시장보고서
상품코드
1642544

농업용 로봇 시장 보고서 : 제품 유형별, 용도별, 오퍼링별, 지역별(2025-2033년)

Agricultural Robots Market Report by Product Type (Unmanned Aerial Vehicles /Drones, Milking Robots, Automated Harvesting Systems, Driverless Tractors, and Others), Application, Offering, and Region 2025-2033

발행일: | 리서치사: IMARC | 페이지 정보: 영문 131 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 농업용 로봇 시장 규모는 2024년에 104억 달러에 달했습니다. 향후 IMARC Group은 시장이 2033년까지 380억 달러에 달하며, 2025-2033년에 15.4%의 성장률(CAGR)을 보일 것으로 예측하고 있습니다. 노동력 부족, 대폭적인 기술 진보, 환경 문제에 대한 관심의 증가, 정부의 지원, 비용 삭감과 자원의 최적화, 농사일의 효율화와 생산성 향상에 대한 요구의 증가 등이 시장을 추진하고 있는 주요 요인입니다.

농업용 로봇은 농업용 로봇이라고도 불리며, 농업에서 다양한 작업을 수행하도록 설계된 특수 기계입니다. 이 로봇들은 첨단 기술과 능력을 갖추고 있으며, 특정 농업 활동을 자율적으로 또는 최소한의 인간 개입으로 수행할 수 있습니다. 심기, 파종, 제초, 수확, 작물 모니터링 등 다양한 용도로 활용되고 있습니다. 이 로봇들은 밭을 이동하고, 다양한 기상 조건에서 작동하며, 식물 및 토양과 상호 작용하도록 설계되었습니다. 이 로봇은 작업을 효율적이고 정확하게 수행하도록 프로그래밍할 수 있으며, 농업 분야의 생산성 향상과 인건비 절감에 기여할 수 있습니다. 이러한 로봇의 기능은 목적에 따라 다릅니다. 예를 들어 심기 로봇은 정밀 기술을 활용해 최적의 깊이와 간격으로 씨앗을 심어 균일한 생육을 보장합니다. 제초 로봇은 컴퓨터 비전과 머신러닝 알고리즘을 사용하여 작물에 해를 끼치지 않고 잡초를 식별하고 제거합니다. 수확 로봇은 센서와 로봇 암을 장착하여 잘 익은 과일 및 채소를 수확하고 회수합니다.

농업 분야는 전 세계 많은 지역에서 숙련된 노동력 부족에 직면해 있습니다. 따라서 농업용 로봇은 노동력 부족의 영향을 완화할 수 있는 효과적인 해결책이 될 수 있으며, 수요가 증가하고 있습니다. 또한 농업용 로봇은 농작업을 최적화하고 생산성을 높이도록 설계되었습니다. 이 로봇은 정밀도와 정확성으로 인해 심기, 제초, 수확과 같은 작업을 인간보다 더 효율적으로 수행할 수 있습니다. 이 외에도, 로봇은 한 번 설치하면 사람의 개입을 최소화할 수 있으며, 장기적으로 인건비를 절감하는 데 도움이 됩니다. 로봇은 물, 비료, 농약과 같은 자원 사용을 최적화하고, 정확하고 목표지향적인 방식으로 작업할 수 있습니다. 필요한 곳에만 투입함으로써 농업용 로봇은 비용 절감과 지속가능한 농법에 기여할 수 있습니다. 이 외에도 로봇 공학, 자동화, 인공지능(AI)의 급속한 발전으로 농업용 로봇의 능력이 크게 향상되고 있습니다. 이러한 기술을 통해 로봇은 복잡한 작업을 수행하고, 자율적으로 밭을 이동하며, 실시간 정보를 기반으로 데이터베이스 의사결정을 내릴 수 있게 되었습니다. 또한 환경 문제에 대한 인식이 높아지고 지속가능한 농업 관행에 대한 필요성이 제품 채택을 촉진하고 있습니다.

