½ÃÀ庸°í¼­
»óǰÄÚµå
1722632

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå º¸°í¼­ : Àç·á À¯Çü, Á¦Á¶ ¹æ¹ý, ¿ëµµ, Áö¿ªº°(2025-2033³â)

Nanoporous Membranes Market Report by Material Type, Fabrication Method, Application, and Region 2025-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IMARC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 144 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â 9¾ï 2,400¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. ÇâÈÄ IMARC GroupÀº 2033³â±îÁö ½ÃÀå ±Ô¸ð°¡ 15¾ï 6,640¸¸ ´Þ·¯¿¡ ´ÞÇϰí, 2025-2033³â ¿¬Æò±Õ ¼ºÀå·ü(CAGR)Àº 5.74%¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ½ÃÀåÀº ¹° ¿©°ú ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü, Á¦¾à ¹× »ý¸í°øÇÐ ºÐ¾ßÀÇ Á¦Ç° ¼ö¿ä Áõ°¡, ÇコÄÉ¾î ºÐ¾ß¿¡¼­ÀÇ Àû¿ë È®´ë, ¿¡³ÊÁö È¿À²ÀûÀÎ ºÐ¸® °øÁ¤¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ³ª³ë±â¼úÀÇ ¿¬±¸ ¹× °³¹ß ÁøÇà µîÀ¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå ºÐ¼® :

  • ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ : ÷´Ü ¼öó¸® ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ½ÃÀå ÃËÁøÀÇ ÁÖ¿ä ¿äÀÎÀÔ´Ï´Ù. ¶ÇÇÑ, Á¦¾à ¹× »ý¸í°øÇÐ »ê¾÷°ú ÇコÄÉ¾î ¹× ÀÇ·á±â±â ºÐ¾ß¿¡¼­ÀÇ Á¦Ç° »ç¿ë Áõ°¡°¡ ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.
  • ÁÖ¿ä ½ÃÀå µ¿Çâ : È­ÇРó¸® ¹× ½ÄÀ½·á(F&B) µîÀÇ »ê¾÷¿¡¼­ ¿¡³ÊÁö È¿À²ÀÌ ³ôÀº ºÐ¸® °øÁ¤ÀÇ Ã¤ÅÃÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀÌ ÁÖ¿äÇÑ Ãß¼¼ÀÔ´Ï´Ù. ¶ÇÇÑ, ±×·¡Çɰú °°Àº ¼ÒÀ縦 ÅëÇÑ ³ª³ë±â¼úÀÇ ºñ¾àÀûÀÎ ¹ßÀü°ú Çõ½ÅÀûÀÎ Á¦Á¶ ¹æ¹ýÀÇ ¿¬±¸°³¹ß(R&D)¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ³ª³ë ´Ù°ø¼º ¸âºê·¹Àο¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • Áö¸®Àû µ¿Çâ : ºÏ¹Ì´Â °ßÁ¶ÇÑ »ê¾÷ ¼ö¿ä, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ±â¼ú Çõ½Å°ú Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ °ü½É Áõ°¡·Î ½ÃÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ´Ù¸¥ Áö¿ªµµ ±Þ¼ÓÇÑ »ê¾÷ È®Àå°ú µµ½ÃÈ­·Î ÀÎÇØ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
  • °úÁ¦¿Í ±âȸ: ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå ºÐ¼®¿¡ µû¸£¸é, ³ôÀº »ý»ê ºñ¿ë°ú ¸âºê·¹ÀÎ Á¦Á¶ÀÇ ½ºÄÉÀϾ÷¿¡ ´ëÇÑ ±â¼úÀû ¾î·Á¿òÀÌ ½ÃÀå ±â¾÷ÀÇ ÁÖ¿ä Àå¾Ö¹°ÀÓÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ȯ°æ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ±ÔÁ¦ ¾Ð·ÂÀÌ Áõ°¡ÇÔ¿¡ µû¶ó »ê¾÷°è´Â ÷´Ü ¿©°ú ±â¼úÀ» äÅÃÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå¿¡ ¼ºÀå ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå µ¿Çâ :

