반 인사이트에 대한 수요 증가, 헬스케어 및 금융과 같은 산업에서 데이터 통합 및 개인화된 서비스를 위한 용도 확대는 시장 성장을 가속하는 주요 요인 중 일부입니다. 시장 성장을 가속하는 주요 요인 중 일부입니다.

그래프 데이터베이스를 통한 시장 분석 :

주요 시장 성장 촉진요인 : 소매, IT 및 통신, 제조, 운송, 은행 및 금융 서비스 및 보험(BFSI) 등 다양한 산업에서 그래프 데이터베이스 솔루션의 사용이 증가하고 있는 것이 시장 성장을 가속하는 주요 요인 중 하나입니다.

주요 시장 동향 : 인공지능(AI) 기반 그래프 데이터베이스 도구의 채택이 전 세계적으로 확대되고 있는 것은 시장 성장을 가속하는 중요한 트렌드 중 하나입니다.

경쟁 구도: 그래프 데이터베이스 시장의 주요 기업으로는 Amazon Web Services Inc. Marklogic Corporation, Microsoft Corporation, Neo4j Inc. 등이 있습니다.

지리적 동향 : 보고서에 따르면 현재 북미가 세계 시장을 독점하고 있습니다. 이 지역의 기술 사용 확대는 그래프 데이터베이스 시장의 성장을 가속하는 주요 이유 중 하나이며, IBM, Microsoft, Neo4j, Oracle과 같은 북미 전역의 그래프 데이터베이스 기업의 확장은 시장의 추가 확장을 촉진할 것으로 예측됩니다.

과제와 기회: 그래프 데이터베이스 시장의 과제는 데이터 프라이버시 문제, 관계형 데이터베이스 전환의 복잡성, 숙련된 인력의 필요성 등이 있습니다. 비즈니스 기회는 부정행위 감지, 개인화된 추천 시스템, 지식 그래프 용도 등 진화하는 이용 사례에 대응하여 혁신과 시장 확대를 촉진하는 데 있습니다.

그래프 데이터베이스 시장 동향 :

데이터 양 증가와 복잡성 증가

시장 성장을 가속하는 주요 요인 중 하나는 전 세계 수많은 조직에서 생성되는 데이터 양 증가입니다. 차세대 기술의 등장과 커넥티드 디바이스의 보급으로 기업들은 소셜 미디어, 고객과의 상호 작용, IoT 기기, 트랜잭션, 클라우드 컴퓨팅 등 다양한 소스에서 방대한 양의 데이터를 생성하고 있습니다. 예를 들어, 시스코에 따르면 IoT는 2019년에 약 507.5제타바이트의 데이터를 생성했습니다. 또한, Ponemon Institute와 Shared Assessments Program의 조사에 따르면, 위험 감독 및 기업 거버넌스 전문가의 81% 이상이 데이터 유출이 사내의 안전하지 않은 IoT 기기로 인해 발생했다고 생각하는 것으로 나타났습니다. 라고 답했습니다. 이에 따라 기업들은 데이터에서 가치 있는 인사이트를 도출하고, 데이터 정화, 검증, 강화 기능을 제공하여 데이터 보안과 정확성을 보장하기 위해 그래프 데이터베이스 솔루션을 통합하는 사례가 증가하고 있습니다. 이는 향후 몇 년 동안 그래프 데이터베이스 시장 수요를 촉진할 것으로 예측됩니다.

제품 제공 증가

다양한 주요 기업들이 다양한 이용 사례와 요구사항에 대응하는 다양한 그래프 데이터베이스 솔루션을 발표하고 있습니다. 예를 들어, 2024년 4월 Neo4j는 Google Cloud와 제휴하여 GenAI 용도를 위한 새로운 GraphRAG 기능을 발표했습니다. 이 발표는 몇 가지 중요한 단계에 걸쳐 생성형 AI 용도의 개발 및 배포 속도를 높일 수 있습니다. 이 성과는 실시간 맥락이 풍부한 데이터와 정확하고 설명 가능한 결과를 필요로 하는 GenAI 용도를 성공적으로 구축하기 위해 복잡성과 환각에 시달리는 기업의 문제를 해결해 줄 것입니다. 마찬가지로 2023년 12월 아마존웹서비스(AWS)는 벡터 검색과 그래프 데이터의 힘을 결합한 새로운 분석 데이터베이스 엔진인 아마존 넵튠 애널리틱스(Amazon Neptune Analytics)를 발표했습니다. re-invest 컨퍼런스에서 발표되었습니다. 이 새로운 서비스는 일회성 설치비나 정기적인 구독이 필요 없는 종량제 모델로 이용할 수 있습니다. 현재 미국 동부, 미국 서부, 아시아태평양, 유럽을 포함한 일부 AWS 지역에서 이용 가능합니다. 이러한 그래프 데이터베이스의 기술 혁신은 향후 몇 년 동안 그래프 데이터베이스 시장 점유율을 끌어올릴 것으로 예측됩니다.

다양한 산업 분야에서의 제품 적용 확대

그래프 데이터베이스는 금융, 헬스케어, 소매, 물류, 제조 등 다양한 산업에서 특정 이용 사례와 비즈니스 과제에 대응하기 위해 채택되고 있습니다. 예를 들어, 2024년 1월 세계 제약사 세르비에의 R&D 부서는 약물 연구 시간을 단축하고 임상 단계에서 약물 후보물질의 성공률을 높이기 위해 그래프 기술을 활용하기 시작했습니다. 이 회사는 Pegasus라는 Neo4j의 그래프를 사용하여 타사 및 자체 데이터를 더 잘 정리하고 조사할 수 있도록 하고 있습니다. 마찬가지로, 부정행위 감지 및 예방을 목적으로 한 금융 분야에서의 그래프 데이터베이스의 활용이 확대되고 있는 것도 최근 그래프 데이터베이스 시장의 상승세를 견인하고 있습니다. 예를 들어, 아마존 넵튠(Amazon Neptune)과 같은 그래프 데이터베이스는 데이터를 가로질러 동시에 계산을 수행할 수 있기 때문에 쿼리를 실행하는 데 점점 더 많이 사용되고 있습니다. 그래프는 여러 연결된 네트워크 상의 트랜잭션과 당사자를 나타내며, 패턴과 연결의 연쇄를 발견합니다. 결과적으로 그래프 데이터베이스는 의심스러운 거래 패턴을 찾는 데 도움이 되기 때문에 자금세탁방지(AML) 용도에서 널리 사용되고 있습니다.

목차

제1장 서문

제2장 조사 범위와 조사 방법

  • 조사 목적
  • 이해관계자
  • 데이터 소스
    • 1차 정보
    • 2차 정보
  • 시장 추정
    • 보텀업 접근
    • 톱다운 접근
  • 조사 방법

제3장 주요 요약

제4장 서론

  • 개요
  • 주요 업계 동향

제5장 세계의 그래프 데이터베이스 시장

  • 시장 개요
  • 시장 실적
  • COVID-19의 영향
  • 시장 예측

제6장 시장 분석 : 컴포넌트별

  • 소프트웨어
  • 서비스

제7장 시장 분석 : 데이터베이스 유형별

  • 관계형(SQL)
  • 비관계형(NoSQL)

제8장 시장 분석 : 분석 유형별

  • 경로 분석
  • 연결성 분석
  • 커뮤니티 분석
  • 중심성 분석

제9장 시장 분석 : 전개 모델별

  • On-Premise
  • 클라우드 기반

제10장 시장 분석 : 용도별

  • 부정행위 감지 및 리스크 관리
  • 마스터 데이터 관리
  • 고객 분석
  • ID 및 액세스 관리
  • 추천 엔진
  • 프라이버시 및 리스크 컴플라이언스
  • 기타

제11장 시장 분석 : 업계별

  • 은행, 금융서비스 및 보험(BFSI)
  • 소매업 및 E-Commerce
  • IT 및 통신
  • 헬스케어 및 생명과학
  • 정부 및 공공 부문
  • 미디어 및 엔터테인먼트
  • 제조
  • 운송 및 물류
  • 기타

