시장보고서
상품코드
1806284

그래프 데이터베이스 시장 : 구성요소별, 데이터 모델별, 데이터베이스 유형별, 가격 모델별, 전개 모델별, 용도별, 업계별 - 세계 예측(2025-2030년)

Graph Database Market by Component, Data Model, Database Type, Pricing Model, Deployment Model, Application, Industry Vertical - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

그래프 데이터베이스 시장은 2024년에는 18억 6,000만 달러로 평가되었으며, 2025년에는 20억 4,000만 달러, CAGR 9.60%로 성장하여 2030년에는 32억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 18억 6,000만 달러
추정 연도 2025년 20억 4,000만 달러
예측 연도 2030년 32억 3,000만 달러
CAGR(%) 9.60%

그래프 데이터베이스가 어떻게 데이터 연결에 혁명을 일으켜 현대 기업 환경에서 전례 없는 인사이트를 제공하는지 알아보십시오.

그래프 데이터베이스는 복잡한 관계를 모델링하는 혁신적인 접근 방식을 제공하고, 기존 관계형 시스템에서는 어려웠던 실시간 인사이트를 가능하게 하는 현대 데이터 아키텍처 진화의 기초 기술로 등장했습니다. 그래프 데이터베이스는 데이터를 표와 행이 아닌 노드와 엣지로 표현함으로써 기업이 상호연결된 정보를 탐색하는 방식을 근본적으로 변화시켜 다양한 도메인에서 고도의 분석과 민첩한 의사결정을 지원합니다.

그래프 데이터베이스의 채택을 촉진하고 기업 분석의 미래를 형성하는 데이터 아키텍처의 중요한 변화를 살펴봅니다.

지난 10년간 데이터 관리 환경은 데이터 양, 다양성, 속도의 기하급수적인 증가로 변모해 왔습니다. 기업 워크로드의 기본 선택이었던 전통적인 관계형 데이터베이스 관리 시스템은 복잡한 관계 분석과 실시간 그래프 트래버스와 같은 진화하는 요구 사항을 충족시키기 위해 고군분투해 왔습니다. 그 결과, 상호연결된 데이터세트를 트래버스하기 위해 특별히 설계된 스토리지 아키텍처와 쿼리 언어의 혁신에 힘입어 그래프 데이터베이스의 채택이 급증했습니다.

2025년까지 미국의 새로운 관세가 공급망 및 기술 투자에 미치는 누적적 영향 평가, 그래프 데이터베이스

2025년 하드웨어 부품, 소프트웨어 라이선스, 클라우드 인프라 서비스에 대한 미국의 새로운 관세 부과로 인해 그래프 데이터베이스 생태계에 운영상의 도전과 전략적 재조정이 요구되고 있습니다. 고성능 서버, 특수 저장장치, 네트워크 어플라이언스에 의존하는 조직은 조달 비용의 상승으로 인해 총소유비용과 구축 전략을 재평가해야 하는 상황에 직면해 있습니다.

구성요소, 데이터 모델, 가격, 도입 유형, 용도, 산업별 등 중요한 세분화 관점을 밝힙니다.

그래프 데이터베이스 시장의 세분화를 종합적으로 분석하면 여러 차원에 걸친 미묘한 성능과 채택 역학을 파악할 수 있습니다. 구성요소를 평가할 때, 강력한 솔루션 플랫폼과 전략적 컨설팅 계약부터 지속적인 지원 및 유지보수, 복잡한 시스템 통합 프로젝트에 이르기까지 전문적인 서비스가 결합된 강력한 솔루션 플랫폼은 기업이 도입의 성공을 극대화하기 위해 엔드-투-엔드 전문지식을 어떻게 찾고 있는지 알 수 있습니다. 데이터 모델에서는 속성 그래프 구조가 여전히 범용 애플리케이션을 지배하는 한편, 하이퍼그래프 데이터베이스가 다차원 분석을 주도하고, 리소스 기술 프레임워크가 시맨틱 웹과 메타데이터 카탈로그 이니셔티브를 지원하는 등 뚜렷한 사용 패턴이 나타나고 있습니다. 뚜렷한 사용 패턴이 나타나고 있습니다.

