½ÃÀ庸°í¼­
»óǰÄÚµå
1574224

¼¼°èÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¶Á÷ ±Ô¸ð, Àü°³ À¯Çü, ºÐ¾ßº° ¿¹Ãø(2025-2030³â)

Crowd Analytics Market by Organization Size (Large Enterprises, Small And Medium Enterprises), Deployment Type (Cloud, On-Premise), Verticals - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 14¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 16¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 20.68%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù. 2030³â¿¡´Â 53¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º´Â CCTV, ¼Ò¼È ¹Ìµð¾î, Wi-Fi, ¼¾¼­ µî ´Ù¾çÇÑ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© °ø°ø °ø°£¿¡¼­ Àα¸ÀÇ ÆÐÅϰú ÇൿÀ» ºÐ¼®ÇÕ´Ï´Ù. µµ½Ã ȯ°æ¿¡¼­ ±ºÁß °ü¸®, °ø°ø À̺¥Æ®, ½º¸¶Æ® ½ÃƼ ±¸Çö¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á߿伺ÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿ëµµ·Î´Â ¾ÈÀü °ü¸®, ±³Åë ¸ð´ÏÅ͸µ, ¼Ò¸Å ºÐ¼®, °ø°ø½Ã¼³ÀÇ »ç¿ëÀÚ °æÇè Çâ»ó µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀåÀÇ ÃÖÁ¾ ¿ëµµ ¹üÀ§´Â ³Ð°í Á¤ºÎ, ±³Åë, ¼Ò¸Å, ¿£ÅÍÅ×ÀÎ¸ÕÆ® µîÀÇ ºÐ¾ß¸¦ ´Ù·ì´Ï´Ù. Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½ºÀÇ ¼ºÀåÀ» À̲ø°í ÀÖ´Â °ÍÀº AI¿Í ºòµ¥ÀÌÅÍÀÇ ±â¼úÀû Áøº¸, IoT µð¹ÙÀ̽ºÀÇ º¸±Þ, °ø°ø ¾ÈÀü°ú ¾÷¹« È¿À²ÀÇ Áß½ÃÀÇ ³ô¾ÆÁüÀÔ´Ï´Ù. Àû±ØÀûÀÎ ±ºÁß °ü¸®¸¦ À§ÇÑ ¿¹Ãø ºÐ¼®ÀÇ °³¹ß°ú ½Ç½Ã°£ ÀÇ»ç°áÁ¤ ´É·ÂÀÇ °­È­¿¡´Â ±âȸ°¡ ³ÑÃijª°í ÀÖ½À´Ï´Ù. ±×·¯³ªÀÌ ½ÃÀåÀº °³ÀÎ Á¤º¸ º¸È£ ¹®Á¦, µ¥ÀÌÅÍ º¸¾È ¹®Á¦ ¹× ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀÇ µµÀÔ ºñ¿ëÀÌ ³ô½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ Á¶°¢È­¿Í ´Ù¾çÇÑ µ¥ÀÌÅÍ ¼Ò½º ÅëÇÕÀÇ º¹À⼺µµ Å« Àå¾Ö¹°À̵Ǿú½À´Ï´Ù. Çõ½ÅÀº µ¥ÀÌÅÍ ÅëÇÕ ±â¹ý °³¼±, ¿¹Ãø ´É·Â Çâ»óÀ» À§ÇÑ AI ¾Ë°í¸®Áò °­È­, ¼Ò±Ô¸ð Á¶Á÷ ÁøÀÔ À庮À» ³·Ãß´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼Ç âÃâ¿¡ ÁßÁ¡À» µÑ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Ãß°¡ ¿¬±¸°³¹ßÀº Á¶»ç¹æ¹ýÀÇ À±¸®Àû °úÁ¦¸¦ ޱ¸ÇÏ°í º¸´Ù °ß°íÇÑ ÇÁ¶óÀ̹ö½Ãº¸È£¹æ¹ýÀ» °³¹ßÇÒ ¼öµµ ÀÖ½À´Ï´Ù.½ÃÀåÀº ¿ªµ¿ÀûÀÌ°í °æÀïÀÌ Ä¡¿­ÇÏ¸ç ±â¾÷Àº Ç×»ó ¼­ºñ½º Çõ½Å°ú Â÷º°È­¸¦ Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ºü¸£°Ô ÁøÈ­ÇÏ´Â »óȲ¿¡ ÀûÀÀÇϱâ À§ÇØ È®Àå °¡´ÉÇϰí À¯¿¬ÇÑ ¼Ö·ç¼ÇÀ» ¼±È£ÇØ¾ß ÇÕ´Ï´Ù. ±Ç°í»çÇ×À¸·Î´Â ±â¼ú °³¹ßÀ» À§ÇÑ ÆÄÆ®³Ê½Ê Âü¿©, °í°´ Áß½ÉÀÇ Çõ½Å¿¡ ´ëÇÑ ÁÖ·Â, ÃÖ÷´Ü ¾Ö³Î¸®Æ½½º ¼Ö·ç¼ÇÀ» À§ÇÑ R&D ÅõÀÚ µîÀÌ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº ´Ù¾çÇÑ Àü¹® Áö½ÄÀ» Ȱ¿ëÇÏ°í »õ·Î¿î ½ÃÀå : ºÎ¹®¿¡ ¾×¼¼½ºÇϱâ À§ÇØ ¾÷°è¸¦ ³Ñ¾î Çù¾÷À» ÃËÁøÇØ¾ß Çϸç Áö¼Ó °¡´ÉÇÑ ¼ºÀåÀ» º¸ÀåÇÏ°í ¼Óµµ°¡ ºü¸¥ ½ÃÀå ¼¼ºÐÈ­¿¡¼­ °æÀï ¿ìÀ§¸¦ À¯ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 14¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 16¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 53¾ï ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 20.68%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • È¿À²ÀûÀÎ ±ºÁß °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺À¸·Î À̾îÁö´Â °ü±¤ Ȱµ¿ Áõ°¡
    • Åë±Ù üÇèÀ» Çâ»ó½Ã۱â À§ÇÑ ±³Åë ½Ã½ºÅÛ¿¡ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º µµÀÔ
    • ±Þ¼ÓÇÑ µµ½ÃÈ­¿¡ ÀÇÇØ ´ëµµ½Ã±Ç¿¡ À־ÀÇ º¸´Ù ÁÁÀº ±ºÁý °ü¸® ¼ö¿ä°¡ ³ô¾ÆÁø´Ù
    • ±ºÁß Çൿ ¿¹Ãø ºÐ¼®À» À§ÇÑ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Ã¤¿ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º µ¥ÀÌÅÍ ¼öÁý°ú °ü·ÃµÈ °³ÀÎÁ¤º¸ º¸È£ ¹®Á¦¿Í À±¸®Àû ¹®Á¦
    • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¿Í ±âÁ¸ ±â¾÷ ½Ã½ºÅÛ ¹× ÀÎÇÁ¶ó °£ÀÇ ÅëÇÕ ¾î·Á¿ò
  • ½ÃÀå ±âȸ
    • µµ½Ã ÀÎÇÁ¶ó °³¹ß, °ü¸®ÀÇ °³¼±À» À§ÇÑ µµ½Ã °èȹÀÚ¿¡ ÀÇÇÑ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½ºÀÇ Ã¤¿ë
    • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¸¦ ÀÌ¿ëÇÑ ¼Ò¸Å¾÷ÀÇ °í°´ °æÇè Çâ»ó°ú ¾÷¹« È¿À²È­
    • À̺¥Æ® °ü¸®¿¡¼­ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¸¦ Ȱ¿ëÇÏ¿© ´õ ³ªÀº ±ºÁß Á¦¾î ¹× º¸¾È °­È­
  • ½ÃÀåÀÇ °úÁ¦
    • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ °í°´ °æÇè Çâ»ó°ú ¾÷¹« È¿À²È­¸¦ À§ÇÑ ¼Ò¸Å¾÷°ú °ü·ÃµÈ ¾÷°è ƯÀ¯ÀÇ °úÁ¦
    • ±³Åë°ü¸®¿Í ½Â°´ÀÇ È帧À» ÃÖÀûÈ­Çϱâ À§ÇÑ, ¿î¼Û¾÷°è¿¡ À־ÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå : ƯÀ¯ÀÇ °úÁ¦

