½ÃÀ庸°í¼­
»óǰÄÚµå
1574294

¼¼°èÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå : ¼­ºñ½º ¸ðµ¨, ¼­ºñ½º À¯Çüº° ¿¹Ãø(2025-2030³â)

Data as a Service Market by Service Model (Infrastructure As A Service, Platform As A Service, Software As A Service), Service Type (Consulting, Support And Maintenance, Training And Education) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 199 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 198¾ï 2,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 234¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 18.47%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 649¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼­ºñ½ºÇü µ¥ÀÌÅÍ(DaaS)´Â Á¶Á÷¿¡ µ¥ÀÌÅÍ °ü·Ã ¼­ºñ½º¸¦ Á¦°øÇϴ Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º ¸ðµ¨·Î ±âÁ¸ ½ºÅ丮Áö ¹× °ü¸® ºÎ´ã ¾øÀÌ µ¥ÀÌÅÍ¿¡ ¾×¼¼½º, °ü¸® ¹× ºÐ¼®ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¸ðµ¨Àº ´ë±Ô¸ð ÀÎÇÁ¶ó ÅõÀÚ ¾øÀÌ µ¥ÀÌÅ͸¦ Ȱ¿ëÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ¸Å¿ì ±ÍÁßÇϸç È®À强, À¯¿¬¼º ¹× ½Ç½Ã°£ µ¥ÀÌÅÍ °ü¸®¸¦ Á¦°øÇÕ´Ï´Ù. DaaSÀÇ Çʿ伺Àº µ¥ÀÌÅÍ Áß½ÉÀÇ ÀÇ»ç°áÁ¤, ºòµ¥ÀÌÅÍ ºÐ¼®, Ç÷§Æû °£ÀÇ ¿øÈ°ÇÑ ÅëÇÕ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. DaaS´Â ÇコÄɾî, ±ÝÀ¶, ¼Ò¸Å, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÀÀ¿ëµÇ°í ÀÖÀ¸¸ç, ¹æ´ëÇÑ µ¥ÀÌÅÍ Ç®·ÎºÎÅÍÀÇ ÅëÂûÀ» ÅëÇØ Àü·«Àû Çൿ°ú ¾÷¹« È¿À²¼ºÀ» ºñ¾àÀûÀ¸·Î ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÃÖÁ¾ »ç¿ëÀÚ´Â µ¥ÀÌÅÍ °úÇÐÀÚ, ºÐ¼®°¡, ±â¾÷ Àü·« ºÎ¼­ µîÀÌ ¸¹½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 198¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 234¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 649¾ï 5,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 18.47%

½ÃÀå ÀλçÀÌÆ®¿¡ µû¸£¸é ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ´ë·®ÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â IoT µð¹ÙÀ̽ºÀÇ º¸±Þ, µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ AI ¹× ML ±â¼úÀÇ Áøº¸, È¿À²ÀûÀÎ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ±ÔÁ¦ ÄÄÇöóÀ̾𽺠Á߿伺 Áõ°¡ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ÇöÀçÀÇ ºñÁî´Ï½º ±âȸ´Â °³ÀÎÈ­µÈ °Ç°­ °ü¸®, ½º¸¶Æ® ½ÃƼ, ±Þ¼ºÀåÇÏ´Â ÇÉÅ×Å© ºÐ¾ß¿Í °°Àº Æ´»õ ½ÃÀå¿¡ ÀÖÀ¸¸ç, µ¥ÀÌÅÍ È°¿ëÀ» ÅëÇØ ¼­ºñ½º¸¦ »ç¿ëÀÚ Á¤ÀÇÇÏ°í »ç¿ëÀÚ °æÇèÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ·Á¸é ±â¼ú °ø±ÞÀÚ¿ÍÀÇ Àü·«Àû ÆÄÆ®³Ê½Ê°ú ¸ÂÃãÇü µ¥ÀÌÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª °úÁ¦´Â µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, º¸¾È À§Çè, Ãʱâ ÅëÇÕ ºñ¿ëÀÇ ³ôÀÌ, ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â ±â¼ú·Î ÀÎÇÑ ±â¼úÀû ÁøºÎÈ­ °¡´É¼º¿¡ ´ëÇÑ ¿ì·Á µîÀÌ ÀÖ½À´Ï´Ù.