그래프 데이터베이스 솔루션의 아메리카, 유럽, 중동 및 아프리카, 아시아태평양 역학 및 채택 패턴 분석

그래프 데이터베이스 솔루션의 세계 궤적을 형성하는 데 있어 지역적 역학은 매우 중요한 역할을 하고 있습니다. 아메리카에서는 디지털 전환 이니셔티브에 대한 활발한 투자로 인해 하이퍼스케일 클라우드 제공업체와 엔터프라이즈 기술 벤더의 조기 채택이 촉진되었습니다. 한편, 북미에서는 주요 금융기관과 정부기관이 부정행위 탐지 및 규제 준수를 강화하기 위해 그래프 기반 시스템을 시범적으로 도입하고 있으며, 보다 광범위한 상용화가 가속화되고 있습니다.

그래프 데이터베이스 시장 상황에서 혁신 파트너십과 경쟁 전략을 추진하는 업계 진입 기업 프로파일링 및 시장 상황 분석

그래프 데이터베이스 분야의 주요 벤더들은 경쟁 우위를 확보하기 위해 차별화 전략을 채택하고, 제휴 체결, 오픈 소스 커뮤니티에 대한 투자, 표적형 인수를 통해 제품 포트폴리오를 강화하고 있습니다. 주요 시장 기업들은 관리형 클라우드 서비스 및 개발자 친화적인 툴을 도입하여 세계 사업 확장과 주류 데이터 생태계와의 원활한 통합에 대한 수요 증가에 대응하고 있습니다.

그래프 데이터베이스의 역량을 활용하기 위한 업계 리더를 위한 전략적 제안 운영의 우수성을 촉진하고 성장을 가속화하기 위해

그래프 데이터베이스의 혁신 가능성을 활용하고자 하는 업계 리더는 데이터 품질 기준, 보안 프로토콜, 컴플라이언스 관리를 포괄하는 명확한 거버넌스 프레임워크를 구축하는 것부터 시작해야 합니다. 조직은 강력한 그래프 데이터 거버넌스 전략을 정의함으로써 민감한 관계와 관련된 리스크를 줄이고, 중요한 분석 이니셔티브 전반에 걸쳐 일관된 데이터 무결성을 보장할 수 있습니다.

그래프 데이터베이스에 대한 투자 및 이니셔티브에서 가치를 극대화하기 위한 이해관계자 가이드, 주요 발견과 전략적 의미 통합

네트워크 중심의 데이터 요구사항과 고급 분석의 필요성이 결합되면서 그래프 데이터베이스는 차세대 데이터 아키텍처의 핵심 구성요소로 확고히 자리매김하고 있습니다. 이 요약을 통해 관계 우선 데이터 모델의 필요성, 하이브리드 배포 패러다임의 부활, 복잡해지는 생태계를 관리하기 위한 전반적인 거버넌스의 필요성이라는 중요한 주제가 부각되었습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 그래프 데이터베이스 시장 : 구성요소별

  • 서비스
    • 컨설팅
    • 지원과 유지관리
    • 시스템 통합
  • 솔루션

제9장 그래프 데이터베이스 시장 : 데이터 모델별

  • 하이퍼 그래프 데이터베이스
  • 프로퍼티 그래프
  • 자원 기술 프레임워크

제10장 그래프 데이터베이스 시장 : 데이터베이스 종류별

  • 네이티브 그래프 데이터베이스
  • 비네이티브 그래프 데이터베이스

제11장 그래프 데이터베이스 시장 : 가격 모델별

  • 라이선스 기반
  • 구독 기반

제12장 그래프 데이터베이스 시장 : 전개 모델별

  • 클라우드 기반
  • 온프레미스

제13장 그래프 데이터베이스 시장 : 용도별

  • 부정행위 검출
  • ID 및 액세스 관리
  • 네트워크와 IT 운영
  • 추천 엔진
  • 리스크와 컴플라이언스 관리
  • 소셜 미디어 분석