농업용 로봇 시장 동향/촉진요인:

농업 부문의 노동력 부족

농업용 로봇 도입의 주요 촉진요인 중 하나는 농업 부문의 숙련된 노동력의 지속적인 부족입니다. 다양한 지역에서 농업 종사자의 감소가 일어나고 있으며, 이는 노동 집약적인 작업을 수행하는 데 어려움을 겪고 있습니다. 이러한 로봇은 인간 노동력에 대한 의존도를 줄임으로써 해결책을 제시합니다. 이 로봇들은 지속적인 모니터링 없이도 자율적으로 작업할 수 있으며, 반복적인 작업을 효율적이고 정확하게 수행할 수 있습니다. 심기, 제초, 수확 등의 작업을 자동화함으로써 농업용 로봇은 농가가 노동력 부족을 극복하고 생산성을 향상시키며 운영 비용을 절감할 수 있도록 돕고 있습니다.

기술의 발전

로봇공학, 자동화 및 AI의 급속한 발전은 농업용 로봇의 채택을 촉진하고 있습니다. 이러한 기술들은 농업용 로봇의 능력을 크게 향상시켜 더욱 다용도하고 효율적이며 비용 효율적일 수 있게 해줍니다. 예를 들어 컴퓨터 비전과 머신러닝 알고리즘의 통합으로 로봇은 작물과 잡초를 식별하고 구별할 수 있게 되었고, 이를 통해 정확한 잡초 방제를 할 수 있게 되었습니다. 내비게이션 시스템과 센서를 통해 로봇은 밭에서 장애물을 피하면서 조종할 수 있습니다. 카메라와 다중 스펙트럼 이미지와 같은 첨단 센서를 통해 실시간으로 작물 모니터링과 최적화를 위한 데이터를 얻을 수 있습니다. 이러한 기술의 발전으로 농업용 로봇은 복잡한 작업과 의사결정을 할 수 있게 되면서 농업 산업에서 채택이 확대되고 있습니다.

환경에 대한 관심

환경에 대한 관심이 높아지고 지속가능한 농법에 대한 요구가 제품 채택을 촉진하는 주요 요인으로 작용하고 있습니다. 기존 농법은 비료, 농약, 물을 과도하게 사용하는 경우가 많아 환경 오염과 자원 고갈로 이어집니다. 농업용 로봇은 보다 정확하고 정밀한 자원 살포가 가능하여 화학물질 사용량을 줄이고 자원 활용을 최적화할 수 있습니다. 예를 들어 정밀 살포 시스템을 갖춘 로봇은 필요한 곳에만 농약을 살포할 수 있으며, 화학물질 유출과 환경에 미치는 영향을 최소화할 수 있습니다. 마찬가지로 관개용 로봇 시스템은 실시간 수분 데이터를 기반으로 식물의 뿌리에 직접 물을 공급하여 물 사용량을 최적화할 수 있습니다. 정밀농업 기술을 촉진함으로써 이 로봇은 농가가 보다 지속가능한 농법을 채택하고, 환경 발자국을 줄이고, 농업이 생태계에 미치는 악영향을 줄이는 데 도움을 줄 수 있습니다.

목차

제1장 서문

제2장 조사 범위와 조사 방법

  • 조사의 목적
  • 이해관계자
  • 데이터 소스
    • 1차 정보
    • 2차 정보
  • 시장 추정
    • 보텀업 어프로치
    • 톱다운 어프로치
  • 예측 조사 방법

제3장 개요

제4장 서론

  • 개요
  • 주요 업계 동향

제5장 세계의 농업용 로봇 시장

  • 시장 개요
  • 시장 실적
  • COVID-19의 영향
  • 시장 내역 : 제품 유형별
  • 시장 내역 : 용도별
  • 시장 내역 : 오퍼링별
  • 시장 내역 : 지역별
  • 시장 예측

제6장 시장 내역 : 제품 유형별

  • 무인항공기(UAV)/드론
    • 시장 동향
    • 시장 예측
  • 착유 로봇
    • 시장 동향
    • 시장 예측
  • 자동 수확 시스템
    • 시장 동향
    • 시장 예측
  • 무인 트랙터
    • 시장 동향
    • 시장 예측
  • 기타
    • 시장 동향
    • 시장 예측