제12장 시장 분석 : 지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 한국
    • 호주
    • 인도네시아
    • 기타
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 스페인
    • 러시아
    • 기타
  • 라틴아메리카
    • 브라질
    • 멕시코
    • 기타
  • 중동 및 아프리카
    • 시장 내역 : 국가별

제13장 SWOT 분석

  • 개요
  • 강점
  • 약점
  • 기회
  • 위협

제14장 밸류체인 분석

제15장 Porter의 Five Forces 분석

  • 개요
  • 바이어의 교섭력
  • 공급 기업의 교섭력
  • 경쟁 정도
  • 신규 진출업체의 위협
  • 대체품의 위협

제16장 가격 분석

제17장 경쟁 구도

  • 시장 구조
  • 주요 기업
  • 주요 기업 개요
    • Amazon Web Services Inc.(Amazon.com Inc.)
    • Datastax Inc.
    • Franz Inc.
    • International Business Machines Corporation
    • Marklogic Corporation
    • Microsoft Corporation
    • Neo4j Inc.
    • Objectivity Inc.
    • Oracle Corporation
    • Stardog Union
    • Tibco Software Inc.
    • Tigergraph Inc.
LSH 25.05.29

The global graph database market size reached USD 2.0 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 8.6 Billion by 2033, exhibiting a growth rate (CAGR) of 17.57% during 2025-2033. The increasing adoption of graph databases in cybersecurity for threat detection and network analysis, growing demand for real-time analytics and AI-driven insights, and expanding application in industries, such as healthcare and finance, for data integration and personalized services, are some of the key factors catalyzing the market growth.

Graph Database Market Analysis:

Major Market Drivers: The rising usage of graph database solutions in different industry verticals, such as retail, information technology (IT), telecommunications, manufacturing, transportation, and banking, financial services and insurance (BFSI), represents one of the key factors propelling the market growth.

Key Market Trends: The growing adoption of artificial intelligence (AI)-based graph database tools across the world is one of the significant key trends driving the growth of the market.

Competitive Landscape: Some of the leading graph database market companies are Amazon Web Services Inc. (Amazon.com Inc.), Datastax Inc., Franz Inc., International Business Machines Corporation, Marklogic Corporation, Microsoft Corporation, Neo4j Inc., Objectivity Inc., Oracle Corporation, Stardog Union, Tibco Software Inc., and Tigergraph Inc., among others.

Geographical Trends: According to the report, North America currently dominates the global market. The expanding use of technology in the region is one of the main reasons promoting the growth of the graph database market. The expansion of graph database players across North America, such as IBM, Microsoft, Neo4j, and Oracle., is anticipated to drive market expansion further.

Challenges and Opportunities: Challenges in the graph database market include data privacy concerns, complexity in migrating from relational databases, and the need for skilled personnel. Opportunities lie in addressing evolving use cases such as fraud detection, personalized recommendation systems, and knowledge graph applications, driving innovation and market expansion.

Graph Database Market Trends:

Rising Volume and Complexity of Data

One of the primary factors driving the growth of the market is the increasing volume of data generated by numerous organizations across the world. With the advent of next-generation technologies and the proliferation of connected devices, businesses are producing vast amounts of data from various sources, including social media, customer interaction, IoT devices, transactions, and cloud computing. For instance, according to Cisco, the IoT generated approximately 507.5 zettabytes of data in 2019. A survey by the Ponemon Institute and the Shared Assessments Program also shared that at least 81% of risk oversight and corporate governance professionals believe data breaches happened by an unsecured IoT device within their company. In response to this, companies are increasingly integrating graph database solutions to drive valuable insights from the data and ensure the security and accuracy of their data by providing data cleansing, validation, and enrichment capabilities. This, in turn, is projected to fuel the graph database market demand in the coming years.

