½ÃÀ庸°í¼­
»óǰÄÚµå
1572143

ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : ±¸¼º¿ä¼Ò, ±â¼ú, ¿ëµµ, Â÷·® À¯Çü, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Automotive Geospatial Analytics Market by Component (Hardware, Software), Technology (Aerial Surveys, GIS, GPS), Application, Vehicle Type, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

2023³â ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå ±Ô¸ð´Â 401¾ï 9,000¸¸ ´Þ·¯·Î 2024³â¿¡´Â 459¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬Æò±Õ 14.93% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,064¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼®Àº ÀÇ»ç°áÁ¤ °­È­, ¾÷¹« ÃÖÀûÈ­, °í°´ °æÇè Çâ»óÀ» À§ÇØ ÀÚµ¿Â÷ ºÐ¾ß¿¡¼­ Áö¸® µ¥ÀÌÅÍ¿Í ÁöÇü°ø°£ ±â¼úÀ» Ȱ¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çʿ伺Àº ±³Åë¸ÁÀÇ º¹À⼺, µµ½Ã À̵¿¼º ¹®Á¦, ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ °­È­¿¡ ´ëÇÑ ¼ö¿ä¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÀ¿ë ºÐ¾ß´Â ÀÚÀ²ÁÖÇà ³»ºñ°ÔÀ̼Ç, °æ·Î ÃÖÀûÈ­, À§Ä¡ Á¤º¸ ¼­ºñ½º, ½ÃÀå ¼¼ºÐÈ­, °í°´ Ÿ°ÙÆÃ µî ´Ù¾çÇÕ´Ï´Ù. ÃÖÁ¾ ¿ëµµ¿¡´Â ÀÚµ¿Â÷ Á¦Á¶¾÷ü, ¹°·ù ȸ»ç, µµ½Ã °èȹÀÚ, Àü·«Àû °èȹÀ» À§ÇÑ °í±Þ ÀλçÀÌÆ®¸¦ ¿øÇÏ´Â ±³Åë¸Á µîÀÌ Æ÷ÇԵ˴ϴÙ. ½ÃÀå ¼ºÀåÀº IoTÀÇ È®»ê, Ä¿³ØÆ¼µåÄ«ÀÇ ³ôÀº º¸±Þ·ü, AI ¹× ºòµ¥ÀÌÅÍ ºÐ¼®ÀÇ ¹ßÀü, ½Ç½Ã°£ Áö¸®Àû °ø°£ µ¥ÀÌÅÍ ÅëÇÕÀ» ÇÊ¿ä·Î ÇÏ´Â ½º¸¶Æ® ½ÃƼ ±¸»óÀÇ ±ÞÁõ¿¡ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¼öÁý, ó¸® ¹× ½Ã°¢È­¸¦ ¿ëÀÌÇÏ°Ô ÇÏ´Â ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ºñÁî´Ï½º ±âȸ´Â ¿¹Ãø ºÐ¼®À» °­È­ÇÏ´Â Ç÷§Æû °³¹ß, °í±Þ 3D ÁöÇü °ø°£ µ¥ÀÌÅÍ ÅëÇÕ, µ¥ÀÌÅÍ ¿¬°á °³¼±À» À§ÇÑ Åë½Å»ç¿ÍÀÇ ÆÄÆ®³Ê½Ê ±¸Ãà¿¡ ÀÖ½À´Ï´Ù. À¯¸ÁÇÑ ±â¼úÀÓ¿¡µµ ºÒ±¸Çϰí, ³ôÀº µµÀÔ ºñ¿ë, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, °³¹ßµµ»ó±¹ÀÇ ÀÎÇÁ¶ó ¹Ìºñ µî ¿©·¯ °¡Áö ¹®Á¦µéÀÌ »êÀûÇØ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Ç¥ÁØÈ­ ¹®Á¦´Â Ç÷§Æû °£ ÁöÇü °ø°£ µ¥ÀÌÅÍÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ¹æÇØÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. Çõ½ÅÀ» À§Çؼ­´Â Ŭ¶ó¿ìµå ±â¹Ý ÁöÇü°ø°£ ¼Ö·ç¼Ç °­È­, ½Ç½Ã°£ ºÐ¼® ±â´É Çâ»ó, »ç¿ëÀÚ »óÈ£ÀÛ¿ëÀ» À§ÇÑ Áõ°­Çö½Ç(AR) ÀÎÅÍÆäÀ̽º Çõ½Å¿¡ ÁßÁ¡À» µÑ ¼ö ÀÖ½À´Ï´Ù. »ç¿ëÀÚ Áß½ÉÀÇ ¼³°è¿Í »óÈ£¿î¿ë¼º¿¡ ÁßÁ¡À» µÎ¸é ºñÁî´Ï½º ¼ºÀåÀÇ »õ·Î¿î ±æÀ» ¿­ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå °æÀïÀº Ä¡¿­ÇÏ°í ºü¸£°Ô ÁøÈ­Çϰí ÀÖÀ¸¸ç, ±â¼ú ¹ßÀüÀ» ÃËÁøÇϱâ À§ÇØ ÆÄÆ®³Ê½Ê°ú ÀμöÇÕº´¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ±â¾÷Àº ¹ÎøÇÏ°Ô ÇൿÇϰí, Áö¼ÓÀûÀÎ ¿¬±¸°³¹ß¿¡ ÅõÀÚÇϰí, ±ÔÁ¦¿Í ¼ÒºñÀÚ ±â´ë¿¡ ºÎÀÀÇϱâ À§ÇØ ¾÷°è Ç¥ÁØÀ» ÁؼöÇÔÀ¸·Î½á ÀÚµ¿Â÷ Çõ½Å¿¡ ÀÖ¾î Áö¸®Àû °ø°£ ºÐ¼®ÀÇ º¯ÇõÀû ÀáÀç·ÂÀ» Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ[2023] 401¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2024] 459¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ[2030] 1,064¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 14.93%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀº ¼ö¿ä¿Í °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î ÀÎÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ÃËÁø¿äÀÎ
    • Áö¸®°ø°£ µ¥ÀÌÅ͸¦ ÅëÇÑ ÀÚµ¿Â÷ ¾ÈÀü ¹× ±ä±Þ ´ëÀÀ °­È­
    • ÀÚµ¿Â÷ ºÐ¾ßÀÇ À§Ä¡Á¤º¸ ¼­ºñ½º ¹× Áö¿ÀÆæ½Ì ¼ö¿ä ±ÞÁõ
    • µµ½Ã °èȹ ¹× ÀÎÇÁ¶ó ±¸ÃàÀ» À§ÇÑ ÁöÇü°ø°£ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ È®´ë
    • ¿¹Áöº¸Àü ¹× ÅÚ·¹¸Åƽ½º¸¦ À§ÇÑ AI¿Í ¸Ó½Å·¯´×ÀÇ ¹ßÀü
  • ½ÃÀå ¾ïÁ¦¿äÀÎ
    • ±âÁ¸ ÀÚµ¿Â÷ ½Ã½ºÅÛ°ú »õ·Î¿î Áö¸®°ø°£ ºÐ¼® ±â¼ú°úÀÇ ÅëÇÕ °úÁ¦
  • ½ÃÀå ±âȸ
    • ¿¹ÃøÀû Áö¸®°ø°£ ºÐ¼®À» Ȱ¿ëÇÑ Â÷·® °ü¸® ¼­ºñ½º °­È­
    • ÀÚµ¿Â÷ÀÇ ±ä±Þ ´ëÀÀ ¹× ±³Åë¾ÈÀüÀ» À§ÇÑ ÁöÇü°ø°£Áö´ÉÀÇ È°¿ë
    • ÀÚµ¿Â÷ °ø±Þ¸Á ¹× ¹°·ù ÃÖÀûÈ­¸¦ À§ÇÑ Áö¸®Àû °ø°£ ºÐ¼® µµÀÔ
  • ½ÃÀå °úÁ¦
    • ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼®ÀÇ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ °úÁ¦
    • ´Ù¾çÇÑ ÀÚµ¿Â÷ ȯ°æ¿¡¼­ ÁöÇü°ø°£ ¼Ö·ç¼ÇÀÇ È®À强¿¡ ´ëÇÑ µµÀü°úÁ¦