제7장 시장 내역 : 용도별

  • 밭농사
    • 시장 동향
    • 시장 예측
  • 낙농 경영
    • 시장 동향
    • 시장 예측
  • 동물 관리
    • 시장 동향
    • 시장 예측
  • 토양 관리
    • 시장 동향
    • 시장 예측
  • 작물 관리
    • 시장 동향
    • 시장 예측
  • 기타
    • 시장 동향
    • 시장 예측

제8장 시장 내역 : 오퍼링별

  • 하드웨어
    • 시장 동향
    • 시장 예측
  • 소프트웨어
    • 시장 동향
    • 시장 예측
  • 서비스
    • 시장 동향
    • 시장 예측

제9장 시장 내역 : 지역별

  • 북미
    • 시장 동향
    • 시장 예측
  • 유럽
    • 시장 동향
    • 시장 예측
  • 아시아태평양
    • 시장 동향
    • 시장 예측
  • 중동 및 아프리카
    • 시장 동향
    • 시장 예측
  • 라틴아메리카
    • 시장 동향
    • 시장 예측

제10장 세계의 농업용 로봇 산업 : SWOT 분석

  • 개요
  • 강점
  • 약점
  • 기회
  • 위협

제11장 세계의 농업용 로봇 산업 : 밸류체인 분석

제12장 세계의 농업용 로봇 산업 : Porter's Five Forces 분석

  • 개요
  • 바이어의 교섭력
  • 공급 기업의 교섭력
  • 경쟁의 정도
  • 신규 진출업체의 위협
  • 대체품의 위협

제13장 세계의 농업용 로봇 산업 : 가격 분석

제14장 농업용 로봇의 제조 프로세스

  • 제품 개요
  • 원재료 요건
  • 제조 공정
  • 주요 성공 요인과 리스크 요인

제15장 경쟁 구도

  • 시장 구조
  • 주요 기업
  • 주요 기업의 개요
    • Deere & Company
    • Trimble Inc.
    • Agco Corporation
    • Lely Holding S.A.R.L
    • AG Eagle LLC
    • Agribotix LLC
    • Agrobot
    • Harvest Automation
    • Naio Technologies
    • Precision Hawk
    • IBM
    • Agjunction, Inc.
    • DJI
    • Boumatic Robotics, B.V.
    • AG Leader Technology
    • Topcon Positioning Systems, Inc.
    • Autocopter Corp
    • Auroras S.R.L.
    • Grownetics Inc.
    • Autonomous Tractor Corporation
KSA 25.03.05

The global agricultural robots market size reached USD 10.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 38.0 Billion by 2033, exhibiting a growth rate (CAGR) of 15.4% during 2025-2033. The labor shortages, significant technological advancements, growing environmental concerns, government support, cost reduction and resource optimization and the rising need for increased efficiency and productivity in farming operations are some of the major factors propelling the market.

Agricultural robots, also known as agribots, are specialized machines designed to perform various tasks in the agricultural industry. These robots are equipped with advanced technologies and capabilities that enable them to carry out specific agricultural activities autonomously or with minimal human intervention. They are utilized in a wide range of applications, including planting, seeding, weeding, harvesting, and crop monitoring. They are designed to navigate through fields, operate in diverse weather conditions, and interact with plants and soil. These robots can be programmed to perform tasks efficiently and accurately, contributing to increased productivity and reduced labor costs in the agricultural sector. The functionality of these robots varies depending on their purpose. For instance, planting robots use precision techniques to sow seeds at optimal depths and spacing, ensuring uniform growth. Weeding robots employ computer vision and machine learning algorithms to identify and remove weeds without harming the crops. Harvesting robots are equipped with sensors and robotic arms to pick and collect ripe fruits or vegetables.

The agricultural sector is facing a shortage of skilled labor in many regions around the world. This has led to an increased demand for agricultural robots as they offer a viable solution to mitigate the impact of labor shortages. Additionally, they are designed to optimize farming operations and enhance productivity. With their precision and accuracy, these robots can perform tasks such as planting, weeding, and harvesting more efficiently than human labor. Other than this, these robots help in reducing labor costs over time, as they require minimal human intervention once set up. They can operate in a precise and targeted manner, optimizing the use of resources such as water, fertilizers, and pesticides. By applying these inputs only where needed, agricultural robots contribute to cost reduction and more sustainable farming practices. Besides this, rapid advancements in robotics, automation, and artificial intelligence (AI) have significantly improved the capabilities of agricultural robots. These technologies enable robots to perform complex tasks, navigate through fields autonomously, and make data-driven decisions based on real-time information. Moreover, the growing awareness of environmental issues and the need for sustainable agricultural practices is driving the product adoption.

