½ÃÀ庸°í¼­
»óǰÄÚµå
1572312

¼¼°èÀÇ ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : µ¥ÀÌÅÍ ¼Ò½ºº°, ºÐ¼® ±â´Éº°, ºò µ¥ÀÌÅÍ È°¿ë ±â¼úº°, Àü°³ Çüź°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ¿¹Ãø(2025-2030³â)

Big Data Monitoring & Warning Platform Market by Data Sources, Analytical Functions, Technologies Powered By Big Data, Deployment Mode, End-Use Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀº 2023³â 152¾ï ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 172¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 15.42%·Î ¼ºÀåÇϸç 2030³â¿¡´Â 414¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§ÆûÀº ¹æ´ëÇÑ µ¥ÀÌÅÍ ¼¼Æ®¸¦ ½Ç½Ã°£À¸·Î °ü¸®ÇÏ°í ºÐ¼®Çϰí ÀáÀçÀûÀÎ À§Çè°ú ºñÁî´Ï½º ±âȸ¸¦ ½Ã»çÇÏ´Â ÀÌ»ó ¹× µ¿ÇâÀ» Àû½Ã¿¡ ÆÄ¾ÇÇÒ ¼ö ÀÖµµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù. ¸Ó½Å·¯´×, ÀΰøÁö´É, Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ µîÀÇ Ã·´Ü ±â¼úÀ» Ȱ¿ëÇÏ¿© ºò µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®, ½Ã°¢È­, ÇØ¼®ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Ç÷§ÆûÀÇ Çʿ伺Àº ¿À´Ã³¯ÀÇ µðÁöÅÐ ½Ã´ë¿¡ »ý¼ºµÇ´Â µ¥ÀÌÅÍÀÇ ¾çÀÌ °è¼Ó Áõ°¡Çϰí ÀÖÀ¸¸ç, Á¾·¡ÀÇ µ¥ÀÌÅÍ Ã³¸® ½Ã½ºÅÛ¿¡¼­´Â È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¼ö ¾ø±â ¶§¹®ÀÔ´Ï´Ù. ±× ¿ëµµ´Â ±ÝÀ¶, ÇコÄɾî, Á¦Á¶, ¹°·ù µî ´Ù¾çÇÑ ºÐ¾ß ¹× ¿¹Áöº¸Àü, ºÎÁ¤°ËÁö, ¼ÒºñÀÚ Çൿ ºÐ¼®, ¸®½ºÅ© °ü¸® µî¿¡ µµ¿òÀÌ µË´Ï´Ù. ÀÌ Ç÷§ÆûÀÇ ÃÖÁ¾ ¿ëµµ´Â ÁÖ·Î ´ë±Ô¸ð µ¥ÀÌÅÍ ½ºÆ®¸²À¸·ÎºÎÅÍ Áï°¢ÀûÀÎ ÅëÂû°ú ¾×¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ¾÷°èÀ̸ç, ÀÇ»ç°áÁ¤ ÇÁ·Î¼¼½º³ª Àü·«Àû °èȹÀÇ °­È­¿¡ ºü¶ß¸± ¼ö ¾ø´Â °ÍÀÌ µÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 152¾ï ´Þ·¯
¿¹Ãø³â(2024) 172¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 414¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 15.42%

½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§ÆûÀÇ ¼ºÀåÀº ¾÷¹« È¿À²¼º Çâ»ó°ú ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ Çʿ伺¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿¡ Å©°Ô ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ƯÈ÷ IoT ±â¼úÀ» ºü¸£°Ô µµÀÔÇÏ´Â ºÐ¾ß¿¡¼­´Â ÃÖ¼ÒÇÑÀÇ ÀÎÀû °³ÀÔÀ¸·Î ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÏ´Â ÅëÇÕ ¼Ö·ç¼ÇÀ» °³¹ßÇÒ ±âȸ°¡ dzºÎÇÕ´Ï´Ù. ±â¾÷Àº È®Àå °¡´ÉÇϰí À¯¿¬ÇÑ Ç÷§Æû¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Å¬¶ó¿ìµå ±â¹Ý ¹× SaaS ¼Ö·ç¼ÇÀÇ È®Àå¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ º¸¾È¿¡ ´ëÇÑ ¿ì·Á, ³ôÀº µµÀÔ ºñ¿ë, ½Å±â¼ú°ú ±âÁ¸ ½Ã½ºÅÛ °£ÀÇ ÅëÇÕ º¹À⼺°ú °°Àº ¹®Á¦°¡ ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦¸¦ ¿ÏÈ­Çϱâ À§Çؼ­´Â ¿ÀǼҽº °³¹ß ¹× ÆÄÆ®³Ê½ÊÀ» ÅëÇØ µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ´ëÃ¥ °³¼± ¹× ºñ¿ë Àý°¨À» ¸ñÇ¥·Î Çõ½ÅÀ» ÁøÇàÇØ¾ß ÇÕ´Ï´Ù.