Á¤¼ö ±â¼úÀÇ ±Þ¼ÓÇÑ ¹ßÀü

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎÀº ºÐÀÚ ¼öÁØ¿¡¼­ ¿À¿°¹°ÁúÀ» ¼±ÅÃÀûÀ¸·Î ¿©°úÇÒ ¼ö ÀÖ¾î Ãֽй° ¿©°ú ½Ã½ºÅÛ¿¡ äÅõǰí ÀÖ½À´Ï´Ù. ƯÈ÷ ¹° ºÎÁ·°ú ¿À¿°ÀÌ ½ÉÇÑ Áö¿ª¿¡¼­´Â ±ú²ýÇÏ°í ¸¶½Ç ¼ö ÀÖ´Â ¹°¿¡ ´ëÇÑ ¼ö¿ä°¡ Àü ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é, 2022³â¿¡´Â ÃÖ¼Ò 17¾ï ¸íÀÌ ºÐº¯À¸·Î ¿À¿°µÈ ¹°À» ¸¶½Ç °ÍÀ̶ó°í ÇÕ´Ï´Ù. ÀÌ ³î¶ó¿î µ¥ÀÌÅÍ´Â ¹ÚÅ׸®¾Æ, ¹ÙÀÌ·¯½º ¹× ±âŸ À¯ÇØ È­Çй°Áú°ú °°Àº ¿À¿° ¹°ÁúÀ» ¹æÁöÇϸ鼭 ¹° ºÐÀÚÀÇ Åë°ú¸¦ Çã¿ëÇÏ¿© ´õ ³ôÀº ¿©°ú È¿À²À» Á¦°øÇÏ´Â ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎÀÇ »ç¿ëÀ» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¹° °ü·Ã ÀÎÇÁ¶ó Áõ°¡·Î ÀÎÇØ °í±Þ ¿©°ú ½Ã½ºÅÛÀÌ »ç¿ëµÇ¾î Á¦Ç° ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ÀÇ ÃÊ´çÀû ÀÎÇÁ¶ó¹ý(BIL)Àº ¹Ì±¹ÀÇ ½Ä¼ö, Æó¼ö ¹× ºø¹° ÀÎÇÁ¶ó¸¦ °³¼±Çϱâ À§ÇØ È¯°æº¸È£Ã»(EPA)¿¡ 500¾ï ´Þ·¯ ÀÌ»óÀ» Áö¿øÇß½À´Ï´Ù.

Á¦¾à-¹ÙÀÌ¿À »ê¾÷ÀÇ ¼ºÀå

IMARC GroupÀÇ º¸°í¼­¿¡ µû¸£¸é, ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå ¿¹ÃøÀº Á¦¾à ¹× »ý¸í °øÇÐ ºÐ¾ßÀÇ È®ÀåÀÌ ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀåÀÇ ¼ºÀåÀ» Å©°Ô ÃËÁøÇϰí ÀÖÀ¸¸ç, »ý¸í °øÇÐ ½ÃÀåÀº ¿¬°£ 6.53%ÀÇ ºü¸¥ ¼Óµµ·Î ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ 2032³â¿¡´Â 1Á¶ 2,772¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎÀº ƯÈ÷ ¾à¹° Àü´Þ, ´Ü¹éÁú Á¤Á¦, ¼¼Æ÷ ºÐ¸® µî ´Ù¾çÇÑ »ê¾÷¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¾à¹° Àü´Þ ½Ã½ºÅÛ¿¡¼­ ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀº ÀǾàǰ Ȱ¼º ¼ººÐÀÇ Á¦¾îµÈ ¹æÃâÀ» °¡´ÉÇÏ°Ô ÇÏ¿© º¸´Ù Á¤È®ÇÑ Åõ¾à°ú Ä¡·á °á°úÀÇ °³¼±À» º¸ÀåÇÕ´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ¸âºê·¹ÀÎÀº ´Ü¹éÁú, È¿¼Ò ¹× ±âŸ »ý¹°ÇÐÀû ºÐÀÚ¸¦ Å©±â¿Í ÀüÇϸ¦ ±âÁØÀ¸·Î ºÐ¸®ÇÏ´Â µ¥ »ç¿ëµÇ±â ¶§¹®¿¡ »ý¸í °øÇÐÀÇ ´Ù¿î½ºÆ®¸² 󸮿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼öÁØÀÇ Á¤È®µµ´Â ¿À¿° ¹°ÁúÀÌ Á¦Ç°ÀÇ È¿´É°ú ¾ÈÀü¼º¿¡ ½É°¢ÇÑ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ´Â °í¼øµµ ¹ÙÀÌ¿À ÀǾàǰ°ú ¹é½ÅÀÇ Á¦Á¶¿¡ ÇʼöÀûÀÔ´Ï´Ù.