Agricultural Robots Market Trends/Drivers:

Labor Shortage in the Agriculture Sector

One of the major drivers for the adoption of agricultural robots is the persistent shortage of skilled labor in the agricultural sector. Various regions are experiencing a decline in the availability of farm workers, leading to challenges in carrying out labor-intensive tasks. These robots provide a solution by reducing the reliance on human labor. These robots can work autonomously, without the need for constant supervision, and can perform repetitive tasks efficiently and accurately. By automating tasks such as planting, weeding, and harvesting, agricultural robots help farmers overcome labor shortages, increase productivity, and reduce operational costs.

Technological Advancements

Rapid advancements in robotics, automation, and AI are driving the adoption of agribots. These technologies have significantly improved the capabilities of agricultural robots, making them more versatile, efficient, and cost-effective. For instance, the integration of computer vision and machine learning algorithms allows robots to identify and differentiate between crops and weeds, enabling targeted and precise weed control. Navigation systems and sensors enable robots to maneuver through fields and avoid obstacles. The availability of advanced sensors, such as cameras and multispectral imaging, provides real-time data for crop monitoring and optimization. These technological advancements make agricultural robots more capable of performing complex tasks and decision-making, thus driving their adoption in the agricultural industry.

Environmental Concerns

The growing environmental concerns and the need for sustainable farming practices are major drivers for the product adoption. Traditional farming practices often involve the excessive use of fertilizers, pesticides, and water, leading to environmental pollution and resource depletion. Agricultural robots offer more precise and targeted application of resources, resulting in reduced chemical usage and optimized resource utilization. For instance, robots equipped with precision spraying systems can apply pesticides only where needed, minimizing chemical runoff and environmental impact. Similarly, robotic systems for irrigation can optimize water usage by delivering water directly to plant roots based on real-time moisture data. By promoting precision farming techniques, these robots help farmers adopt more sustainable practices, reduce environmental footprint, and mitigate the negative impact of agriculture on ecosystems.

Agricultural Robots Industry Segmentation:

Breakup by Product Type:

Unmanned Aerial Vehicles (UAVs)/Drones

Milking Robots

Automated Harvesting Systems

Driverless Tractors

Others

Unmanned aerial vehicles, commonly known as drones, have gained significant traction in the agricultural industry. They are equipped with cameras and sensors to capture aerial imagery and collect data for crop monitoring, pest detection, and yield estimation. UAVs enable farmers to obtain a bird's-eye view of their fields, identify crop health issues, and make informed decisions about irrigation, fertilization, and pest control.

Milking robots have revolutionized the dairy industry by automating the milking process. These robots use sensors to identify and attach milking cups to cows' udders, monitor milk yield and quality, and ensure proper hygiene. Milking robots offer increased efficiency, reduced labor requirements, and improved animal welfare. They enable farmers to optimize milk production, monitor individual cow health, and manage milking schedules more effectively.

Automated harvesting systems encompass a range of robots and machinery designed to perform harvesting tasks, such as fruit picking and vegetable harvesting, with minimal human intervention. These systems utilize sensors, computer vision, and robotic arms to identify ripe crops, perform delicate harvesting actions, and sort harvested produce. Automated harvesting systems improve efficiency, reduce labor costs, and minimize damage to crops during the harvesting process.

Driverless tractors, also known as autonomous or self-driving tractors, are equipped with advanced navigation systems, sensors, and GPS technology. These tractors can operate autonomously, performing tasks such as plowing, seeding, and field preparation. They offer precision and accuracy in operations, enable continuous working hours, and reduce human error. Driverless tractors contribute to increased efficiency, improved productivity, and reduced labor requirements in agricultural fields. They also provide benefits such as optimized fuel consumption, reduced soil compaction, and enhanced safety on farms.