½ÃÀåÀÇ º»ÁúÀº °æÀïÀûÀÌ°í ¿ªµ¿ÀûÀ̸ç, ²÷ÀÓ¾ø´Â ±â¼úÀÇ ¹ßÀüÀÌ º¯È­¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. µû¶ó¼­ Àü·«Àû Á¦¾ÈÀº µ¥ÀÌÅÍ º¸¾ÈÀ» ³ôÀ̱â À§ÇÑ ºí·ÏüÀÎ ÅëÇÕÀ» À§ÇÑ R&D ÅõÀÚ, ´ë±â ½Ã°£ ¹®Á¦¸¦ ÁÙÀÌ´Â ¿¡Áö ÄÄÇ»ÆÃ äÅÃ, Ç÷§Æû Á¢±Ù¼º Çâ»óÀÇ »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º¿¡ ÁÖ·Â µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àº Çõ½ÅÀ» ÃËÁøÇÒ »Ó¸¸ ¾Æ´Ï¶ó Áö¼Ó °¡´ÉÇÑ °æÀï·ÂÀ» âÃâÇÏ°í ±â¾÷ÀÌ »õ·Î¿î µ¿ÇâÀ» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ±â¾÷¿¡ ÀÇÇÑ ¸®½ºÅ© °ü¸® °³¼±¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • Ä¿³ØÆ¼µå µð¹ÙÀ̽º¿Í ¼¾¼­ÀÇ º¸±Þ
    • ¼¼°è IoT µð¹ÙÀ̽º µµÀÔ È®´ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§ÆûÀÇ °³¹ß¡¤º¸¼ö¿¡ µû¸¥ °íºñ¿ë
  • ½ÃÀå ±âȸ
    • ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í ¼Ö·ç¼ÇÀÇ Ã˸ŷμ­ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀÇ °³¹ß
    • ºòµ¥ÀÌÅÍ Ç÷§Æû¿¡ ÀΰøÁö´É ÅëÇÕ
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ Æ®·¡ÇÈÀÇ ±ÞÁõ½Ã¿¡ ½Å·Ú¼º ³ôÀº ¼º´ÉÀ» À¯ÁöÇϸ鼭 È®À强À» È®º¸ÇÏ´Â °Í

Portre's Five Forces: ºò µ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Force Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂûÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº ºò µ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ»ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ºò µ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

ºò µ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ºò µ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ±â¾÷¿¡ ÀÇÇÑ ¸®½ºÅ© °ü¸® °³¼±¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
      • Á¢¼Ó µð¹ÙÀ̽º¿Í ¼¾¼­ÀÇ ±ÞÁõ
      • ¼¼°è¿¡¼­ IoT µð¹ÙÀ̽ºÀÇ µµÀÔÀÌ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§ÆûÀÇ °³¹ß°ú º¸¼ö¿¡ °ü·ÃµÈ °íºñ¿ë
    • ±âȸ
      • ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æº¸ ¼Ö·ç¼Ç Ã˸ŷμ­ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§Æû °³¹ß
      • ºòµ¥ÀÌÅÍ Ç÷§Æû¿¡ ÀΰøÁö´É ÅëÇÕ
    • °úÁ¦
      • µ¥ÀÌÅÍ Æ®·¡ÇÈÀÌ ÁýÁߵǴ ±â°£¿¡µµ ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ» À¯ÁöÇϸ鼭 È®À强 È®º¸
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »ç±³
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : µ¥ÀÌÅÍ ¼Ò½ºº°