제14장 그래프 데이터베이스 시장 : 업계별

  • 은행, 금융 서비스, 보험(BFSI)
  • 정부 및 공공 부문
  • 헬스케어와 생명과학
  • 소매·E-Commerce
  • 통신·IT
  • 운송·물류

제15장 아메리카의 그래프 데이터베이스 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 그래프 데이터베이스 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 그래프 데이터베이스 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Neo4j, Inc.
    • ArangoDB Inc.
    • TigerGraph, Inc.
    • Amazon Web Services Inc.
    • Microsoft Corporation
    • Graphwise
    • International Business Machine Corporation
    • DataStax, Inc.
    • Altair Engineering Inc.
    • Memgraph Ltd.
    • Stardog Union
    • Franz Inc.
    • Hewlett Packard Enterprise Development LP
    • SAP SE
    • Actian Corporation by HCL Technologies Limited
    • Linkurious SAS
    • Fluree
    • Couchbase, Inc.
    • PuppyQuery Inc.
    • Redis Ltd.
    • RelationalAI, Inc.
    • Apollo GraphQL
    • Elasticsearch B.V.
    • FactNexus Pty Ltd.
    • Aerospike, Inc.

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택트

제22장 리서치 기사

제23장 부록

KSM 25.09.12

The Graph Database Market was valued at USD 1.86 billion in 2024 and is projected to grow to USD 2.04 billion in 2025, with a CAGR of 9.60%, reaching USD 3.23 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.86 billion
Estimated Year [2025] USD 2.04 billion
Forecast Year [2030] USD 3.23 billion
CAGR (%) 9.60%

Discover How Graph Databases Are Revolutionizing Data Connectivity and Enabling Unprecedented Insights in Modern Enterprise Environments

Graph databases have emerged as a cornerstone technology in the evolution of modern data architectures, offering an innovative approach to modeling complex relationships and enabling real-time insights that traditional relational systems struggle to deliver. By representing data as nodes and edges rather than tables and rows, graph databases fundamentally transform how enterprises navigate interconnected information, supporting advanced analytics and agile decision-making across various domains.

As organizations increasingly prioritize data-driven strategies, the ability to traverse and analyze complex networks of relationships-whether they involve customer interactions, supply chain dependencies, or intricate IoT ecosystems-becomes mission critical. Graph databases facilitate these capabilities by natively optimizing for relationship queries, reducing development complexity, and accelerating time to insight. This introduction sets the stage for exploring how graph database platforms are reshaping enterprise data management paradigms, empowering decision-makers to unlock hidden value within their data assets and drive innovation at scale.

Transitioning from rigid, schema-bound systems toward flexible, graph-native architectures, enterprises are realizing gains in performance, scalability, and contextual intelligence. This shift not only enhances operational efficiencies but also opens new avenues for predictive and prescriptive analytics, redefining the possibilities for enterprises committed to leveraging interconnected data.

Exploring Pivotal Shifts in Data Architecture That Are Driving Graph Database Adoption and Shaping the Future of Enterprise Analytics

Over the past decade, the data management landscape has undergone transformative shifts driven by exponential increases in data volume, variety, and velocity. Traditional relational database management systems, once the default choice for enterprise workloads, have struggled to address the evolving demands of complex relationship analysis and real-time graph traversal. As a result, a surge in graph database adoption has occurred, anchored by breakthroughs in storage architectures and query languages designed explicitly for traversing interconnected datasets.

Concurrently, the rise of microservices, containerization, and cloud-native deployments has further catalyzed interest in graph technologies. Organizations are embracing polyglot persistence strategies, combining graph databases with key-value stores and document databases to deliver optimal performance for diverse use cases. In parallel, the emergence of declarative graph query languages and open standards has fostered an ecosystem of interoperability, making it easier for developers to integrate graph capabilities into existing data pipelines.