Porter's Five Forces : ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲÀÇ °æÀï »óȲÀ» ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀ̰í Àû±ØÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå¿¡¼­ÀÇ °æÀï »óȲ ÆÄ¾Ç

ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î º¥´õ¸¦ Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå¿¡¼­ ¼º°øÀÇ ±æÀ» ±×¸®´Ù

ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±â¾÷Àº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï »óȲÀ» öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ÇâÈÄ ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº ¾îµðÀΰ¡?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õÀÇ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • GPS ¸ðµâ
    • ¼¾¼­
  • ¼ÒÇÁÆ®¿þ¾î
    • ADAS(÷´Ü ¿îÀüÀÚ º¸Á¶ ½Ã½ºÅÛ)(ADAS)
    • ½Ç½Ã°£ À§Ä¡ÃßÀû ½Ã½ºÅÛ

Á¦7Àå ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : ±â¼úº°

  • Ç×°ø Á¶»ç
  • Áö¸®Á¤º¸ ½Ã½ºÅÛ
  • GPS
  • ¿ø°ÝŽ»ç

Á¦8Àå ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : ¿ëµµº°

  • Çø´ °ü¸®
    • ·çÆ® ÃÖÀûÈ­
    • Â÷·® ÃßÀû
  • º¸Çè ÅÚ·¹¸Åƽ½º
    • ÁÖÇà°Å¸®¿¡ ºÎÇÕÇÏ´Â ¿ä±Ý
    • »ç¿ë »óȲ¿¡ ±â¹ÝÇÑ º¸Çè
  • ¿¹Áöº¸Àü
    • °Ç°­ ¸ð´ÏÅ͸µ
    • À¯Áöº¸¼ö ½ºÄÉÁÙ
  • µµ·Î ¾ÈÀü°ú ±³Åë °ü¸®
    • Ãæµ¹ ȸÇÇ
    • ±³Åë Á¤Ã¼ °ü¸®

Á¦9Àå ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : Â÷Á¾º°

  • »ó¿ëÂ÷
    • ´ëÇü »ó¿ëÂ÷
    • ¼ÒÇü »ó¿ëÂ÷
  • ½Â¿ëÂ÷
    • ÄÄÆÑÆ®Ä«
    • ¼¼´Ü
    • SUV

Á¦10Àå ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ÀÚµ¿Â÷ OEM
  • Çø´ ¿ÀÆÛ·¹ÀÌÅÍ
  • Á¤ºÎ±â°ü
  • º¸Çèȸ»ç

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚµ¿Â÷¿ë Áö¸®°ø°£ ºÐ¼® ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦14Àå °æÀï »óȲ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
ksm 24.10.24

The Automotive Geospatial Analytics Market was valued at USD 40.19 billion in 2023, expected to reach USD 45.98 billion in 2024, and is projected to grow at a CAGR of 14.93%, to USD 106.47 billion by 2030.