¿¬±¸°³¹ßÀº µ¥ÀÌÅÍ º¸¾È ´ëÃ¥ °­È­, º¸´Ù È¿À²ÀûÀÎ µ¥ÀÌÅÍ ÅëÇÕ Åø °³¹ß, ¾÷°è °íÀ¯ÀÇ ¿ä±¸¿¡ ´ëÀÀÇÏ´Â AI ÁÖµµ ºÐ¼® Ç÷§ÆûÀÇ ±¸Ãà¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ¶ÇÇÑ ±â¾÷Àº À¯¿¬¼ºÀ» Á¦°øÇÏ°í º¸¾È ¹®Á¦¸¦ ÇØ°áÇϱâ À§ÇØ Å¬¶ó¿ìµå ¹× ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ ÇÁ·¹ÀÓ¿öÅ©¸¦ ¸ðµÎ Ȱ¿ëÇÏ´Â ÇÏÀ̺긮µå ¸ðµ¨À» ã´Â °Íµµ °í·ÁÇØ¾ß ÇÕ´Ï´Ù. DaaS ½ÃÀåÀÇ ¼º°ÝÀº ¸Å¿ì ¿ªµ¿ÀûÀ̸ç, ¹Îø¼º, Áö¼ÓÀûÀÎ Çõ½Å, ±ÔÁ¦ µ¿Çâ¿¡ ´ëÇÑ °æ°èÀÇ Çʿ伺À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀåÀ» ¼º°øÀûÀ¸·Î ±Øº¹Çϱâ À§Çؼ­´Â ¼ÒºñÀÚ ¿ä±¸¿¡ ´ëÇÑ ¿¹¹ÎÇÑ ÀÌÇØ¿Í ±â¼úÀû Áøº¸¿¡ ½Å¼ÓÇÏ°Ô ÀûÀÀÇÏ´Â ¼±°ß¼ºÀÌ ÇÊ¿äÇϸç, ÀÌ´Â Áö¼ÓÀûÀÎ °æÀï ¿ìÀ§¿Í ¼ºÀåÀ» º¸ÀåÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ¸·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • °æÀï·Â À¯Áö¸¦ À§ÇÑ Àü·«Àû ºñÁî´Ï½º ÀÇ»ç°áÁ¤¿¡ À־ÀÇ µ¥ÀÌÅÍ ºÐ¼®¿¡ÀÇ ÀÇÁ¸ÀÇ °íÁ¶
    • Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ º¸±ÞÀ¸·Î È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ ¼­ºñ½º ¼Ö·ç¼Ç ½ÇÇö
    • °í±Þ µ¥ÀÌÅÍ °ü¸® ¼­ºñ½º¸¦ ÇÊ¿ä·Î ÇÏ´Â IoT ±â±â¿¡¼­ »ý¼ºµÇ´Â µ¥ÀÌÅÍ·® Áõ°¡
    • ÄÄÇöóÀÌ¾ð½º¿Í µ¥ÀÌÅÍ º¸¾È ±ÔÁ¦ÀÇ Á߽ð¡ °íµµÀÇ µ¥ÀÌÅÍ ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁø
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼­ºñ½ºÇü µ¥ÀÌÅÍ °ø±ÞÀÚÀÇ °æ¿ì ±ÔÁ¦ ¿ä±¸ »çÇ×À» ÁؼöÇÏ´Â °ÍÀÌ Å« À庮ÀÔ´Ï´Ù.
    • ¼­ºñ½ºÇü µ¥ÀÌÅÍÀÇ ÀÌÁ¡¿¡ °üÇÑ ÀÎÁöµµÀÇ ³·À½ÀÌ ½ÃÀå È®´ëÀÇ ¹æÇØ¿¡
  • ½ÃÀå ±âȸ
    • ºòµ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ºñÁî´Ï½º ÀÇ»ç°áÁ¤À» À§ÇÑ ¿¹ÃøÀû ÅëÂûÀ» Á¦°ø
    • ¸ÖƼŬ¶ó¿ìµå ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ȯ°æÀ» À§ÇÑ Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç Á¦°ø
    • ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®ÀÇ È°¿ë¿¡ ÀÇÇÑ °í°´ °æÇè°ú ¾÷¹« È¿À²ÀÇ Çâ»ó
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã, º¸¾È, ±ÔÁ¦ ¿ä°Ç¿¡ÀÇ ÄÄÇöóÀ̾ð½ºÀÇ È®º¸
    • ´ë·®ÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®Çϱâ À§ÇÑ È®À强°ú ¼º´ÉÀÇ °úÁ¦