These shifts are also reflected in the broadening scope of graph database applications, from social network analysis and fraud detection to supply chain optimization and knowledge graph construction. Enterprises that adapt to these evolving technical and operational paradigms are positioning themselves to extract deeper insights, accelerate innovation, and maintain competitive differentiation in an increasingly data-centric world.

Assessing the Cumulative Consequences of Emerging United States Tariffs on Graph Database Supply Chains and Technology Investments through 2025

In 2025, the impact of newly imposed United States tariffs on hardware components, software licensing, and cloud infrastructure services has imposed both operational challenges and strategic recalibrations within the graph database ecosystem. Organizations reliant on high-performance servers, specialized storage devices, and network appliances have experienced elevated procurement costs, prompting a reassessment of total cost of ownership and deployment strategies.

These tariff-induced cost pressures have accelerated migration toward cloud-based offerings, where economies of scale and multi-tenant architectures can partially mitigate the higher import duties. As a result, cloud deployment models have seen an uptick among enterprises seeking to offset capital expenditure increases. Simultaneously, some on-premises adopters have explored hybrid architectures, combining local graph database clusters for latency-sensitive workloads with cloud-based instances for elastic scaling and disaster recovery.

Furthermore, strategic partnerships between technology vendors and logistics providers have emerged to streamline supply chains and minimize tariff-driven delays. These alliances focus on sourcing domestically assembled hardware, adopting open-source graph database variants, and leveraging subscription-based licensing models to distribute costs over time. Collectively, these approaches illustrate how enterprises are adjusting their technology roadmaps in response to evolving trade policies, ensuring continuity of critical graph database initiatives while managing financial and operational risks.

Uncovering Critical Segmentation Perspectives Across Components Data Models Pricing Deployment Types Applications and Industry Verticals

A comprehensive analysis of the graph database market segmentation reveals nuanced performance and adoption dynamics across multiple dimensions. When evaluating components, the convergence of robust solutions platforms with specialized services-ranging from strategic consulting engagements to ongoing support and maintenance, as well as complex system integration projects-highlights how enterprises seek end-to-end expertise to maximize deployment success. Within data models, distinct usage patterns emerge as property graph structures continue to dominate general-purpose applications, while hypergraph databases gain traction for multidimensional analytics and resource description frameworks underpin semantic web and metadata catalog initiatives.

Diving deeper, the dichotomy between native and non-native graph database types influences considerations around performance tuning, vendor lock-in, and migration complexity. License-based pricing models still resonate with organizations prioritizing fixed-cost budgeting, whereas subscription-based access appeals to cloud-first enterprises with variable consumption needs. Similarly, deployment strategies vary significantly: cloud-based implementations provide rapid scalability and minimal upfront investment, while on-premises installations address stringent data sovereignty and security requirements.

Application-driven segmentation underscores compelling use cases such as real-time fraud detection and identity and access management, as well as network and IT operations monitoring, recommendation engine personalization, rigorous risk and compliance workflows, and social media analytics for brand sentiment tracking. Industry verticals spanning banking, financial services and insurance, government and public sector, healthcare and life sciences, retail and e-commerce, telecommunications and IT, and transportation and logistics each demonstrate unique adoption velocities and customization requirements, reflecting diverse regulatory pressures and data maturity levels across these sectors.

Analyzing Regional Dynamics and Adoption Patterns Across Americas Europe Middle East Africa and Asia Pacific for Graph Database Solutions

Regional dynamics play a pivotal role in shaping the trajectory of graph database solutions worldwide. In the Americas, robust investment in digital transformation initiatives has fostered early adoption among hyperscale cloud providers and enterprise technology vendors. Meanwhile, large financial institutions and government agencies in North America are piloting graph-based systems to enhance fraud detection and regulatory compliance, accelerating broader commercialization.

Across Europe, the Middle East and Africa, heterogeneous regulatory environments and varying infrastructure maturity levels influence deployment preferences. Western European markets exhibit a balanced mix of cloud-first and on-premises approaches, driven by strict data privacy mandates. In contrast, emerging markets within the region often leverage managed service offerings to bridge capability gaps and expedite time to insight, benefiting from partnerships between global technology providers and local system integrators.