  • ¿ÜºÎ µ¥ÀÌÅÍ
    • ½ÃÀå º¸°í¼­
    • ´º½º ¾Æ¿ï·¿
    • °ø°³ µ¥ÀÌÅÍ ¼¼Æ®
    • ¼Ò¼È ¹Ìµð¾î
  • ³»ºÎ µ¥ÀÌÅÍ
    • °í°´ µ¥ÀÌÅÍ
    • Á¾¾÷¿øÀÇ »ó¼¼
    • ÆÇ¸Å ±â·Ï

Á¦7Àå ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : ºÐ¼® ±â´Éº°

  • ºñÁî´Ï½º ºÐ¼®
  • ºÎÁ¤ °ËÃâ ¹× ¸®½ºÅ© °ü¸®
  • ³×Æ®¿öÅ© °¨½Ã
  • ¿¹Áöº¸Àü

Á¦8Àå ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : ºòµ¥ÀÌÅÍ È°¿ë ±â¼úº°

  • ÀΰøÁö´É
    • ¸Ó½Å·¯´×
    • ÀÚ¿¬¾ð¾îó¸®
  • »ç¹°ÀÎÅͳÝ
    • ¼¾¼­ µ¥ÀÌÅÍ
    • ½º¸¶Æ® µð¹ÙÀ̽º

Á¦9Àå ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : Àü°³ ¸ðµåº°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • ¿ÂÇÁ·¹¹Ì½º

Á¦10Àå ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ±ÝÀ¶
  • ÇコÄɾî
  • Á¦Á¶¾÷
  • ¼Ò¸Å
  • Åë½Å

Á¦11Àå ¾Æ¸Þ¸®Ä«ÀÇ ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦12Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦13Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ºòµ¥ÀÌÅÍ °¨½Ã ¹× °æ°í Ç÷§Æû ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦14Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Pentaho´Â µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º ±â´ÉÀ» °­È­ÇÏ°í »çÀÏ·ÎÈ­µÈ µ¥ÀÌÅÍÀÇ °úÁ¦¸¦ ±Øº¹ÇÕ´Ï´Ù.
    • Engine Data Science´Â Databricks¿Í Á¦ÈÞÇÏ¿© Çõ½ÅÀûÀÎ AI ¹× ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀ» ÅëÇØ ¼Ò¸Å¾÷ ¹× CPG ¾÷°èÀÇ µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º¿¡ Çõ¸íÀ» ÀÏÀ¸Åµ´Ï´Ù.
    • Cloudera´Â VertaÀÇ ¿î¿µ Ç÷§ÆûÀ» Àü·«ÀûÀ¸·Î ÀμöÇÏ¿© AI ±â´ÉÀ» °­È­ÇÕ´Ï´Ù.
  • Àü·« ºÐ¼®°ú Á¦¾È
JHS 24.10.30

The Big Data Monitoring & Warning Platform Market was valued at USD 15.20 billion in 2023, expected to reach USD 17.29 billion in 2024, and is projected to grow at a CAGR of 15.42%, to USD 41.49 billion by 2030.

A Big Data Monitoring & Warning Platform is designed to manage and analyze vast datasets in real time, facilitating timely identification of anomalies and trends that could suggest potential risks or opportunities. It harnesses advanced technologies such as machine learning, artificial intelligence, and cloud computing to process, visualize, and interpret big data efficiently. The necessity of such a platform arises from the ever-increasing volume of data generated in today's digital age, which traditional data processing systems cannot handle efficiently. Its application spans various sectors, including finance, healthcare, manufacturing, and logistics, where it aids in predictive maintenance, fraud detection, consumer behavior analysis, and risk management. The platform's end-use is primarily in industries requiring immediate insight and action from large data streams, making it crucial for enhancing decision-making processes and strategic planning.