Increasing Product Offerings

Various key players are introducing a variety of graph database solutions catering to different use cases and requirements. For instance, in April 2024, Neo4j partnered with Google Cloud to launch new GraphRAG capabilities for GenAI applications. This launch will speed up generative AI application development and deployment across several crucial stages. The results solve a problem for enterprises that struggle with complexity and hallucinations when building and deploying successful GenAI applications requiring real-time, contextually rich data and accurate, explainable results. Similarly, in December 2023, Amazon Web Services (AWS) launched a new analytics database engine that combines the power of vector search and graph data. The general availability of the new service, named Amazon Neptune Analytics, was unveiled at the re-invest conference in Las Vegas. The new service is available as a pay-as-you-go model with no one-time setup fees or recurring subscriptions. It is now available in some AWS regions, including the US East, the US West, Asia Pacific, and Europe. Such innovations in graph databases are anticipated to propel the graph database market share in the coming years.

Growing Product Application across Various Industries

Graph databases are being adopted across various industries, including finance, healthcare, retail, logistics, and manufacturing, to address specific use cases and business challenges. For instance, in January 2024, the R&D arm of global pharmaceutical company Servier started to utilize graph technologies to cut drug research time and improve the success rate of drug candidates in the clinical phase. The company is using Neo4j's graph called Pegasus, which allows them to better organize and probe both third-party and proprietary data. Similarly, the escalating utilization of graph databases in the financial sector to detect and prevent fraudulent activities is also catalyzing the graph database market's recent price. For instance, graph databases such as Amazon Neptune are increasingly being used to perform queries because they can traverse the data and perform calculations simultaneously. Graphs represent transactions and parties over a multi-connected network and discover patterns and chains of connections. As a result, graph databases are extensively being used in anti-money laundering (AML) applications since they can help find patterns of suspicious transactions.

Global Graph Database Market Segmentation:

Breakup by Component:

  • Software
  • Services

Software represents the largest market share

Based on the component, the global graph database market can be segmented into software and services. According to the report, software represents the largest market share.

The growth of the segment can be attributed to the increasing adoption of software-as-a-service (SaaS) by numerous companies to manage their complex data. Moreover, graph database market statistics by IMARC indicate that software deployment often involves upfront licensing or subscription fees, which can be more cost-effective in the long run, especially for organizations with ongoing data management needs.

Breakup by Type of Database:

  • Relational (SQL)
  • Non-Relational (NoSQL)

Relational (SQL) database exhibits a clear dominance in the market

Based on the type of database, the global graph database market can be segmented into relational (SQL) and non-relational (NoSQL). According to the report, relational (SQL) database exhibits a clear dominance in the market.

Integrating relational (SQL) databases with graph databases allows for leveraging the strengths of both models. SQL databases excel in structured data storage and complex queries, while graph databases specialize in managing and querying complex relationships. Combining them enables efficient storage of structured data alongside flexible representation and traversal of relationships, offering a comprehensive solution for diverse data management needs. This integration facilitates seamless data analysis, insights generation, and application development across a wide range of use cases, enhancing overall agility and scalability.

Breakup by Analysis Type:

  • Path Analysis
  • Connectivity Analysis
  • Community Analysis
  • Centrality Analysis

Path analysis holds the majority of the total market share

Based on the analysis type, the global graph database market can be segmented into path analysis, connectivity analysis, community analysis, and centrality analysis. According to the graph database market report, path analysis holds the majority of the total market share.

Path analysis in graph databases involves traversing the relationships between nodes to identify patterns or paths of interest. It enables querying and analyzing the sequence of nodes and edges to uncover insights or answer specific questions about the data. Path analysis is crucial for tasks like recommendation systems, fraud detection, and network analysis, offering valuable insights into the structure and behavior of interconnected data. By examining paths within the graph, organizations can derive actionable insights and make informed decisions based on the underlying relationships.

Breakup by Deployment Model:

  • On-premises
  • Cloud-based

On-premises model accounts for the majority of the total market share

Based on the deployment model, the global graph database market can be segmented into on-premises and cloud-based. According to the report, on-premises model accounts for the majority of the total market share.

