시장보고서
상품코드
1652132

Entangled Networks : 구현 테크놀러지와 향후 시장

Entangled Networks: Enabling Technologies and Future Markets

발행일: | 리서치사: Inside Quantum Technology | 페이지 정보: 영문 72 Pages | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

양자 인터넷의 정의는 아직 명확하지 않습니다. 하지만 노드들이 일종의 양자 인터커넥트를 통해 얽혀 연결된 네트워크라고 보는 것이 타당합니다.

현재 이 분야의 많은 활동은 연구라고 부르는 것이 타당할 수 있습니다. 장거리 얽힌 네트워크가 보편화되기까지는 아직 갈 길이 멀다. 북미와 유럽을 중심으로 양자 네트워킹 테스트베드가 늘어나고 있지만, 대부분 연구 개발 중심의 테스트베드입니다. 얽힘 양자 네트워킹이 보편화되기 위해서는 양자 중계기의 개발이 필요합니다. 양자 중계기가 상용화되기 전까지는 대부분의 양자 인터넷 트래픽은 위성을 통해 전송될 것으로 예상됩니다. 이 보고서에서는 얽힌 네트워크가 현재 어떤 상황인지, 그리고 향후 몇년안에 어떤 상황이 될 것인지에 대해 자세히 설명합니다.

현재 양자 네트워킹의 가장 주목할 만한 응용 분야는 양자 컴퓨터를 네트워크로 연결하는 분산 양자 컴퓨팅입니다. 이는 고전 컴퓨터를 네트워크로 연결하여 처리 능력, 메모리, 스토리지를 향상시키는 고성능 컴퓨팅(HPC)과 유사합니다. 마찬가지로, 양자 컴퓨터를 네트워크화하면 기존보다 더 큰 문제를 해결할 수 있습니다. 현재 양자 컴퓨터를 연결하는 얽힌 네트워크에 초점을 맞추고 있지만, IQT의 연구는 양자 센서가 성숙함에 따라 얽힌 네트워크 개념을 양자 사물 인터넷(QIoT)으로 확장할 수 있는 잠재력이 크다고 봅니다.

이 보고서는 얽힌 네트워크의 현재와 새로운 기회를 파악하고, 기술 과제, 규제, 표준, 애플리케이션 개발 등 얽힌 네트워크가 직면한 여러 가지 문제를 다루고 있습니다.

목차

제1장 주요 요약

제2장 Entangled Networks 기술 제품과 로드맵

  • 서론
  • Entangled Networks 컴퓨터
  • 양자 통신 장비 및 상호 접속
  • 양자 센서와 QIoT
  • Entangled Networks 컴포넌트
  • 위성과 드론의 역할
  • 양자 네트워킹 제품 스위트
  • 양자 인터넷 소프트웨어 : 차세대
  • 시장 차별화 요인

제3장 Entangled Networks 분야에서의 현재 상업 활동

  • 서론
  • ADVA Network Security(독일)
  • Aliro Quantum(미국)
  • AWS Center for Quantum Networking(미국)
  • Boeing(미국)
  • BT Group(영국)
  • Cisco Systems(미국)
  • evolutionQ(캐나다)
  • Icarus Quantum(미국)
  • Infleqtion(미국)
  • IBM(미국)
  • IonQ(미국)
  • Ki3 Photonics Technologies(캐나다)
  • levelQuantum(이탈리아)
  • L3Harris(미국)
  • LQUOM(일본)
  • MagiQ Technologies(미국)
  • memQ(미국)
  • NanoQT(일본)
  • Nippon Telegraph and Telephone Corporation(NTT)(일본)
  • Nu Quantum(영국)
  • Photonic(캐나다)
  • QphoX(네덜란드)
  • QTD Systems(미국)
  • Quantum Bridge(캐나다)
  • Quantum Corridor(미국)
  • Quantum Industries GmbH(오스트리아)
  • Quantum Network Technologies(Qunett)(미국)
  • Quantum Optics Jena GmbHH(독일)
  • Qunnect(미국)
  • SpeQtral(싱가포르)
  • Welinq(프랑스)

제4장 조사 및 테스트 베드

  • 서론
  • A*STAR Quantum Innovation Center(Q.InC)(싱가포르)
  • Air Force Research Laboratory(AFRL)(미국)
  • Argonne National Laboratory(미국)
  • Brookhaven National Laboratory(BNL)(미국)
  • Center for Quantum Networks(CQN)((미국)
  • Chicago Quantum Exchange(미국)
  • DistriQ Quantum Innovation Zone(캐나다)
  • ICFO(스페인)
  • Lawrence Berkeley National Laboratory(LBNL)(미국)
  • Max Planck Institute of Optics(독일)
  • Novum Industria(미국)
  • Numana(캐나다)
  • Q-NEXT Science Center(미국)
  • OpenQKD and Successor Testbeds
  • QIQB Center for Quantum Information and Quantum Biology(일본)
  • Quantum Communications Hub(영국)
  • Quantum Flagship(EU)
  • Saarland University(독일)
  • The University of Amherst, Massachusetts(미국)
  • The University of Geneva, Group of Applied Physics(스위스)
  • The University of Innsbruck(오스트리아)
  • The University of Science and Technology of China(중국)
  • TU Delft and QuTech(네덜란드)
  • University of Maryland(미국)
  • University of Oxford(영국)
  • Wisconsin Quantum Institute(미국)