KEY MARKET STATISTICS
Base Year [2023] USD 15.20 billion
Estimated Year [2024] USD 17.29 billion
Forecast Year [2030] USD 41.49 billion
CAGR (%) 15.42%

Market insights indicate that the growth of the Big Data Monitoring & Warning Platform is largely influenced by the rising demand for enhanced operational efficiency and the need for real-time data processing. Opportunities are abundant in developing integrated solutions that offer actionable insights with minimal human intervention, especially in sectors rapidly adopting IoT technologies. Companies should focus on expanding cloud-based and SaaS solutions to cater to the demand for scalable and flexible platforms. However, challenges persist, such as data security concerns, high implementation costs, and the complexity of integrating new technology with existing systems. To mitigate these challenges, innovation should target improving data privacy measures and reducing costs through open-source developments and partnerships.

The nature of the market is competitive and dynamic, with continuous technological advancements driving change. Hence, strategic recommendations include investing in R&D for blockchain integration for heightened data security, adopting edge computing to reduce latency issues, and focusing on user-friendly interfaces to enhance platform accessibility. These strategies will not only foster innovation but also create a sustainable competitive edge and enable firms to capitalize on emerging trends.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Big Data Monitoring & Warning Platform Market

The Big Data Monitoring & Warning Platform Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising demand for improved risk management by companies
    • Proliferation of connected devices and sensors
    • Increasing adoption of IoT devices globally
  • Market Restraints
    • High cost associated with the development and maintenance of Big Data Monitoring & Warning Platform
  • Market Opportunities
    • Development of cloud-based platforms as a catalyst for big data monitoring and alerting solutions
    • Integration of artificial intelligence in big data platforms
  • Market Challenges
    • Ensuring scalability while maintaining reliable performance during periods of intense data traffic

Porter's Five Forces: A Strategic Tool for Navigating the Big Data Monitoring & Warning Platform Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Big Data Monitoring & Warning Platform Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Big Data Monitoring & Warning Platform Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Big Data Monitoring & Warning Platform Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Big Data Monitoring & Warning Platform Market

A detailed market share analysis in the Big Data Monitoring & Warning Platform Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Big Data Monitoring & Warning Platform Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Big Data Monitoring & Warning Platform Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Big Data Monitoring & Warning Platform Market

A strategic analysis of the Big Data Monitoring & Warning Platform Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Big Data Monitoring & Warning Platform Market, highlighting leading vendors and their innovative profiles. These include Amazon Web Services, Inc. (AWS), Anodot Ltd., Cloudera, Inc., Datadog Inc., Domo, Inc., Hewlett Packard Enterprise (HPE), IBM Corporation, Microsoft Corporation, New Relic, Inc., NVIDIA Corporation, Open Text Corporation, Oracle Corporation, Palantir Technologies Inc., SAP SE, SAS Institute Inc., Splunk Inc., Sumo Logic, Inc., Teradata Corporation, and TIBCO Software Inc..

Market Segmentation & Coverage

This research report categorizes the Big Data Monitoring & Warning Platform Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Data Sources, market is studied across External Data and Internal Data. The External Data is further studied across Market Reports, News Outlets, Public Datasets, and Social Media. The Internal Data is further studied across Customer Data, Employee Details, and Sales Records.
  • Based on Analytical Functions, market is studied across Business Analytics, Fraud Detection & Risk Management, Network Monitoring, and Predictive Maintenance.
  • Based on Technologies Powered By Big Data, market is studied across Artificial Intelligence and Internet Of Things. The Artificial Intelligence is further studied across Machine Learning and Natural Language Processing. The Internet Of Things is further studied across Sensor Data and Smart Devices.
  • Based on Deployment Mode, market is studied across Cloud-Based and On-Premises.
  • Based on End-Use Industry, market is studied across Finance, Healthcare, Manufacturing, Retail, and Telecommunications.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising demand for improved risk management by companies
      • 5.1.1.2. Proliferation of connected devices and sensors
      • 5.1.1.3. Increasing adoption of IoT devices globally
    • 5.1.2. Restraints
      • 5.1.2.1. High cost associated with the development and maintenance of Big Data Monitoring & Warning Platform
    • 5.1.3. Opportunities
      • 5.1.3.1. Development of cloud-based platforms as a catalyst for big data monitoring and alerting solutions
      • 5.1.3.2. Integration of artificial intelligence in big data platforms
    • 5.1.4. Challenges
      • 5.1.4.1. Ensuring scalability while maintaining reliable performance during periods of intense data traffic
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Big Data Monitoring & Warning Platform Market, by Data Sources

