½ÃÀ庸°í¼­
»óǰÄÚµå
1580056

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ÀÛ¹° À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, Á¶ÀÛº°, ³ó¾÷ À¯Çüº°, ±â´Éº°, ¿ëµµº° - ¿¹Ãø(2025-2030³â)

Crop Harvesting Robots Market by Type of Crop (Fruits, Grains, Vegetables), Component (Hardware, Services, Software), Operation, Farming Type, Functionalities, Application - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 181 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀº 2023³â¿¡ 2¾ï 8,134¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 3¾ï 1,395¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 12.08%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 6¾ï 2,517¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿Àº ³ó¾÷¿¡¼­ ³ëµ¿·Â ºÎÁ·À» ÇØ°áÇϰí È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ °í¾ÈµÈ ³ó¾÷ ·Îº¿ÀÇ ¼±Áø ºÎ¹®À» ³ªÅ¸³À´Ï´Ù. ¼¼°è Àα¸ Áõ°¡¿¡ µû¶ó ½Ä·® »ý»ê¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ·¯ÇÑ ·Îº¿°ú °°Àº È¿À²ÀûÀÎ ±â¼úÀÇ °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ ·Îº¿Àº ÁÖ·Î °úÀÏ, ä¼Ò, °î¹°ÀÇ ¼öÈ®¿¡ ¿ëµµ°¡ ÀÖÀ¸¸ç ±âÁ¸ÀÇ ¹æ¹ý¿¡ ºñÇØ Á¤¹Ðµµ¸¦ ³ô¿© ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§¿¡´Â ´ë±Ô¸ð ³ó¾÷ »ç¾÷ÀÚ, Áß¼Ò±Ô¸ð ³óÀå, ³ó¾÷ ±â¼úÀÇ Áøº¸¿¡ ÁßÁ¡À» µÐ ¿¬±¸ ±â°ü µîÀÌ Æ÷ÇԵ˴ϴÙ. ½ÃÀå ¼ºÀåÀº ·Îº¿ °øÇаú AIÀÇ ±â¼úÀû Áøº¸, ÀΰǺñ »ó½Â, Áö¼Ó °¡´ÉÇÑ ³ó¹ý¿¡ ´ëÇÑ ÀÓ¹ÚÇÑ ¿ä±¸ µî ¿äÀο¡ Å©°Ô ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÃÖ±ÙÀÇ µ¿Çâ¿¡¼­´Â ÀÌ·¯ÇÑ ·Îº¿ÀÇ ÀÚÀ² ´É·ÂÀ» °­È­ÇÏ´Â ¸Ó½Å·¯´×°ú AIÀÇ °¡´É¼ºÀÌ °­Á¶µÇ¾î, ±â¾÷ÀÌ °í±Þ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÒ ±âȸ¸¦ °¡Á®¿Ô½À´Ï´Ù. ¶ÇÇÑ, Á¤¹Ð³ó¾÷¿¡¼­ µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ¼®À» À§ÇÑ IoTÀÇ ÅëÇÕÀÌ ÁøÇàµÇ°í ÀÖ´Â °ÍÀº È®´ë¸¦ À§ÇÑ À¯¸®ÇÑ ±æÀ» º¸¿©ÁÝ´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠺ñ¿ë, °³¹ßµµ»ó±¹¿¡¼­ÀÇ ÀÎÇÁ¶óÀÇ ºÎÁ·, º¯È­Çϱ⠽¬¿î ±â»ó Á¶°ÇÀ̳ª ¼¶¼¼ÇÑ ÀÛ¹°À» ¼Õ»ó½ÃŰÁö ¾Ê°í Ãë±ÞÇÏ´Â ·Îº¿ÀÇ ´É·ÂÀÇ ÇÑ°è µî °úÁ¦µµ ³²¾Æ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ´Ù¾çÇÑ ³ó¾÷ ȯ°æ¿¡ ÀûÀÀÇϱâ À§ÇÑ ·Îº¿ ÇÁ·Î±×·¡¹ÖÀÇ º¹À⼺µµ Àå¾Ö¹°ÀÌ µÇ¾ú½À´Ï´Ù. ºñÁî´Ï½º ¼ºÀåÀ» À§Çؼ­´Â ³óÀÛ¹°¿¡ ´ëÇÑ ¼Õ»óÀ» ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ·Îº¿¿ë °æ·® ¼ÒÀçÀÇ Á¶»ç¿Í º¸´Ù ¶Ù¾î³­ ³óÀÛ¹° ½Äº°À» À§ÇÑ ºñÀü ½Ã½ºÅÛÀÇ Áøº¸°¡ Çõ½ÅÀÇ À¯¸Á ºÐ¾ß°¡ µË´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕ ´É·ÂÀ» °­È­Çϱâ À§ÇØ ³ó¾÷ ±â¼ú ±â¾÷°ú Á¦ÈÞÇϸé Àü·«Àû ÀÌÁ¡À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ ¹ßÀüÇÔ¿¡ µû¶ó ´Ù¾çÇÑ ³óÀå ±Ô¸ðÀÇ ´Ù¾çÇÑ ¿ä±¸ »çÇ×À» ÀÌÇØÇÏ°í Æ¯Á¤ ÀÛ¹°°ú ȯ°æ¿¡ ¸Â´Â À¯¿¬ÇÑ ·Îº¿ ¼Ö·ç¼ÇÀ» ÅëÇÕÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. Àü¹ÝÀûÀ¸·Î ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀº ¿ªµ¿ÀûÀÌ¸ç ±â¼ú ¹ßÀüÀÇ ±Þ¼ÓÇÑ ¼Óµµ¿Í ÀÚµ¿È­ ³ó¾÷ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀ¸·Î Å« ¼ºÀå °¡´É¼ºÀ» Á¦°øÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 2¾ï 8,134¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 3¾ï 1,395¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 6¾ï 2,517¸¸ ´Þ·¯
CAGR(%) 12.08%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°èÀÇ ½Ä·® ¼ö¿ä Áõ°¡¿¡ ¼ö¹ÝÇÏ´Â ³ó¾÷ ºÐ¾ß¿¡¼­ È¿À²¼º°ú »ý»ê¼º¿¡ ´ëÇÑ ¿ä±¸ÀÇ °íÁ¶
    • ³ó¾÷ ºÐ¾ß¿¡¼­ÀÇ ³ëµ¿·Â ºÎÁ·ÀÇ ½É°¢È­ ¹× ÷´Ü ³ó¾÷ ±â¼úÀÇ Ã¤¿ëÀ» ÃËÁøÇÏ´Â Á¤ºÎ Áö¿øÀÇ À¯¹«
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ Ãëµæ¿¡ µå´Â ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ °³¹ß¿¡ À־ÀÇ ±â¼ú Çõ½ÅÀÇ ÁøÀü
    • Á¤¹Ð ³ó¾÷¿¡ ´ëÇÑ ÁÖ¸ñÀÇ °íÁ¶¿¡ ÀÇÇÑ ³ôÀº °¡´É¼º
  • ½ÃÀåÀÇ °úÁ¦
    • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ÀÇ ±â¼úÀû ÇѰè