Automotive geospatial analytics refers to the use of geographic data and geospatial technologies in the automotive sector to enhance decision-making, optimize operations, and improve customer experiences. Its necessity stems from the increasing complexity of transportation networks, urban mobility challenges, and the demand for enhanced navigational systems. Applications span across autonomous vehicle navigation, route optimization, location-based services, market segmentation, and customer targeting. The end-use scope includes automotive manufacturers, logistics companies, urban planners, and transportation networks seeking advanced insights for strategic planning. Market growth is influenced by the proliferation of IoT, high adoption of connected vehicles, advancements in AI and Big Data analytics, and the surge in smart city initiatives which demand real-time geospatial data integration. Consequently, there's a burgeoning demand for technologies facilitating seamless data acquisition, processing, and visualization. Key opportunities lie in developing platforms enhancing predictive analytics, integrating advanced 3D geospatial data, and fostering partnerships with telecommunication firms for improved data connectivity. Despite its promise, challenges persist including high implementation costs, data privacy concerns, and infrastructure inadequacies in developing regions. Furthermore, standardization issues often hinder the seamless integration of geospatial data across platforms. For innovation, focus can be directed toward enhancing cloud-based geospatial solutions, improving real-time analytics capabilities, and innovating in Augmented Reality (AR) interfaces for user interaction. Emphasizing user-centric design and interoperability can unlock novel pathways for business growth. The nature of the market is highly competitive and rapidly evolving, with a strong emphasis on partnerships and acquisitions to drive technological advancements. Companies can thrive by staying agile, investing in continuous R&D, and aligning with industry standards to address both regulatory constraints and consumer expectations, thus capitalizing on the transformative potential of geospatial analytics in automotive innovation.

KEY MARKET STATISTICS
Base Year [2023] USD 40.19 billion
Estimated Year [2024] USD 45.98 billion
Forecast Year [2030] USD 106.47 billion
CAGR (%) 14.93%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Automotive Geospatial Analytics Market

The Automotive Geospatial Analytics Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Enhancement in vehicle safety and emergency response with geospatial data
    • Surge in demand for location-based services and geofencing in automotive sector
    • Increasing investments in geospatial technology for urban planning and infrastructure development
    • Advancements in AI and machine learning for predictive maintenance and telematics
  • Market Restraints
    • Integration challenges between existing automotive systems and new geospatial analytics technologies
  • Market Opportunities
    • Enhancement of fleet management services using predictive geospatial analytics
    • Utilization of geospatial intelligence for emergency response and road safety in automotive
    • Adoption of geospatial analytics for optimizing automotive supply chain and logistics
  • Market Challenges
    • Challenge related to data privacy and security concerns in automotive geospatial analytics
    • Challenge concerning the scalability of geospatial solutions in diverse automotive environments

Porter's Five Forces: A Strategic Tool for Navigating the Automotive Geospatial Analytics Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Automotive Geospatial Analytics Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Automotive Geospatial Analytics Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Automotive Geospatial Analytics Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Automotive Geospatial Analytics Market

A detailed market share analysis in the Automotive Geospatial Analytics Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Automotive Geospatial Analytics Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Automotive Geospatial Analytics Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Automotive Geospatial Analytics Market

A strategic analysis of the Automotive Geospatial Analytics Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Automotive Geospatial Analytics Market, highlighting leading vendors and their innovative profiles. These include Apple Inc., Aptiv PLC, Autovus Technologies Inc., Blackberry Limited, Esri, Garmin Ltd., Geotab Inc., Google LLC, Ground Control Systems, HERE Technologies, Hexagon AB, NavInfo Co., Ltd., NVIDIA Corporation, Qualcomm Technologies, Inc., Telenav, Inc., TomTom NV, Trimble Inc., Verizon Communications Inc., Waymo LLC, and Yandex N.V..