Porter's Five Forces: Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂûÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® Ŭ¶ó¿ìµå ºÐ¼® ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º Ŭ¶ó¿ìµå ºÐ¼® ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • °ü±¤ Ȱµ¿ Áõ°¡·Î È¿À²ÀûÀÎ ±ºÁß °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
      • Åë±ÙÀÚÀÇ Ã¼ÇèÀ» Çâ»ó½ÃŰ´Â ±³Åë ½Ã½ºÅÛ¿¡ÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½ºÀÇ ±¸Çö
      • ±Þ¼ÓÇÑ µµ½ÃÈ­·Î ´ëµµ½Ã±Ç¿¡¼­ ±ºÁß°ü¸® °³¼±ÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù.
      • ±ºÁß ÇൿÀÇ ¿¹Ãø ºÐ¼®À» À§ÇÑ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ Ã¤¿ë
    • ¾ïÁ¦¿äÀÎ
      • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º µ¥ÀÌÅÍ ¼öÁý°ú °ü·ÃµÈ ÇÁ¶óÀ̹ö½Ã ¹®Á¦¿Í À±¸®Àû ¹®Á¦
      • Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¸¦ ±âÁ¸ ¿£ÅÍÇÁ¶óÀÌÁî ½Ã½ºÅÛ ¹× ÀÎÇÁ¶ó¿Í ÅëÇÕÇϱ⠾î·Á¿ò
    • ±âȸ
      • µµ½Ã ÀÎÇÁ¶óÀÇ °³¹ß°ú °ü¸®ÀÇ °³¼±À» À§ÇØ µµ½Ã °èȹÀÚ°¡ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¸¦ ä¿ëÇÑ´Ù
      • °í°´ °æÇè°ú ¾÷¹« È¿À² Çâ»óÀ» À§ÇØ ¼Ò¸Å¾÷Àº Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ´Ù
      • ±ºÁß Á¦¾î ¹× º¸¾È °­È­¸¦ Çâ»ó½Ã۱â À§ÇØ À̺¥Æ® °ü¸®¿¡¼­ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º »ç¿ë
    • °úÁ¦
      • °í°´ °æÇè°ú »ç¾÷ ¿î¿µÀ» Çâ»ó½Ã۱â À§ÇÑ ¼Ò¸Å ¾÷°è¿Í °ü·ÃµÈ ¾Ö³ÊŬ¶ó¿ìµå ¸®Æ½½º ½ÃÀå¿¡¼­ÀÇ ¾÷°è °íÀ¯ÀÇ °úÁ¦
      • ±³Åë°ü¸®¿Í ½Â°´ÀÇ È帧À» ÃÖÀûÈ­Çϱâ À§ÇÑ ±³ÅëºÎ¹®°ú °ü·ÃµÈ ¾Æ³ªÅ¬¶ó¿ìµå ¸®Æ½½º ½ÃÀå¿¡ À־ÀÇ ¾÷°è ƯÀ¯ÀÇ °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦7Àå Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå : Àü°³ À¯Çüº°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå : ¾÷Á¾º°

  • ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ±ÝÀ¶ ¼­ºñ½º
  • ÇコÄɾî
  • ¸¶ÄÉÆÃ ¹× ±¤°í
  • °ø¾È
  • ¼Ò¸Å
  • ±³Åë±â°ü

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Å©¶ó¿ìµå ¾Ö³Î¸®Æ½½º ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
BJH 24.10.28

The Crowd Analytics Market was valued at USD 1.42 billion in 2023, expected to reach USD 1.69 billion in 2024, and is projected to grow at a CAGR of 20.68%, to USD 5.30 billion by 2030.

Crowd analytics involves the use of data from various sources such as CCTV, social media, Wi-Fi, and sensors to analyze patterns and behaviors of groups in public spaces. It's taking on increasing importance due to the rising demand for crowd management in urban settings, public events, and smart city implementations. Key applications include safety management, traffic monitoring, retail analytics, and enhancing user experiences in public venues. The market's end-use scope is extensive, covering sectors like government, transportation, retail, and entertainment. The growth of crowd analytics is driven by technological advancements in AI and big data, the proliferation of IoT devices, and a growing emphasis on public safety and operational efficiency. Opportunities abound in developing predictive analytics for proactive crowd management and enhancing real-time decision-making capabilities. However, the market faces challenges such as privacy concerns, data security issues, and the high cost of implementing analytics solutions, which could restrain growth. Moreover, data fragmentation and the complexity of integrating diverse data sources also present significant hurdles. Innovations could focus on improving data integration methods, enhancing AI algorithms for predictive capabilities, and creating more cost-effective solutions to lower entry barriers for smaller organizations. Further research might explore the ethical challenges in crowd analytics, developing more robust privacy-preserving methodologies. The market is dynamic and competitive, with players constantly seeking to innovate and differentiate their services. Businesses should prioritize scalable and flexible solutions to adapt to the rapidly evolving landscape. Recommendations include engaging in partnerships for technology development, focusing on customer-centric innovations, and investing in R&D for cutting-edge analytics solutions. Companies should also foster collaborations across industries to leverage diverse expertise and access new market segments, thereby ensuring sustainable growth and maintaining competitive advantages in the fast-paced crowd analytics market.