On-premises deployment of graph databases involves installing and managing the database software within an organization's own data center or infrastructure. This approach offers greater control over data security, compliance, and performance compared to cloud-based alternatives. On-premises deployment is preferred in industries with strict regulatory requirements or sensitive data concerns, providing a dedicated environment for data management and processing. For instance, various companies operating in the BFSI sector are increasingly deploying graph databases within their own data centers, which is positively impacting the graph database market outlook. Manhattan-based FinTech Current's is increasingly utilizing graph database technology to build new financial services for customers and creating a set of 'hybrid finance' products based on integrated views of individuals and their family connections. Besides this, on-premises deployment of graph databases allows organizations to leverage existing infrastructure investments and tailor the deployment to their specific needs and preferences.

Breakup by Application:

  • Fraud Detection and Risk Management
  • Master Data Management
  • Customer Analytics
  • Identity and Access Management
  • Recommendation Engine
  • Privacy and Risk Compliance
  • Others

Based on the application, the global graph database market can be segmented into fraud detection and risk management, master data management, customer analytics, identity and access management, recommendation engine, privacy and risk compliance, and others.

Graph databases are widely used in the banking and financial sector to detect and prevent fraudulent activities. For instance, graph databases such as Amazon Neptune are increasingly being used to perform queries, because they can traverse the data and perform calculations simultaneously. Graphs represent transactions and parties over a multi-connected network and discover patterns and chains of connections. As a result, graph databases are extensively being used in anti-money laundering (AML) applications, since they can help find patterns of suspicious transactions. Besides this, the demand for data compliance and the growing usage of master data management solutions in prominent companies to improve business operations is likely to fuel the graph database market revenue.

Breakup by Industry Vertical:

  • BFSI
  • Retail and E-Commerce
  • IT and Telecom
  • Healthcare and Life Science
  • Government and Public Sector
  • Media and Entertainment
  • Manufacturing
  • Transportation and Logistics
  • Others

IT and telecom industry represents the largest market share

Based on the industry vertical, the global graph database market has been segmented into BFSI, retail and e-commerce, IT and telecom, healthcare and life science, government and public sector, media and entertainment, manufacturing, transportation and logistics, and others. According to the report, the IT and telecom industry represents the largest market share.

In the IT and telecom industry, graph databases are utilized for network topology management, fault analysis, and service provisioning. They enable real-time monitoring of network infrastructure, identifying bottlenecks, and optimizing resource allocation. Graph databases also facilitate customer relationship management by mapping complex interactions between customers, services, and devices, enhancing service personalization and troubleshooting efficiency.

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

North America currently dominates the global market

The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America currently dominates the global market.

The expanding use of technology in the region is one of the main reasons promoting the growth of the graph database market in North America. The expansion of graph database players across the region, such as IBM, Microsoft, Neo4j, Oracle, etc., is anticipated to drive market expansion further. Moreover, the graph database market overview by IMARC indicates that the growth of R&D spending by significant regional economies is helping the development of new technologies in the North America graph database market. For instance, in June 2022, Ataccama, a unified data management and governance solutions provider, secured US$150 Million in a growth capital investment round, money that was used to finance the company's efforts to develop new products and expand its market presence.

Competitive Landscape:

The market research report has provided a comprehensive analysis of the competitive landscape and outlook. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

  • Amazon Web Services Inc. (Amazon.com Inc.)
  • Datastax Inc.
  • Franz Inc.
  • International Business Machines Corporation
  • Marklogic Corporation
  • Microsoft Corporation
  • Neo4j Inc.
  • Objectivity Inc.
  • Oracle Corporation
  • Stardog Union
  • Tibco Software Inc.
  • Tigergraph Inc.