Porter's Five Forces: ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂûÀ» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÔÀ¸·Î½á º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼®¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • °æÀï·ÂÀ» À¯ÁöÇϱâ À§ÇÑ Àü·«Àû ºñÁî´Ï½º ÀÇ»ç°áÁ¤¿¡¼­ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù
      • Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ º¸±ÞÀ¸·Î È®Àå °¡´ÉÇÏ°í ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ ¼­ºñ½º ¼Ö·ç¼Ç ½ÇÇö
      • IoT µð¹ÙÀ̽º¿¡ ÀÇÇØ »ý¼ºµÇ´Â µ¥ÀÌÅÍ·® Áõ°¡¿¡ ÀÇÇØ °íµµÀÇ µ¥ÀÌÅÍ °ü¸® ¼­ºñ½º°¡ ÇÊ¿ä
      • ÄÄÇöóÀÌ¾ð½º¿Í µ¥ÀÌÅÍ º¸¾È ±ÔÁ¦¿¡ ´ëÇÑ ÁßÁ¡ÀÌ ³ô¾ÆÁö°í, °í±Þ µ¥ÀÌÅÍ ¼­ºñ½º ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Ù
    • ¾ïÁ¦¿äÀÎ
      • ±ÔÁ¦ ¿ä°Ç¿¡ÀÇ ÁذŴ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ÇÁ·Î¹ÙÀÌ´õ¿¡ À־ Å« À庮ÀÌ µÇ°í ÀÖ´Ù
      • ¼­ºñ½ºÇü µ¥ÀÌÅÍÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀνÄÀÌ ÇÑÁ¤µÇ¾î Àֱ⠶§¹®¿¡ ½ÃÀå È®´ë°¡ ¹æÇصǰí ÀÖ´Ù
    • ±âȸ
      • ºòµ¥ÀÌÅÍ ºÐ¼®À» Ȱ¿ëÇÏ¿© ºñÁî´Ï½º ÀÇ»ç°áÁ¤À» À§ÇÑ ¿¹ÃøÀû ÅëÂûÀ» Á¦°øÇÑ´Ù
      • ¸ÖƼŬ¶ó¿ìµå ¹× ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ȯ°æÀ» À§ÇÑ Á¾ÇÕÀûÀÎ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼Ç Á¦°ø
      • ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¸¦ Ȱ¿ëÇÏ¿© °í°´ °æÇè°ú ¾÷¹« È¿À² Çâ»ó
    • °úÁ¦
      • µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã, º¸¾È, ±ÔÁ¦ ¿ä°Ç¿¡ÀÇ ÁذŸ¦ È®º¸ÇÑ´Ù
      • ´ë·®ÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ó¸®ÇÒ ¶§ÀÇ È®À强°ú ¼º´ÉÀÇ °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå : ¼­ºñ½º ¸ðµ¨º°

  • ¼­ºñ½º·Î¼­ÀÇ ÀÎÇÁ¶ó
  • ¼­ºñ½º·Î¼­ÀÇ Ç÷§Æû
  • ¼­ºñ½º·Î¼­ÀÇ ¼ÒÇÁÆ®¿þ¾î

Á¦7Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå : ¼­ºñ½º À¯Çüº°

  • ÄÁ¼³ÆÃ
  • Áö¿ø ¹× À¯Áö º¸¼ö
  • Æ®·¹ÀÌ´× ¹× ±³À°

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È
BJH 24.10.28

The Data as a Service Market was valued at USD 19.82 billion in 2023, expected to reach USD 23.43 billion in 2024, and is projected to grow at a CAGR of 18.47%, to USD 64.95 billion by 2030.

Data as a Service (DaaS) is a cloud-based service model that provides data-related services to organizations, allowing them to access, manage, and analyze data without traditional storage and management burdens. This model is invaluable for businesses looking to leverage data without hefty infrastructure investments, offering scalability, flexibility, and real-time data management. The necessity of DaaS arises from the growing demand for data-driven decision-making, big data analytics, and the need for seamless integration across platforms. It finds applications across multiple sectors, including healthcare, finance, retail, and manufacturing, where insights from vast data pools can drastically enhance strategic actions and operational efficiencies. End-users often include data scientists, analysts, and corporate strategic departments.

KEY MARKET STATISTICS
Base Year [2023] USD 19.82 billion
Estimated Year [2024] USD 23.43 billion
Forecast Year [2030] USD 64.95 billion
CAGR (%) 18.47%

Market insights reveal that key growth factors include the proliferation of IoT devices generating massive data volumes, advancements in AI and ML techniques for data analysis, and the growing importance of regulatory compliance driving demand for efficient data management solutions. Current opportunities lie in niche markets like personalized healthcare, smart cities, and the burgeoning fintech sector, where data utilization can tailor services and improve user experiences. Exploiting these opportunities requires strategic partnerships with technology providers and investment in bespoke data solutions. However, challenges include concerns over data privacy, security risks, high initial integration costs, and potential technological obsolescence due to rapidly evolving technologies.