The Asia-Pacific region stands out for its rapid digital adoption, fueled by aggressive cloud infrastructure expansion and government-led smart city initiatives. Organizations across APAC are harnessing graph database capabilities for telecommunications network optimization, supply chain resiliency, and social media analytics at scale. These factors underscore the region's position as both an innovation hub and a high-growth market for graph database platforms.

Profiling Leading Industry Participants Driving Innovation Partnerships and Competitive Strategies within the Graph Database Market Landscape

Leading vendors in the graph database space have adopted differentiated strategies to establish competitive advantage, forging alliances, investing in open-source communities, and enhancing product portfolios through targeted acquisitions. Key market players have expanded their global footprint by introducing managed cloud services and developer-friendly tooling, catering to the growing demand for seamless integration with mainstream data ecosystems.

Strategic partnerships between graph database providers and major cloud platforms have become instrumental in accelerating time to value. These collaborations enable co-engineered solutions, streamlined onboarding experiences, and optimized performance across hybrid environments. Additionally, vendors are intensifying R&D efforts in areas like native graph query optimization, real-time analytics, and AI-powered use case accelerators to address evolving enterprise requirements.

Competitive differentiation also stems from comprehensive partner ecosystems, where system integrators, consulting firms, and independent software vendors collaborate to deliver verticalized solutions tailored to sectors such as financial services, healthcare, and retail. These alliances facilitate rapid customization, minimize integration risks, and foster knowledge transfer, ultimately enhancing customer satisfaction and driving deeper market penetration.

Strategic Recommendations for Industry Leaders to Harness Graph Database Capabilities Drive Operational Excellence and Accelerate Growth

Industry leaders seeking to capitalize on the transformative potential of graph databases should begin by establishing clear governance frameworks that encompass data quality standards, security protocols, and compliance controls. By defining a robust graph data governance strategy, organizations can mitigate risks associated with sensitive relationships and ensure consistent data integrity across critical analytics initiatives.

Investing in talent development is equally essential; cultivating in-house expertise through targeted training programs and certification pathways ensures that technical teams possess the skills to design, deploy, and optimize advanced graph data architectures. Leaders should prioritize cross-functional collaboration between data engineers, architects, and business analysts to foster a culture of shared accountability and drive user adoption.

To accelerate innovation, organizations can pilot high-impact use cases-such as fraud detection or personalized recommendation engines-via proof-of-concept deployments, iterating rapidly to capture lessons learned before scaling enterprise-wide. Additionally, forging strategic partnerships with technology vendors and academia can unlock access to emerging research, advanced feature sets, and co-development opportunities, positioning enterprises at the forefront of graph database innovation.

This study employs a rigorous research framework combining primary and secondary data collection methodologies to ensure the validity and reliability of findings. Primary research encompassed in-depth interviews with senior executives, data architects, and solution providers, complemented by surveys capturing qualitative insights on adoption drivers, challenges, and deployment strategies.

Secondary research involved comprehensive analysis of industry publications, white papers, technical documentation, and competitive intelligence reports to contextualize market trends and vendor positioning. Data triangulation techniques were applied to reconcile information from multiple sources, enhancing the robustness of segment-specific insights.

Quantitative analysis included examining investment patterns, deployment volumes, and usage metrics across component, data model, database type, pricing, deployment, application, and industry vertical segments. Regional segmentation was assessed through a combination of macroeconomic indicators, IT spending reports, and infrastructure readiness assessments. This multi-methodology approach provides a 360-degree perspective on the graph database market while ensuring transparency and methodological rigor.

Synthesis of Key Findings and Strategic Implications Guiding Stakeholders in Maximizing Value from Graph Database Investments and Initiatives

The convergence of network-centric data requirements and sophisticated analytics imperatives has firmly established graph databases as a critical component of next-generation data architectures. Throughout this summary, key themes have emerged: the imperative for relationship-first data models, the resurgence of hybrid deployment paradigms, and the need for holistic governance to manage increasingly complex ecosystems.