Porter's Five Forces : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½ÃÀû ȯ°æ ¿äÀÎÀº ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Áú¹®¿¡ ÀÀ´äÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°èÀÇ ½Ä·® ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ³ó¾÷ ºÐ¾ß¿¡¼­´Â È¿À²¼º°ú »ý»ê¼º Çâ»ó ¿ä±¸
      • ³ó¾÷ ºÐ¾ß¿¡¼­ÀÇ ³ëµ¿·Â ºÎÁ· È®´ë

¼±Áø ³ó¾÷ ±â¼úÀÇ µµÀÔÀ» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎ Áö¿øÀÇ À¯¹«

    • ¾ïÁ¦¿äÀÎ
      • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ÀÇ ³ôÀº Ãëµæ ºñ¿ë
    • ±âȸ
      • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ °³¹ß¿¡ À־ÀÇ ±â¼ú Çõ½ÅÀÇ ÁøÀü
      • Á¤¹Ð³ó¾÷¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥ ³ôÀº ÀáÀ缺
    • °úÁ¦
      • ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿¿¡ °üÇÑ Æ¯Á¤ ±â¼úÀû Á¦ÇÑ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ÄÄÆ÷³ÍÆ®º° : ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿¿¡¼­ ÀÚµ¿È­, µ¥ÀÌÅÍ ºÐ¼®, Á¤È®ÇÑ Á¶ÀÛÀ» À§ÇÑ ¼ÒÇÁÆ®¿þ¾î »ç¿ë Áõ°¡
    • ¿ëµµº° : ´ë±Ô¸ð ³ó¾÷¿¡¼­ÀÇ È¿À² Çâ»ó°ú ³ëµ¿ ºñ¿ë Àý°¨À» À§ÇÑ ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ÀÇ ³ôÀº °¡´É¼º
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ÀÛ¹° À¯Çüº°

  • °úÀÏ
  • °î¹°
  • ¾ßä

Á¦7Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¾×Ãß¿¡ÀÌÅÍ
    • ·Îº¿ ¾Ï
    • ¼¾¼­
  • ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î

Á¦8Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : Á¶ÀÛº°

  • ÀÚÀ²Çü ·Îº¿
  • ¹ÝÀÚÀ²Çü ·Îº¿

Á¦9Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ³ó¾÷ À¯Çüº°

  • ¿Â½Ç ³ó¾÷
  • ³ëÁö ³ó¾÷
  • ¼öÁ÷ ³ó¹ý

Á¦10Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ±â´Éº°

  • °¨½Ã
  • ÇÇÅ·
  • ÀüÁ¤
  • Á¤·Ä
  • Á¦ÃÊ

Á¦11Àå ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå : ¿ëµµº°

  • ´ë±Ô¸ð ³ó¾÷
  • Áß±Ô¸ð ³ó¾÷
  • ¼Ò±Ô¸ð ³ó¾÷

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ¸»·¹ÀÌ½Ã¾Æ ½ÃÀåÀ¸·ÎÀÇ Wootzano ¼¼°èÀÇ ÀÛ¹° ¼öÈ® ·Îº¿ ÁøÃâ
    • Tertill°ú Harvest AutomationÀÌ Çù·ÂÇÏ¿© Ư¼ö ÀÛ¹° ¼Ö·ç¼Ç Çõ½Å
    • AI ·Îº¿ Á¶»ç ºÎ¹® ·Îº¸Æ½½º ¸ÞīƮ·Î´Ð½º ºÎ¹®ÀÇ ¿¬±¸ÀÚµéÀº ¿©·¯ ·Îº¿ ½Ã½ºÅÛÀ» °³¹ßÇß½À´Ï´Ù.
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Advanced Farm Technologies, Inc.
  • Agrointelli ApS
  • Blue River Technology
  • Cerescon BV
  • Dogtooth Technologies Limited
  • Farming Revolution GmbH
  • FFRobotics
  • Fieldwork Robotics Ltd.
  • Harvest Automation, Inc.
  • Harvest CROO Robotics
  • Ibex Automation Ltd.
  • KUBOTA Corporation
  • Muddy Machines Ltd.
  • Naio Technologies SAS
  • Panasonic Corporation
  • Root AI, Inc.
  • Saga Robotics AS
  • Shibuya Corporation
  • SkySquirrel Technologies Inc.
  • Soft Robotics Inc.
  • Tertill Corporation
  • Tortuga Agricultural Technologies, Inc.
  • Traptic, Inc.
  • Yamaha Motor Co., Ltd.
AJY 24.11.06

The Crop Harvesting Robots Market was valued at USD 281.34 million in 2023, expected to reach USD 313.95 million in 2024, and is projected to grow at a CAGR of 12.08%, to USD 625.17 million by 2030.