Breakup by Application:

Field Farming

Dairy Farm Management

Animal Management

Soil Management

Crop Management

Others

Field farming represent the largest application segment

Agricultural robots in field farming offer several advantages, they enable precise planting and seeding by accurately placing seeds at optimal depths and spacing, resulting in improved crop germination and uniform growth. Weeding robots use computer vision algorithms to identify and remove weeds without damaging the crops, reducing the need for herbicides and minimizing crop competition. Harvesting robots equipped with sensors and robotic arms can efficiently harvest crops, reducing labor requirements and improving productivity. Furthermore, agribots in field farming contribute to the adoption of precision agriculture techniques. By collecting and analyzing real-time data, they provide valuable insights into crop health, growth patterns, and resource requirements. This data-driven approach enables farmers to make informed decisions regarding irrigation, fertilization, and pest management, resulting in optimized resource utilization, increased crop yield, and reduced environmental impact.

Breakup by Offering:

Hardware

Software

Services

Hardware dominates the market

Hardware components form the backbone of agribots, encompassing the physical infrastructure and machinery required for their operation. These components include unmanned aerial vehicles, milking robots, automated harvesting systems, driverless tractors, and various sensors and robotic arms. These hardware offerings are essential for performing specific tasks in the agricultural industry, such as planting, harvesting, and monitoring. Additionally, the demand for hardware components is driven by the diverse range of applications and tasks that agribots are designed to perform. Different types of robots and equipment are required for various agricultural operations, such as field farming, dairy farming, and soil management. Farmers and agricultural businesses rely on these hardware components to carry out tasks efficiently, increase productivity, and optimize resource utilization. Other than this, hardware components often involve significant investment and represent a substantial portion of the overall cost associated with implementing agricultural robots. Therefore, the revenue generated from hardware sales contributes significantly to the market size. As the market for these robots continues to grow, advancements in hardware technologies, such as improved sensors, better robotic arms, and more precise navigation systems, further drive the demand for these components.

Breakup by Region:

North America

Europe

Asia Pacific

Middle East and Africa

Latin America

North America exhibits a clear dominance in the market

The report has also provided a comprehensive analysis of all the major regional markets, which include North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. According to the report, North America exhibits a clear dominance in the market.

North America has a highly developed and technologically advanced agricultural sector. The region has a long history of embracing innovation in agriculture and has a strong culture of adopting new technologies. This favorable environment has facilitated the rapid adoption of agricultural robots in the region. Additionally, labor shortages in certain agricultural sectors have become a significant challenge in North America. The availability of skilled labor for manual farm operations has declined in recent years. This has created a strong demand for agribots as a solution to address the labor gap and increase operational efficiency. Furthermore, North America is home to several prominent agricultural robot manufacturers and research institutions. These companies and organizations have been at the forefront of developing and commercializing advanced agricultural robots. Their presence in the region has not only contributed to the availability of a wide range of robotic solutions but has also fostered an ecosystem of innovation, knowledge sharing, and expertise in the field. Additionally, government initiatives and support have played a vital role in accelerating the product sales in North America. Governments at various levels have provided funding, incentives, and regulatory support to promote the adoption of advanced technologies in agriculture. These initiatives have encouraged farmers to invest in agricultural robots and have facilitated their integration into existing farming practices.

Competitive Landscape:

The key players are investing in research and development to enhance the capabilities of agricultural robots and develop new solutions to meet the evolving needs of farmers. They are also focusing on strategic partnerships and collaborations to leverage complementary expertise and broaden their market reach. Additionally major players are continuously introducing advanced hardware and software technologies to improve the performance, functionality, and ease of use of agricultural robots. They are integrating sensors, artificial intelligence, and automation technologies to enable robots to perform tasks with greater precision, efficiency, and autonomy. Besides this, key players are investing in data analytics and cloud-based platforms to provide farmers with real-time insights and decision support. Market leaders are expanding their product portfolios to cater to various agricultural applications. They are developing specialized robots for specific tasks such as seeding, weeding, harvesting, and crop monitoring. Key players are also addressing the needs of different farming sectors, including field farming, dairy farming, and greenhouse operations.