Market participants must navigate evolving trade regulations, technology partnerships, and competitive landscapes while aligning graph database strategies with broader digital transformation objectives. By applying segmentation insights across components, data models, pricing, deployment, applications, and industry verticals, stakeholders can pinpoint optimal entry points and tailor solutions to their unique business contexts.

Ultimately, the strategic implications of these findings underscore the necessity for enterprises to adopt agile data architectures, foster specialized talent, and embrace collaborative innovation models. As graph database capabilities continue to evolve, organizations poised to integrate these insights into their decision-making processes will unlock new levels of operational resilience and strategic differentiation.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rapid adoption of AI-driven graph analytics for predictive customer insights in retail
  • 5.2. Increasing deployment of cloud-native graph database as service offerings for scalability
  • 5.3. Integration of graph databases with enterprise knowledge graphs for unified data discovery
  • 5.4. Real-time fraud detection platforms leveraging graph database relationship scoring algorithms
  • 5.5. Emerging use of graph database-powered cybersecurity threat intelligence for anomaly detection
  • 5.6. Growth of multi-model graph database solutions combining property graph and RDF ontologies
  • 5.7. Automation of schema extraction and graph modeling using machine learning techniques in graph databases
  • 5.8. Adoption of graph database-driven supply chain provenance tracking for transparency and compliance

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Graph Database Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Consulting
    • 8.2.2. Support & Maintenance
    • 8.2.3. System Integration
  • 8.3. Solutions

9. Graph Database Market, by Data Model

  • 9.1. Introduction
  • 9.2. Hypergraph Databases
  • 9.3. Property Graph
  • 9.4. Resource Description Framework

10. Graph Database Market, by Database Type

  • 10.1. Introduction
  • 10.2. Native Graph Database
  • 10.3. Non-native Graph Database

11. Graph Database Market, by Pricing Model

  • 11.1. Introduction
  • 11.2. License-based
  • 11.3. Subscription-based

12. Graph Database Market, by Deployment Model

  • 12.1. Introduction
  • 12.2. Cloud-based
  • 12.3. On-premises

13. Graph Database Market, by Application

  • 13.1. Introduction
  • 13.2. Fraud Detection
  • 13.3. Identity & Access Management
  • 13.4. Network & IT Operations
  • 13.5. Recommendation Engines
  • 13.6. Risk & Compliance Management
  • 13.7. Social Media Analytics

14. Graph Database Market, by Industry Vertical

  • 14.1. Introduction
  • 14.2. Banking, Financial Services, & Insurance (BFSI)
  • 14.3. Government & Public Sector
  • 14.4. Healthcare & Life Sciences
  • 14.5. Retail & E-commerce
  • 14.6. Telecommunications & IT
  • 14.7. Transportation & Logistics

15. Americas Graph Database Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Graph Database Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Graph Database Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Neo4j, Inc.
    • 18.3.2. ArangoDB Inc.
    • 18.3.3. TigerGraph, Inc.
    • 18.3.4. Amazon Web Services Inc.
    • 18.3.5. Microsoft Corporation
    • 18.3.6. Graphwise
    • 18.3.7. International Business Machine Corporation
    • 18.3.8. DataStax, Inc.
    • 18.3.9. Altair Engineering Inc.
    • 18.3.10. Memgraph Ltd.
    • 18.3.11. Stardog Union
    • 18.3.12. Franz Inc.
    • 18.3.13. Hewlett Packard Enterprise Development LP
    • 18.3.14. SAP SE
    • 18.3.15. Actian Corporation by HCL Technologies Limited
    • 18.3.16. Linkurious SAS
    • 18.3.17. Fluree
    • 18.3.18. Couchbase, Inc.
    • 18.3.19. PuppyQuery Inc.
    • 18.3.20. Redis Ltd.
    • 18.3.21. RelationalAI, Inc.
    • 18.3.22. Apollo GraphQL
    • 18.3.23. Elasticsearch B.V.
    • 18.3.24. FactNexus Pty Ltd.
    • 18.3.25. Aerospike, Inc.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제