KEY MARKET STATISTICS
Base Year [2023] USD 1.42 billion
Estimated Year [2024] USD 1.69 billion
Forecast Year [2030] USD 5.30 billion
CAGR (%) 20.68%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Crowd Analytics Market

The Crowd Analytics Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increase in tourism activities leading to the necessity for efficient crowd management solutions
    • Implementation of crowd analytics in transportation systems to enhance commuter experience
    • Rapid urbanization contributing to the demand for better crowd control in metropolitan areas
    • Adoption of artificial intelligence and machine learning for predictive crowd behavior analysis
  • Market Restraints
    • Privacy concerns and ethical issues related to the data collection in crowd analytics
    • Difficulty in integrating crowd analytics with existing enterprise systems and infrastructure
  • Market Opportunities
    • Adoption of crowd analytics by city planners for improved urban infrastructure development and management
    • Increasing reliance of retail businesses on crowd analytics for enhancing customer experience and operational efficiency
    • Use of crowd analytics in event management for better crowd control and security enhancement
  • Market Challenges
    • Industry-specific challenge in the crowd analytics market related to retail industry for enhancing customer experience and business operations
    • Industry-specific challenge in the crowd analytics market related to transportation sector for optimizing traffic management and passenger flow

Porter's Five Forces: A Strategic Tool for Navigating the Crowd Analytics Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Crowd Analytics Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Crowd Analytics Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Crowd Analytics Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Crowd Analytics Market

A detailed market share analysis in the Crowd Analytics Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Crowd Analytics Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Crowd Analytics Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Crowd Analytics Market

A strategic analysis of the Crowd Analytics Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Crowd Analytics Market, highlighting leading vendors and their innovative profiles. These include Cisco Systems, Inc., HP Inc., Huawei Technologies Co., Ltd., IBM Corporation, Intel Corporation, LG Electronics Inc., Microsoft Corporation, Nokia Corporation, NVIDIA Corporation, Oracle Corporation, Qualcomm Technologies, Inc., Salesforce.com, Inc., SAP SE, SAS Institute Inc., and Sony Corporation.

Market Segmentation & Coverage

This research report categorizes the Crowd Analytics Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Organization Size, market is studied across Large Enterprises and Small And Medium Enterprises.
  • Based on Deployment Type, market is studied across Cloud and On-Premise.
  • Based on Verticals, market is studied across Entertainment, Financial Services, Healthcare, Marketing And Advertising, Public Safety, Retail, and Transportation.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increase in tourism activities leading to the necessity for efficient crowd management solutions
      • 5.1.1.2. Implementation of crowd analytics in transportation systems to enhance commuter experience
      • 5.1.1.3. Rapid urbanization contributing to the demand for better crowd control in metropolitan areas
      • 5.1.1.4. Adoption of artificial intelligence and machine learning for predictive crowd behavior analysis
    • 5.1.2. Restraints
      • 5.1.2.1. Privacy concerns and ethical issues related to the data collection in crowd analytics
      • 5.1.2.2. Difficulty in integrating crowd analytics with existing enterprise systems and infrastructure
    • 5.1.3. Opportunities
      • 5.1.3.1. Adoption of crowd analytics by city planners for improved urban infrastructure development and management
      • 5.1.3.2. Increasing reliance of retail businesses on crowd analytics for enhancing customer experience and operational efficiency
      • 5.1.3.3. Use of crowd analytics in event management for better crowd control and security enhancement
    • 5.1.4. Challenges
      • 5.1.4.1. Industry-specific challenge in the crowd analytics market related to retail industry for enhancing customer experience and business operations
      • 5.1.4.2. Industry-specific challenge in the crowd analytics market related to transportation sector for optimizing traffic management and passenger flow
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Crowd Analytics Market, by Organization Size

  • 6.1. Introduction
  • 6.2. Large Enterprises
  • 6.3. Small And Medium Enterprises

7. Crowd Analytics Market, by Deployment Type

  • 7.1. Introduction
  • 7.2. Cloud
  • 7.3. On-Premise

8. Crowd Analytics Market, by Verticals

  • 8.1. Introduction
  • 8.2. Entertainment
  • 8.3. Financial Services
  • 8.4. Healthcare
  • 8.5. Marketing And Advertising
  • 8.6. Public Safety
  • 8.7. Retail
  • 8.8. Transportation

9. Americas Crowd Analytics Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Crowd Analytics Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Crowd Analytics Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Cisco Systems, Inc.
  • 2. HP Inc.
  • 3. Huawei Technologies Co., Ltd.
  • 4. IBM Corporation
  • 5. Intel Corporation
  • 6. LG Electronics Inc.
  • 7. Microsoft Corporation
  • 8. Nokia Corporation
  • 9. NVIDIA Corporation
  • 10. Oracle Corporation
  • 11. Qualcomm Technologies, Inc.
  • 12. Salesforce.com, Inc.
  • 13. SAP SE
  • 14. SAS Institute Inc.
  • 15. Sony Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