제5장 Entangled Networks 제품 시장

  • 국내 시장 영향
    • 미국의 양자 네트워킹
    • 유럽의 양자 네트워킹
    • 아시아의 양자 네트워킹
  • 국제 시장과 기술
  • 대상 용도
    • 분산 양자 컴퓨팅
    • 통신 및 QKD
    • 센서 및 계측
    • 연구 및 학술계에서의 Entangled Networks
    • 기타

제6장 Entangled Networks 10년간 예측

애널리스트에 대해

LSH 25.02.28

The Quantum Internet remains ill defined. Nevertheless, it is reasonable to assume that it is a network where the nodes are entangled with connectivity over some kind of quantum interconnect. With this in mind, IQT Research is publishing this report which identifies the current and emerging opportunities for Entangled Networks. Our report also provides coverage of the many challenges faced by entangled networks including technical issues, regulations, standards and applications development.

The report is partly based on a survey of major influencers in this space as well as a review of recent technical and relevant business literature. The final chapter of this report comprises a ten-year forecast of deployment and revenue generation by entangled networks by (1) types of attached equipment, (2) media and (3) reach.

Much of the current activity in this space might be reasonably designated as research. We still have a long way to go before long-haul entangled networks become common. There are a growing number of quantum network testbeds, especially in North America and Europe, but again much of the activity - the applications in testbeds - are R&D oriented. Before entangled quantum networks become ubiquitous, quantum repeaters will need to be developed. Until quantum repeaters are commercialized, we anticipate that a lot of Quantum Internet traffic will be carried over satellites. This report goes into detail about where the Entangled Network is today and what it will become over the next few years.

For now, the most noteworthy target application of quantum networks is distributed quantum computing, the networking together of quantum computers. A parallel can be drawn here with high performance computing (HPC), which networks classical computers together to increase the available processing power, memory, and storage. Similarly, networking quantum computers together will enable larger problems to be tackled than would otherwise be the case. While the focus today is on entangled networks that connect quantum computers, IQT research believes that there is much potential to extend the Entangled Network concept to a Quantum Internet of Things (QIoT) as quantum sensors mature.

Table of Contents

Chapter One: Executive Summary

  • 1.1. Preamble
  • 1.2. Timeframe for Entangled Networks: The Importance of Quantum Repeaters
  • 1.3. Target Applications for the Entangled Network
    • 1.3.1. Distributed Quantum Computing
    • 1.3.2. Sensors and Metrology
    • 1.3.3. Entangled Networks in Research and Academia
    • 1.3.4. Other Applications
  • 1.4. Timeframe for Entangled Networks: Protocols are also Critical
  • 1.5. Components for Entangled Quantum Networks
  • 1.6. Challenges on the Way to the Entangled Network

Chapter Two: Products and Roadmaps for Entangled Networks Technologies

  • 2.1. Introduction
  • 2.2. Computers in the Entangled Network
    • 2.2.1. The Quantum Network is the Quantum Computer
    • 2.2.2. The Size of the Distributed Quantum Computing Opportunity
    • 2.2.3. Types of Quantum Computer Networks: Workgroups, Metro and Long-Haul
  • 2.3. Quantum Communications Equipment and Interconnects
    • 2.3.1. Quantum Repeaters
    • 2.3.2. Entangled QKD
  • 2.4. Quantum Sensors and the QIoT
    • 2.4.1. Quantum Clock and CSAC Networks
    • 2.4.2. Other Quantum Sensor Networks
  • 2.5. Components of the Entangled Quantum Network
    • 2.5.1. Quantum Interconnects
    • 2.5.2. Quantum Memories
    • 2.5.3. Photonic Sources for Quantum Networks
    • 2.5.4. Detectors and other Components
  • 2.6. The Role of Satellites and Drones
  • 2.7. Quantum Network Product Suites
  • 2.8. Quantum Internet Software: The Next Generation
    • 2.8.1. Protocols for the Coming Entangled Network
  • 2.9. Market Differentiators