Market Segmentation & Coverage

This research report categorizes the Automotive Geospatial Analytics Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Hardware and Software. The Hardware is further studied across GPS Modules and Sensors. The Software is further studied across Advanced Driver Assistance Systems (ADAS) and Real-Time Location Systems.
  • Based on Technology, market is studied across Aerial Surveys, GIS, GPS, and Remote Sensing.
  • Based on Application, market is studied across Fleet Management, Insurance Telematics, Predictive Maintenance, and Road Safety and Traffic Management. The Fleet Management is further studied across Route Optimization and Vehicle Tracking. The Insurance Telematics is further studied across Pay-As-You-Drive and Usage-Based Insurance. The Predictive Maintenance is further studied across Health Monitoring and Maintenance Scheduling. The Road Safety and Traffic Management is further studied across Collision Avoidance and Traffic Congestion Management.
  • Based on Vehicle Type, market is studied across Commercial Vehicles and Passenger Vehicles. The Commercial Vehicles is further studied across Heavy Commercial Vehicles and Light Commercial Vehicles. The Passenger Vehicles is further studied across Compact Cars, Sedans, and SUVs.
  • Based on End User, market is studied across Automotive OEMs, Fleet Operators, Government Agencies, and Insurance Companies.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Enhancement in vehicle safety and emergency response with geospatial data
      • 5.1.1.2. Surge in demand for location-based services and geofencing in automotive sector
      • 5.1.1.3. Increasing investments in geospatial technology for urban planning and infrastructure development
      • 5.1.1.4. Advancements in AI and machine learning for predictive maintenance and telematics
    • 5.1.2. Restraints
      • 5.1.2.1. Integration challenges between existing automotive systems and new geospatial analytics technologies
    • 5.1.3. Opportunities
      • 5.1.3.1. Enhancement of fleet management services using predictive geospatial analytics
      • 5.1.3.2. Utilization of geospatial intelligence for emergency response and road safety in automotive
      • 5.1.3.3. Adoption of geospatial analytics for optimizing automotive supply chain and logistics
    • 5.1.4. Challenges
      • 5.1.4.1. Challenge related to data privacy and security concerns in automotive geospatial analytics
      • 5.1.4.2. Challenge concerning the scalability of geospatial solutions in diverse automotive environments
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Automotive Geospatial Analytics Market, by Component

  • 6.1. Introduction
  • 6.2. Hardware
    • 6.2.1. GPS Modules
    • 6.2.2. Sensors
  • 6.3. Software
    • 6.3.1. Advanced Driver Assistance Systems (ADAS)
    • 6.3.2. Real-Time Location Systems

7. Automotive Geospatial Analytics Market, by Technology

  • 7.1. Introduction
  • 7.2. Aerial Surveys
  • 7.3. GIS
  • 7.4. GPS
  • 7.5. Remote Sensing

8. Automotive Geospatial Analytics Market, by Application

  • 8.1. Introduction
  • 8.2. Fleet Management
    • 8.2.1. Route Optimization
    • 8.2.2. Vehicle Tracking
  • 8.3. Insurance Telematics
    • 8.3.1. Pay-As-You-Drive
    • 8.3.2. Usage-Based Insurance
  • 8.4. Predictive Maintenance
    • 8.4.1. Health Monitoring
    • 8.4.2. Maintenance Scheduling
  • 8.5. Road Safety and Traffic Management
    • 8.5.1. Collision Avoidance
    • 8.5.2. Traffic Congestion Management

9. Automotive Geospatial Analytics Market, by Vehicle Type

  • 9.1. Introduction
  • 9.2. Commercial Vehicles
    • 9.2.1. Heavy Commercial Vehicles
    • 9.2.2. Light Commercial Vehicles
  • 9.3. Passenger Vehicles
    • 9.3.1. Compact Cars
    • 9.3.2. Sedans
    • 9.3.3. SUVs

10. Automotive Geospatial Analytics Market, by End User

  • 10.1. Introduction
  • 10.2. Automotive OEMs
  • 10.3. Fleet Operators
  • 10.4. Government Agencies
  • 10.5. Insurance Companies

11. Americas Automotive Geospatial Analytics Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Automotive Geospatial Analytics Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Automotive Geospatial Analytics Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Apple Inc.
  • 2. Aptiv PLC
  • 3. Autovus Technologies Inc.
  • 4. Blackberry Limited
  • 5. Esri
  • 6. Garmin Ltd.
  • 7. Geotab Inc.
  • 8. Google LLC
  • 9. Ground Control Systems
  • 10. HERE Technologies
  • 11. Hexagon AB
  • 12. NavInfo Co., Ltd.
  • 13. NVIDIA Corporation
  • 14. Qualcomm Technologies, Inc.
  • 15. Telenav, Inc.
  • 16. TomTom NV
  • 17. Trimble Inc.
  • 18. Verizon Communications Inc.
  • 19. Waymo LLC
  • 20. Yandex N.V.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