Innovation and research should focus on enhancing data security measures, developing more efficient data integration tools, and creating AI-driven analytics platforms that cater to industry-specific needs. Companies should also consider exploring hybrid models that leverage both cloud and on-premises data frameworks to provide flexibility and address security concerns. The nature of the DaaS market is highly dynamic, emphasizing the need for agility, continuous innovation, and vigilance towards regulatory developments. Successfully navigating this market requires a keen understanding of consumer needs and the foresight to adapt to technological advancements swiftly, ensuring sustained competitive advantage and growth.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data as a Service Market

The Data as a Service Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing reliance on data analytics for strategic business decisions to stay competitive
    • Proliferation of cloud computing enabling scalable and cost-effective data service solutions
    • Growing volumes of data generated by IoT devices necessitating advanced data management services
    • Heightened emphasis on compliance and data security regulations driving demand for sophisticated data services
  • Market Restraints
    • Compliance with regulatory requirements is a significant barrier for data as a service providers
    • Limited awareness about the benefits of data as a service hampers market expansion
  • Market Opportunities
    • Leveraging big data analytics to provide predictive insights for business decision making
    • Offering comprehensive data management solutions for multi-cloud and hybrid cloud environments
    • Utilizing real-time data processing to enhance customer experience and operational efficiency
  • Market Challenges
    • Ensuring data privacy, security, and compliance with regulatory requirements
    • Scalability and performance challenges in handling large volumes of data efficiently

Porter's Five Forces: A Strategic Tool for Navigating the Data as a Service Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data as a Service Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data as a Service Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data as a Service Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data as a Service Market

A detailed market share analysis in the Data as a Service Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data as a Service Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data as a Service Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data as a Service Market

A strategic analysis of the Data as a Service Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data as a Service Market, highlighting leading vendors and their innovative profiles. These include Alibaba Cloud, Alteryx, Inc., Amazon Web Services, Inc., Cloudera, Inc., Domo, Inc., Google LLC, IBM Corporation, Informatica LLC, Microsoft Corporation, Oracle Corporation, Palantir Technologies Inc., Qlik Technologies, Inc., Salesforce.com, Inc., SAP SE, SAS Institute Inc., Snowflake Inc., Splunk Inc., Teradata Corporation, TIBCO Software Inc., and Workiva Inc..

Market Segmentation & Coverage

This research report categorizes the Data as a Service Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Service Model, market is studied across Infrastructure As A Service, Platform As A Service, and Software As A Service.
  • Based on Service Type, market is studied across Consulting, Support And Maintenance, and Training And Education.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing reliance on data analytics for strategic business decisions to stay competitive
      • 5.1.1.2. Proliferation of cloud computing enabling scalable and cost-effective data service solutions
      • 5.1.1.3. Growing volumes of data generated by IoT devices necessitating advanced data management services
      • 5.1.1.4. Heightened emphasis on compliance and data security regulations driving demand for sophisticated data services
    • 5.1.2. Restraints
      • 5.1.2.1. Compliance with regulatory requirements is a significant barrier for data as a service providers
      • 5.1.2.2. Limited awareness about the benefits of data as a service hampers market expansion
    • 5.1.3. Opportunities
      • 5.1.3.1. Leveraging big data analytics to provide predictive insights for business decision making
      • 5.1.3.2. Offering comprehensive data management solutions for multi-cloud and hybrid cloud environments
      • 5.1.3.3. Utilizing real-time data processing to enhance customer experience and operational efficiency
    • 5.1.4. Challenges
      • 5.1.4.1. Ensuring data privacy, security, and compliance with regulatory requirements
      • 5.1.4.2. Scalability and performance challenges in handling large volumes of data efficiently
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data as a Service Market, by Service Model

  • 6.1. Introduction
  • 6.2. Infrastructure As A Service
  • 6.3. Platform As A Service
  • 6.4. Software As A Service

7. Data as a Service Market, by Service Type

  • 7.1. Introduction
  • 7.2. Consulting
  • 7.3. Support And Maintenance
  • 7.4. Training And Education

8. Americas Data as a Service Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Data as a Service Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Data as a Service Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Alibaba Cloud
  • 2. Alteryx, Inc.
  • 3. Amazon Web Services, Inc.
  • 4. Cloudera, Inc.
  • 5. Domo, Inc.
  • 6. Google LLC
  • 7. IBM Corporation
  • 8. Informatica LLC
  • 9. Microsoft Corporation
  • 10. Oracle Corporation
  • 11. Palantir Technologies Inc.
  • 12. Qlik Technologies, Inc.
  • 13. Salesforce.com, Inc.
  • 14. SAP SE
  • 15. SAS Institute Inc.
  • 16. Snowflake Inc.
  • 17. Splunk Inc.
  • 18. Teradata Corporation
  • 19. TIBCO Software Inc.
  • 20. Workiva Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