Key Questions Answered in This Report

  • 1.What was the size of the global graph database market in 2024?
  • 2.What is the expected growth rate of the global graph database market during 2025-2033?
  • 3.What are the key factors driving the global graph database market?
  • 4.What has been the impact of COVID-19 on the global graph database market?
  • 5.What is the breakup of the global graph database market based on the component?
  • 6.What is the breakup of the global graph database market based on the type of database?
  • 7.What is the breakup of the global graph database market based on the analysis type?
  • 8.What is the breakup of the global graph database market based on the deployment model?
  • 9.What is the breakup of the global graph database market based on the industry vertical?
  • 10.What are the key regions in the global graph database market?
  • 11.Who are the key players/companies in the global graph database market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Graph Database Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Component

  • 6.1 Software
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Services
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast

7 Market Breakup by Type of Database

  • 7.1 Relational (SQL)
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Non-Relational (NoSQL)
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast

8 Market Breakup by Analysis Type

  • 8.1 Path Analysis
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Connectivity Analysis
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Community Analysis
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Centrality Analysis
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast

9 Market Breakup by Deployment Model

  • 9.1 On-premises
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Cloud-based
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast

10 Market Breakup by Application

  • 10.1 Fraud Detection and Risk Management
    • 10.1.1 Market Trends
    • 10.1.2 Market Forecast
  • 10.2 Master Data Management
    • 10.2.1 Market Trends
    • 10.2.2 Market Forecast
  • 10.3 Customer Analytics
    • 10.3.1 Market Trends
    • 10.3.2 Market Forecast
  • 10.4 Identity and Access Management
    • 10.4.1 Market Trends
    • 10.4.2 Market Forecast
  • 10.5 Recommendation Engine
    • 10.5.1 Market Trends
    • 10.5.2 Market Forecast
  • 10.6 Privacy and Risk Compliance
    • 10.6.1 Market Trends
    • 10.6.2 Market Forecast
  • 10.7 Others
    • 10.7.1 Market Trends
    • 10.7.2 Market Forecast

11 Market Breakup by Industry Vertical

  • 11.1 BFSI
    • 11.1.1 Market Trends
    • 11.1.2 Market Forecast
  • 11.2 Retail and E-Commerce
    • 11.2.1 Market Trends
    • 11.2.2 Market Forecast
  • 11.3 IT and Telecom
    • 11.3.1 Market Trends
    • 11.3.2 Market Forecast
  • 11.4 Healthcare and Life Science
    • 11.4.1 Market Trends
    • 11.4.2 Market Forecast
  • 11.5 Government and Public Sector
    • 11.5.1 Market Trends
    • 11.5.2 Market Forecast
  • 11.6 Media and Entertainment
    • 11.6.1 Market Trends
    • 11.6.2 Market Forecast
  • 11.7 Manufacturing
    • 11.7.1 Market Trends
    • 11.7.2 Market Forecast
  • 11.8 Transportation and Logistics
    • 11.8.1 Market Trends
    • 11.8.2 Market Forecast
  • 11.9 Others
    • 11.9.1 Market Trends
    • 11.9.2 Market Forecast