ÇコÄÉ¾î ¹× ÀÇ·á±â±â Ȱ¿ë È®´ë

³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎÀº ÇコÄÉ¾î ¹× ÀÇ·á±â±â¿¡¼­ Ȱ¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡ ´ëÇÑ Á¤ºÎÀÇ ÅõÀÚ Áõ°¡°¡ ³ª³ë´Ù°ø¼º¸· ½ÃÀå Á¡À¯À²À» Å©°Ô ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, Àεµ Á¤ºÎ(GoI)´Â ÀÇ·á±â±â ºÐ¾ßÀÇ ±¹³» Á¦Á¶¸¦ ÃËÁøÇϱâ À§ÇØ »ý»ê ¿¬µ¿ Àμ¾Æ¼ºê(PLI) Á¦µµ¸¦ ½ÃÇàÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á±â±â PLI Á¦µµ´Â ÀÇ·á±â±â »ê¾÷ÀÇ ¼ºÀå°ú Çõ½ÅÀ» À§ÇØ ÃÑ 26°³ÀÇ ÇÁ·ÎÁ§Æ®°¡ ½ÂÀεǾúÀ¸¸ç, ÃÑ 1¾ï 2,600¸¸ ·çÇÇ(1¾ï 4,700¸¸ ´Þ·¯)ÀÇ ÅõÀÚ°¡ ¾à¼ÓµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Áø´Ü, »óó Ä¡·á, Åõ¼®¿¡ ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎÀÇ Ã¤ÅÃÀÌ Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, Àü ¼¼°èÀûÀ¸·Î ³ëÀÎ Àα¸ Áõ°¡¿Í ´ç´¢º´ ¹× ½ÅÀå Áúȯ°ú °°Àº ¸¸¼º ÁúȯÀÇ À¯º´·ü Áõ°¡´Â ÷´Ü ÀÇ·á±â±â ¹× Ä¡·á¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ¿© ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • Á¶»ç ¸ñÀû
  • ÀÌÇØ°ü°èÀÚ
  • µ¥ÀÌÅÍ ¼Ò½º
    • 1Â÷ Á¤º¸
    • 2Â÷ Á¤º¸
  • ½ÃÀå ÃßÁ¤
    • º¸ÅÒ¾÷ Á¢±Ù
    • Åé´Ù¿î Á¢±Ù
  • Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ¼­·Ð

  • °³¿ä
  • ÁÖ¿ä ¾÷°è µ¿Çâ

Á¦5Àå ¼¼°èÀÇ ³ª³ë ´Ù°ø¼º ¸âºê·¹ÀÎ ½ÃÀå

  • ½ÃÀå °³¿ä
  • ½ÃÀå ½ÇÀû
  • COVID-19ÀÇ ¿µÇâ
  • ½ÃÀå ¿¹Ãø

Á¦6Àå ½ÃÀå ºÐ¼® : Àç·á À¯Çüº°

  • ¿À°¡´Ð
  • ¹«±â
  • ÇÏÀ̺긮µå

Á¦7Àå ½ÃÀå ºÐ¼® : Á¦Á¶ ¹æ¹ýº°

  • Phase Inversion
  • Interfacial Polymerization
  • Track-etching
  • Electrospinning

Á¦8Àå ½ÃÀå ºÐ¼® : ¿ëµµº°

  • ¼öó¸®
  • ¿¬·áÀüÁö
  • ¹ÙÀÌ¿À¸ÞµðÄÃ
  • ½Äǰ °¡°ø
  • ±âŸ

Á¦9Àå ½ÃÀå ºÐ¼® : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • È£ÁÖ
    • Àεµ³×½Ã¾Æ
    • ±âŸ
  • À¯·´
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ·¯½Ã¾Æ
    • ±âŸ
  • ¶óƾ¾Æ¸Þ¸®Ä«
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
    • ±âŸ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ½ÃÀå ³»¿ª : ±¹°¡º°