The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:

Deere & Company

Trimble Inc.

Agco Corporation

Lely Holding S.A.R.L

AG Eagle LLC

Agribotix LLC

Agrobot

Harvest Automation

Naio Technologies

Precision Hawk

IBM

Agjunction Inc.

DJI

BouMatic Robotics B.V.

AG Leader Technology

Topcon Positioning Systems Inc.

Autocopter Corp.

Auroras S.R.L.

Grownetics Inc.

Autonomous Tractor Corporation

Key Questions Answered in This Report

  • 1. What is the market size of agricultural robots?
  • 2. What is the expected growth rate of the global agricultural robots market during 2025-2033?
  • 3. What are the key factors driving the global agricultural robots market?
  • 4. What has been the impact of COVID-19 on the global agricultural robots market?
  • 5. What is the breakup of global agricultural robots market based on the product type?
  • 6. What is the breakup of global agricultural robots market based on the application?
  • 7. What is the breakup of global agricultural robots market based on the offering?
  • 8. What are the major regions in the global agricultural robots market?
  • 9. Who are the key players/companies in the global agricultural robots market?
  • 10. What are the current trends in the agricultural robotics market?

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Agricultural Robots Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Breakup by Product Type
  • 5.5 Market Breakup by Application
  • 5.6 Market Breakup by Offering
  • 5.7 Market Breakup by Region
  • 5.8 Market Forecast

6 Market Breakup by Product Type

  • 6.1 Unmanned Aerial Vehicles (UAVs)/Drones
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Milking Robots
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Automated Harvesting Systems
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast
  • 6.4 Driverless Tractors
    • 6.4.1 Market Trends
    • 6.4.2 Market Forecast
  • 6.5 Others
    • 6.5.1 Market Trends
    • 6.5.2 Market Forecast

7 Market Breakup by Application

  • 7.1 Field Farming
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Dairy Farm Management
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Animal Management
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Soil Management
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Crop Management
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Others
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast

8 Market Breakup by Offering

  • 8.1 Hardware
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Software
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast
  • 8.3 Services
    • 8.3.1 Market Trends
    • 8.3.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 Market Trends
    • 9.1.2 Market Forecast
  • 9.2 Europe
    • 9.2.1 Market Trends
    • 9.2.2 Market Forecast
  • 9.3 Asia Pacific
    • 9.3.1 Market Trends
    • 9.3.2 Market Forecast
  • 9.4 Middle East and Africa
    • 9.4.1 Market Trends
    • 9.4.2 Market Forecast
  • 9.5 Latin America
    • 9.5.1 Market Trends
    • 9.5.2 Market Forecast

10 Global Agricultural Robots Industry: SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Global Agricultural Robots Industry: Value Chain Analysis

12 Global Agricultural Robots Industry: Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Global Agricultural Robots Industry: Price Analysis

14 Agricultural Robots Manufacturing Process

  • 14.1 Product Overview
  • 14.2 Raw Material Requirements
  • 14.3 Manufacturing Process
  • 14.4 Key Success and Risk Factors

15 Competitive Landscape

  • 15.1 Market Structure
  • 15.2 Key Players
  • 15.3 Profiles of Key Players
    • 15.3.1 Deere & Company
    • 15.3.2 Trimble Inc.
    • 15.3.3 Agco Corporation
    • 15.3.4 Lely Holding S.A.R.L
    • 15.3.5 AG Eagle LLC
    • 15.3.6 Agribotix LLC
    • 15.3.7 Agrobot
    • 15.3.8 Harvest Automation
    • 15.3.9 Naio Technologies
    • 15.3.10 Precision Hawk
    • 15.3.11 IBM
    • 15.3.12 Agjunction, Inc.
    • 15.3.13 DJI
    • 15.3.14 Boumatic Robotics, B.V.
    • 15.3.15 AG Leader Technology
    • 15.3.16 Topcon Positioning Systems, Inc.
    • 15.3.17 Autocopter Corp
    • 15.3.18 Auroras S.R.L.
    • 15.3.19 Grownetics Inc.
    • 15.3.20 Autonomous Tractor Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제