12 Market Breakup by Region

  • 12.1 North America
    • 12.1.1 United States
      • 12.1.1.1 Market Trends
      • 12.1.1.2 Market Forecast
    • 12.1.2 Canada
      • 12.1.2.1 Market Trends
      • 12.1.2.2 Market Forecast
  • 12.2 Asia-Pacific
    • 12.2.1 China
      • 12.2.1.1 Market Trends
      • 12.2.1.2 Market Forecast
    • 12.2.2 Japan
      • 12.2.2.1 Market Trends
      • 12.2.2.2 Market Forecast
    • 12.2.3 India
      • 12.2.3.1 Market Trends
      • 12.2.3.2 Market Forecast
    • 12.2.4 South Korea
      • 12.2.4.1 Market Trends
      • 12.2.4.2 Market Forecast
    • 12.2.5 Australia
      • 12.2.5.1 Market Trends
      • 12.2.5.2 Market Forecast
    • 12.2.6 Indonesia
      • 12.2.6.1 Market Trends
      • 12.2.6.2 Market Forecast
    • 12.2.7 Others
      • 12.2.7.1 Market Trends
      • 12.2.7.2 Market Forecast
  • 12.3 Europe
    • 12.3.1 Germany
      • 12.3.1.1 Market Trends
      • 12.3.1.2 Market Forecast
    • 12.3.2 France
      • 12.3.2.1 Market Trends
      • 12.3.2.2 Market Forecast
    • 12.3.3 United Kingdom
      • 12.3.3.1 Market Trends
      • 12.3.3.2 Market Forecast
    • 12.3.4 Italy
      • 12.3.4.1 Market Trends
      • 12.3.4.2 Market Forecast
    • 12.3.5 Spain
      • 12.3.5.1 Market Trends
      • 12.3.5.2 Market Forecast
    • 12.3.6 Russia
      • 12.3.6.1 Market Trends
      • 12.3.6.2 Market Forecast
    • 12.3.7 Others
      • 12.3.7.1 Market Trends
      • 12.3.7.2 Market Forecast
  • 12.4 Latin America
    • 12.4.1 Brazil
      • 12.4.1.1 Market Trends
      • 12.4.1.2 Market Forecast
    • 12.4.2 Mexico
      • 12.4.2.1 Market Trends
      • 12.4.2.2 Market Forecast
    • 12.4.3 Others
      • 12.4.3.1 Market Trends
      • 12.4.3.2 Market Forecast
  • 12.5 Middle East and Africa
    • 12.5.1 Market Trends
    • 12.5.2 Market Breakup by Country
    • 12.5.3 Market Forecast

13 SWOT Analysis

  • 13.1 Overview
  • 13.2 Strengths
  • 13.3 Weaknesses
  • 13.4 Opportunities
  • 13.5 Threats

14 Value Chain Analysis

15 Porters Five Forces Analysis

  • 15.1 Overview
  • 15.2 Bargaining Power of Buyers
  • 15.3 Bargaining Power of Suppliers
  • 15.4 Degree of Competition
  • 15.5 Threat of New Entrants
  • 15.6 Threat of Substitutes

16 Price Analysis

17 Competitive Landscape

  • 17.1 Market Structure
  • 17.2 Key Players
  • 17.3 Profiles of Key Players
    • 17.3.1 Amazon Web Services Inc. (Amazon.com Inc.)
      • 17.3.1.1 Company Overview
      • 17.3.1.2 Product Portfolio
      • 17.3.1.3 SWOT Analysis
    • 17.3.2 Datastax Inc.
      • 17.3.2.1 Company Overview
      • 17.3.2.2 Product Portfolio
    • 17.3.3 Franz Inc.
      • 17.3.3.1 Company Overview
      • 17.3.3.2 Product Portfolio
    • 17.3.4 International Business Machines Corporation
      • 17.3.4.1 Company Overview
      • 17.3.4.2 Product Portfolio
      • 17.3.4.3 Financials
      • 17.3.4.4 SWOT Analysis
    • 17.3.5 Marklogic Corporation
      • 17.3.5.1 Company Overview
      • 17.3.5.2 Product Portfolio
    • 17.3.6 Microsoft Corporation
      • 17.3.6.1 Company Overview
      • 17.3.6.2 Product Portfolio
      • 17.3.6.3 Financials
      • 17.3.6.4 SWOT Analysis
    • 17.3.7 Neo4j Inc.
      • 17.3.7.1 Company Overview
      • 17.3.7.2 Product Portfolio
    • 17.3.8 Objectivity Inc.
      • 17.3.8.1 Company Overview
      • 17.3.8.2 Product Portfolio
    • 17.3.9 Oracle Corporation
      • 17.3.9.1 Company Overview
      • 17.3.9.2 Product Portfolio
      • 17.3.9.3 Financials
      • 17.3.9.4 SWOT Analysis
    • 17.3.10 Stardog Union
      • 17.3.10.1 Company Overview
      • 17.3.10.2 Product Portfolio
    • 17.3.11 Tibco Software Inc.
      • 17.3.11.1 Company Overview
      • 17.3.11.2 Product Portfolio
      • 17.3.11.3 SWOT Analysis
    • 17.3.12 Tigergraph Inc.
      • 17.3.12.1 Company Overview
      • 17.3.12.2 Product Portfolio
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제