Á¦10Àå SWOT ºÐ¼®

  • °³¿ä
  • °­Á¡
  • ¾àÁ¡
  • ±âȸ
  • À§Çù

Á¦11Àå ¹ë·ùüÀÎ ºÐ¼®

Á¦12Àå PorterÀÇ Five Forces ºÐ¼®

  • °³¿ä
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • °æÀï Á¤µµ
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • ´ëüǰÀÇ À§Çù

Á¦13Àå °¡°Ý ºÐ¼®

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå ±¸Á¶
  • ÁÖ¿ä ±â¾÷
  • ÁÖ¿ä ±â¾÷ °³¿ä
    • Alfa Laval AB
    • Applied Membranes Inc.
    • AXEON Water Technologies
    • DuPont de Nemours Inc.
    • Hunan Keensen Technology Co. Ltd.
    • inopor GmbH(Rauschert GmbH)
    • InRedox LLC
    • Koch Separation Solutions(Koch Industries Inc.)
    • Nitto Denko Corporation
    • Osmotech Membranes Pvt. Ltd.
    • SiMPore Inc.
    • SmartMembranes GmbH
LSH

The global nanoporous membranes market size reached USD 924.0 Million in 2024. Looking forward, IMARC Group expects the market to reach USD 1,566.4 Million by 2033, exhibiting a growth rate (CAGR) of 5.74% during 2025-2033. The market is experiencing significant growth due to rapid advancements in water filtration technologies, increasing product demand in pharmaceutical and biotechnology sectors, expanding application in the healthcare sector, rising need for energy-efficient separation processes, and the ongoing research and development (R&D) in nanotechnology.

Nanoporous Membranes Market Analysis:

  • Major Market Drivers: The demand for advanced water treatment technologies is a key market driver. Moreover, the heightened product utilization in the pharmaceutical and biotechnology industries, as well as the healthcare and medical device sectors, is acting as a growth-inducing factor.
  • Key Market Trends: The growing adoption of energy-efficient separation processes across industries such as chemical processing and food and beverages (F&B) is a major trend. Moreover, the rising breakthroughs in nanotechnology with materials like graphene, as well as increased focus on research and development (R&D) for innovative fabrication methods, are adding to the demand for nanoporous membranes.
  • Geographical Trends: North America is leading the market, driven by robust industrial demand, stringent environmental regulations, and the increased focus on innovation and sustainability. Other regions are also experiencing growth driven by rapid industrial expansion and urbanization.
  • Competitive Landscape: Some of the major market players in the nanoporous membranes industry include Alfa Laval AB, Applied Membranes Inc., AXEON Water Technologies, DuPont de Nemours Inc., Hunan Keensen Technology Co. Ltd., inopor GmbH (Rauschert GmbH), InRedox LLC, Koch Separation Solutions (Koch Industries Inc.), Nitto Denko Corporation, Osmotech Membranes Pvt. Ltd., SiMPore Inc., SmartMembranes GmbH., among many others.
  • Challenges and Opportunities: The nanoporous membranes market analysis highlight that the high production costs and technical challenges in scaling up membrane fabrication are key obstacles for market players. However, the increasing regulatory pressures on environmental sustainability that is encouraging industries to adopt advanced filtration technologies is offering growth opportunities for the market.

Nanoporous Membranes Market Trends:

Rapid Advancements in Water Filtration Technologies

Nanoporous membranes are employed in modern water filtration systems as they are capable of selectively filtering contaminants at the molecular level. There is an increasing demand for clean and drinkable water across the globe, particularly in areas with water scarcity or contamination. As per the World Health Organization (WHO), at least 1.7 billion people consumed water that is polluted with feces in 2022. This alarming data highlights the use of nanoporous membranes as they offer greater filtration efficiency by enabling water molecules to flow through while preventing contaminants such as bacteria, viruses, and other hazardous chemicals. Furthermore, the increase in water-related infrastructure, resulting in the use of advanced filtering systems, is driving the product demand. For instance, the Bipartisan Infrastructure Law (BIL) in the United States delivers more than $50 billion to the Environmental Protection Agency (EPA) to improve the nation's drinking water, wastewater, and stormwater infrastructure.