Chapter Three: Current Commercial Activity in the Entangled Networks Space

  • 3.1. Introduction
  • 3.2. ADVA Network Security (Germany)
  • 3.3. Aliro Quantum (United States)
  • 3.4. AWS Center for Quantum Networking (CQN) (United States)
  • 3.5. Boeing (United States)
  • 3.6. BT Group (United Kingdom)
  • 3.7. Cisco Systems (United States)
  • 3.8. evolutionQ (Canada)
  • 3.9. Icarus Quantum (United States)
  • 3.10. Infleqtion (United States)
  • 3.11. IBM (United States)
  • 3.12. IonQ (United States)
  • 3.13. Ki3 Photonics Technologies (Canada)
  • 3.14. levelQuantum (Italy)
  • 3.15. L3Harris (United States)
  • 3.16. LQUOM (Japan)
  • 3.17. MagiQ Technologies (United States)
  • 3.18. memQ (United States)
  • 3.19. NanoQT (Japan)
  • 3.20. Nippon Telegraph and Telephone Corporation (NTT) (Japan)
  • 3.21. Nu Quantum (United Kingdom)
  • 3.22. Photonic (Canada)
  • 3.23. QphoX (The Netherlands)
  • 3.24. QTD Systems (United States)
  • 3.25. Quantum Bridge (Canada)
  • 3.26. Quantum Corridor (United States)
  • 3.27. Quantum Industries GmbH (Austria)
  • 3.28. Quantum Network Technologies (Qunett) (United States)
  • 3.29. Quantum Optics Jena GmbH (Germany)
  • 3.30. Qunnect (United States)
  • 3.31. SpeQtral (Singapore)
  • 3.32. Welinq (France)

Chapter Four: Research and Testbeds

  • 4.1. Introduction
  • 4.2. A*STAR Quantum Innovation Center (Q.InC) (Singapore)
  • 4.3. Air Force Research Laboratory (AFRL) (United States)
  • 4.4. Argonne National Laboratory (United States)
  • 4.5. Brookhaven National Laboratory (BNL) (United States)
  • 4.6. Center for Quantum Networks (CQN) (United States)
  • 4.7. Chicago Quantum Exchange (United States)
  • 4.8. DistriQ Quantum Innovation Zone (Canada)
  • 4.9. ICFO (Spain)
  • 4.10. Lawrence Berkeley National Laboratory (LBNL) (United States)
  • 4.11. Max Planck Institute of Optics (Germany)
  • 4.12. Novum Industria (United States)
  • 4.13. Numana (Canada)
  • 4.14. Q-NEXT Science Center (United States)
  • 4.15. OpenQKD and Successor Testbeds
  • 4.16. QIQB Center for Quantum Information and Quantum Biology (Japan)
  • 4.17. Quantum Communications Hub (United Kingdom)
  • 4.18. Quantum Flagship (EU)
  • 4.19. Saarland University (Germany)
  • 4.20. The University of Amherst, Massachusetts (United States)
  • 4.21. The University of Geneva, Group of Applied Physics (GAP) (Switzerland)
  • 4.22. The University of Innsbruck (Austria)
  • 4.23. The University of Science and Technology of China (USTC) (China)
  • 4.24. TU Delft and QuTech (The Netherlands)
  • 4.25. University of Maryland (UMD) (United States)
  • 4.26. University of Oxford (United Kingdom)
  • 4.27. Wisconsin Quantum Institute (WQI) (United States)

Chapter Five: Markets for Entangled Networking Products

  • 5.1. Impact of National Markets
    • 5.1.1. Quantum Networking in the U.S.
    • 5.1.2. Quantum Networking in Europe
    • 5.1.3. Quantum Networking in Asia
  • 5.2. International Markets and Technology
  • 5.3. Target Applications
    • 5.3.1. Distributed Quantum Computing
    • 5.3.2. Communication and QKD
    • 5.3.3. Sensors and Metrology
    • 5.3.4. Entangled Networks in Research and Academia
    • 5.3.5. Other Applications

Chapter Six: Ten-Year Forecasts of Entangled Networks

  • 6.1. Forecast Methodology and What We Forecast in this Report
  • 6.2. Ten-Year Forecasts of Entangled Networks by Type of Equipment on the Network
  • 6.3. Breakout of Entangled Quantum Networks by Reach and Technology
  • 6.4. Breakout of Entangled Quantum Networks by Transmission Type

About the Analysts

List of Exhibits

  • Exhibit 2-1: Selected Research on Quantum Repeaters
  • Exhibit 2-2: Proposed Testbed Interconnection Approaches in OpenQKD
  • Exhibit 5-1: Organizations Involved In Entangled Networks in the U.S.
  • Exhibit 6-1: Ten-year forecasts of Equipment Attached to Entangled Networks
  • Exhibit 6-2: Ten-year Forecasts of Equipment Attached to Entangled Networks by Reach ($ Millions)
  • Exhibit 6-3: Ten-Year Forecasts by Transmission Type (Satellite, Fiber and Terrestrial Freespace) ($ Millions)
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제