  • 6.1. Introduction
  • 6.2. External Data
    • 6.2.1. Market Reports
    • 6.2.2. News Outlets
    • 6.2.3. Public Datasets
    • 6.2.4. Social Media
  • 6.3. Internal Data
    • 6.3.1. Customer Data
    • 6.3.2. Employee Details
    • 6.3.3. Sales Records

7. Big Data Monitoring & Warning Platform Market, by Analytical Functions

  • 7.1. Introduction
  • 7.2. Business Analytics
  • 7.3. Fraud Detection & Risk Management
  • 7.4. Network Monitoring
  • 7.5. Predictive Maintenance

8. Big Data Monitoring & Warning Platform Market, by Technologies Powered By Big Data

  • 8.1. Introduction
  • 8.2. Artificial Intelligence
    • 8.2.1. Machine Learning
    • 8.2.2. Natural Language Processing
  • 8.3. Internet Of Things
    • 8.3.1. Sensor Data
    • 8.3.2. Smart Devices

9. Big Data Monitoring & Warning Platform Market, by Deployment Mode

  • 9.1. Introduction
  • 9.2. Cloud-Based
  • 9.3. On-Premises

10. Big Data Monitoring & Warning Platform Market, by End-Use Industry

  • 10.1. Introduction
  • 10.2. Finance
  • 10.3. Healthcare
  • 10.4. Manufacturing
  • 10.5. Retail
  • 10.6. Telecommunications

11. Americas Big Data Monitoring & Warning Platform Market

  • 11.1. Introduction
  • 11.2. Argentina
  • 11.3. Brazil
  • 11.4. Canada
  • 11.5. Mexico
  • 11.6. United States

12. Asia-Pacific Big Data Monitoring & Warning Platform Market

  • 12.1. Introduction
  • 12.2. Australia
  • 12.3. China
  • 12.4. India
  • 12.5. Indonesia
  • 12.6. Japan
  • 12.7. Malaysia
  • 12.8. Philippines
  • 12.9. Singapore
  • 12.10. South Korea
  • 12.11. Taiwan
  • 12.12. Thailand
  • 12.13. Vietnam

13. Europe, Middle East & Africa Big Data Monitoring & Warning Platform Market

  • 13.1. Introduction
  • 13.2. Denmark
  • 13.3. Egypt
  • 13.4. Finland
  • 13.5. France
  • 13.6. Germany
  • 13.7. Israel
  • 13.8. Italy
  • 13.9. Netherlands
  • 13.10. Nigeria
  • 13.11. Norway
  • 13.12. Poland
  • 13.13. Qatar
  • 13.14. Russia
  • 13.15. Saudi Arabia
  • 13.16. South Africa
  • 13.17. Spain
  • 13.18. Sweden
  • 13.19. Switzerland
  • 13.20. Turkey
  • 13.21. United Arab Emirates
  • 13.22. United Kingdom

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2023
  • 14.2. FPNV Positioning Matrix, 2023
  • 14.3. Competitive Scenario Analysis
    • 14.3.1. Pentaho enhances Data Intelligence capabilities to overcome siloed data challenges
    • 14.3.2. Engine Data Science partners with Databricks to revolutionize data intelligence for retail and CPG sectors through innovative AI and machine learning solutions
    • 14.3.3. Cloudera enhances AI capabilities with strategic acquisition of Verta's operational platform
  • 14.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Amazon Web Services, Inc. (AWS)
  • 2. Anodot Ltd.
  • 3. Cloudera, Inc.
  • 4. Datadog Inc.
  • 5. Domo, Inc.
  • 6. Hewlett Packard Enterprise (HPE)
  • 7. IBM Corporation
  • 8. Microsoft Corporation
  • 9. New Relic, Inc.
  • 10. NVIDIA Corporation
  • 11. Open Text Corporation
  • 12. Oracle Corporation
  • 13. Palantir Technologies Inc.
  • 14. SAP SE
  • 15. SAS Institute Inc.
  • 16. Splunk Inc.
  • 17. Sumo Logic, Inc.
  • 18. Teradata Corporation
  • 19. TIBCO Software Inc.
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