Growth in the Pharmaceutical and Biotechnology Industries

The nanoporous membrane market forecast highlights that expansion in the pharmaceutical and biotechnology sectors is significantly boosting the nanoporous membranes market growth. As per the IMARC Group report, the biotechnology market is growing rapidly at a rate of 6.53% annually. It is also expected to reach US$ 1,277.2 billion by 2032. Nanoporous membranes are increasingly being utilized across various industries, particularly in drug delivery, protein purification, and cell separation. In drug delivery systems, these membranes enable the controlled release of active pharmaceutical ingredients, ensuring more precise dosage and improved therapeutic outcomes. Moreover, these membranes play a significant role in biotechnology for downstream processing, as they are used for separating proteins, enzymes, and other biological molecules based on size or charge. This level of precision is vital in the production of high-purity biopharmaceuticals and vaccines, where contaminants can severely impact product efficacy and safety.

Expanding Use in Healthcare and Medical Devices

Nanoporous membranes are increasingly utilized in healthcare and medical devices. The rising investment by governments in the healthcare sector is majorly propelling the nanoporous membranes market share. For instance, the Government of India (GoI) has launched the Production Linked Incentive (PLI) Scheme to boost domestic manufacturing in the medical devices sector. Under the PLI scheme for medical devices, a total of 26 projects have been approved, with a committed investment of INR 1206 Cr ($147 Mn) to enable growth and innovation in the MedTech industry. This has increased the adoption of nanoporous membranes in diagnostics, wound care, and dialysis. Moreover, the growing geriatric population across the globe and the increasing prevalence of chronic diseases like diabetes and kidney disorders are driving the demand for advanced medical devices and treatments, further boosting the nanoporous membrane market.

Nanoporous Membranes Market Segmentation:

Breakup by Material Type:

  • Organic
  • Inorganic
  • Hybrid

Organic accounts for the majority of the market share

As per the nanoporous membrane market research report, the organic segment dominated the market due to its wide range of applications and superior performance in filtration and separation processes. Organic membranes are made from polymers and are favored for their flexibility, chemical resistance, and cost-effectiveness. These membranes are extensively used in industries such as pharmaceuticals, biotechnology, and water treatment, where precise filtration and separation of substances are essential. Moreover, rapid advancements in polymer technology that enhance product durability and efficiency in various operating environments are boosting the market growth.

Breakup by Fabrication Method:

  • Phase Inversion
  • Interfacial Polymerization
  • Track-etching
  • Electrospinning

Phase inversion is a widely used fabrication method for nanoporous membranes, especially in water treatment and gas separation applications. This process involves the transformation of a polymer solution into a solid membrane with controlled pore sizes by inducing phase separation. Moreover, the versatility of phase inversion allows manufacturers to tailor the membrane's structure for specific filtration needs, enhancing its selectivity and permeability.

Interfacial polymerization is a popular method for producing thin-film composite nanoporous membranes in reverse osmosis and nanofiltration systems. This technique involves a polymerization reaction at the interface between two immiscible phases, typically an organic and an aqueous solution. The result is a highly selective, thin membrane with excellent mechanical strength and chemical resistance.

According to the nanoporous membrane market overview, track-etching is a precise fabrication method that involves bombarding a polymer film with high-energy ions, followed by chemical etching to create uniform, cylindrical pores. This technique allows for exact control over pore size and density, making track-etched membranes ideal for applications that require consistent and highly specific filtration, such as biomedical research and diagnostics.

Electrospinning is an advanced fabrication method used to produce nanoporous membranes with a highly interconnected pore structure by applying an electric field to a polymer solution, forming ultrafine fibers. These membranes are widely used in applications that require high surface area and porosity, such as tissue engineering, air filtration, and battery separators.

Breakup by Application:

  • Water Treatment
  • Fuel Cells
  • Biomedical
  • Food Processing
  • Others

Water treatment represents the leading market segment

Based on the nanoporous membrane market forecast, water treatment holds the largest share, driven by the growing need for clean and safe water across the globe. Nanoporous membranes are highly effective in removing contaminants, pathogens, and chemical pollutants, making them essential in desalination, wastewater treatment, and potable water purification. Along with this, the rising water scarcity and pollution, prompting industries and governments to adopt advanced filtration technologies, is catalyzing the market growth. Furthermore, the efficiency of these membranes in providing high-purity water at lower energy costs compared to traditional methods is boosting the market growth.

Breakup by Region:

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • India
    • South Korea
    • Australia
    • Indonesia
    • Others
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Russia
    • Others
  • Latin America
    • Brazil
    • Mexico
    • Others
  • Middle East and Africa

North America leads the market, accounting for the largest nanoporous membranes market share

The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America represents the largest regional market for nanoporous membranes.

Based on the nanoporous membranes market outlook, North America dominated the market due to its well-established industrial sector, advanced technological infrastructure, and high demand for efficient water treatment solutions. Moreover, the increasing focus on environmental sustainability, coupled with stringent regulatory frameworks for water and air quality, is driving the adoption of nanoporous membranes across various industries, including pharmaceuticals, biotechnology, and wastewater treatment. Additionally, the strong healthcare sector, boosting the demand for nanoporous membranes in medical applications such as drug delivery and diagnostics, is fueling the market growth.

Competitive Landscape:

  • The market research report has also provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the major market players in the nanoporous membranes industry include Alfa Laval AB, Applied Membranes Inc., AXEON Water Technologies, DuPont de Nemours Inc., Hunan Keensen Technology Co. Ltd., inopor GmbH (Rauschert GmbH), InRedox LLC, Koch Separation Solutions (Koch Industries Inc.), Nitto Denko Corporation, Osmotech Membranes Pvt. Ltd., SiMPore Inc., SmartMembranes GmbH., etc.

(Please note that this is only a partial list of the key players, and the complete list is provided in the report.)

  • The leading players in the market are focusing on research and development (R&D) to enhance membrane efficiency, durability, and sustainability. Moreover, they are investing in advanced materials, such as graphene and other nanocomposites, to improve performance in water filtration, gas separation, and biomedical applications. Besides this, several companies are focusing on strategic collaborations and partnerships to integrate their technologies into a broader range of industries. Apart from this, they are expanding their production capacities to meet the growing product demand.

Nanoporous Membranes Market News:

  • In April 2024, DuPont announced that FilmTec LiNE-XD nanofiltration membrane elements, the company's first offering dedicated to lithium brine purification, was awarded a 2024 Bronze Edison Award in the Resource Recovery & Environmental Conservation category. FilmTec LiNE-XD elements feature an advanced, durable nanofiltration membrane chemistry that helps enable reliable performance, increased water and lithium recovery, and reduced energy consumption.

Key Questions Answered in This Report

  • 1.What was the size of the global nanoporous membranes market in 2024?
  • 2.What is the expected growth rate of the global nanoporous membranes market during 2025-2033?
  • 3.What has been the impact of COVID-19 on the global nanoporous membranes market?
  • 4.What are the key factors driving the global nanoporous membranes market?
  • 5.What is the breakup of the global nanoporous membranes market based on the material type?
  • 6.What is the breakup of the global nanoporous membranes market based on the application?
  • 7.What are the key regions in the global nanoporous membranes market?
  • 8.Who are the key players/companies in the global nanoporous membranes market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Nanoporous Membranes Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Material Type

  • 6.1 Organic
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Inorganic
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Hybrid
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Fabrication Method

  • 7.1 Phase Inversion
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Interfacial Polymerization
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Track-etching
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Electrospinning
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast

8 Market Breakup by Application

  • 8.1 Water Treatment
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Fuel Cells
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Biomedical
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast
  • 8.4 Food Processing
    • 8.4.1 Market Trends
    • 8.4.2 Market Forecast
  • 8.5 Others
    • 8.5.1 Market Trends
    • 8.5.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Alfa Laval AB
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
      • 14.3.1.3 Financials
      • 14.3.1.4 SWOT Analysis
    • 14.3.2 Applied Membranes Inc.
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
    • 14.3.3 AXEON Water Technologies
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
    • 14.3.4 DuPont de Nemours Inc.
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
      • 14.3.4.3 Financials
      • 14.3.4.4 SWOT Analysis
    • 14.3.5 Hunan Keensen Technology Co. Ltd.
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 inopor GmbH (Rauschert GmbH)
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
    • 14.3.7 InRedox LLC
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
    • 14.3.8 Koch Separation Solutions (Koch Industries Inc.)
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 SWOT Analysis
    • 14.3.9 Nitto Denko Corporation
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
      • 14.3.9.3 Financials
      • 14.3.9.4 SWOT Analysis
    • 14.3.10 Osmotech Membranes Pvt. Ltd.
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
    • 14.3.11 SiMPore Inc.
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
    • 14.3.12 SmartMembranes GmbH
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