Crop harvesting robots represent an advanced segment of agricultural robotics designed to address labor shortages and increase efficiency in agriculture. As the global population rises, there's an increasing demand for food production, necessitating the development of efficient technologies such as these robots. They are predominantly applied in harvesting fruits, vegetables, and grains, offering precision and reduced waste compared to traditional methods. The end-use scope includes large agricultural businesses, small to medium-sized farms, and research institutions focusing on agri-tech advancements. Market growth is heavily influenced by factors such as technological advancements in robotics and AI, escalating labor costs, and the pressing need for sustainable farming practices. Recent trends highlight the potential of machine learning and AI in enhancing the autonomous capabilities of these robots, thereby presenting opportunities for companies to invest in advanced software solutions. Moreover, the increasing integration of IoT for data collection and analysis in precision agriculture presents lucrative avenues for expansion. However, challenges persist, including high initial costs, lack of infrastructure in developing countries, and limited ability of robots to handle variable weather conditions or delicate crops without damage. The complexity of programming robots to adapt to diverse agricultural environments also poses a hurdle. For business growth, research into lightweight materials for robots to ensure minimal crop damage and advancing vision systems for better crop identification are promising areas of innovation. Partnering with agriculture technology firms to enhance data integration capabilities can provide strategic advantage. As the market evolves, understanding the varied needs of different farm sizes and incorporating flexible robotic solutions tailored to specific crops and environments will be crucial. Overall, the market for crop harvesting robots is dynamic, offering significant potential for growth driven by the rapid pace of technological progress and the shift towards automated farming solutions.

KEY MARKET STATISTICS
Base Year [2023] USD 281.34 million
Estimated Year [2024] USD 313.95 million
Forecast Year [2030] USD 625.17 million
CAGR (%) 12.08%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Crop Harvesting Robots Market

The Crop Harvesting Robots Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing need for efficiency and productivity in agriculture sector with rising global food demand
    • Growing labor shortage in agriculture sector Availability of government support to promote the adoption of advanced agricultural technologies
  • Market Restraints
    • High cost of acquiring crop harvesting robots
  • Market Opportunities
    • Growing technological innovations in the development of crop harvesting robots
    • High potential with rising focus on precision agriculture
  • Market Challenges
    • Certain technical limitations with crop harvesting robots

Porter's Five Forces: A Strategic Tool for Navigating the Crop Harvesting Robots Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Crop Harvesting Robots Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Crop Harvesting Robots Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Crop Harvesting Robots Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Crop Harvesting Robots Market

A detailed market share analysis in the Crop Harvesting Robots Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Crop Harvesting Robots Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Crop Harvesting Robots Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Crop Harvesting Robots Market

A strategic analysis of the Crop Harvesting Robots Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Crop Harvesting Robots Market, highlighting leading vendors and their innovative profiles. These include Advanced Farm Technologies, Inc., Agrointelli ApS, Blue River Technology, Cerescon B.V., Dogtooth Technologies Limited, Farming Revolution GmbH, FFRobotics, Fieldwork Robotics Ltd., Harvest Automation, Inc., Harvest CROO Robotics, Ibex Automation Ltd., KUBOTA Corporation, Muddy Machines Ltd., Naio Technologies SAS, Panasonic Corporation, Root AI, Inc., Saga Robotics AS, Shibuya Corporation, SkySquirrel Technologies Inc., Soft Robotics Inc., Tertill Corporation, Tortuga Agricultural Technologies, Inc., Traptic, Inc., and Yamaha Motor Co., Ltd..

Market Segmentation & Coverage

This research report categorizes the Crop Harvesting Robots Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type of Crop, market is studied across Fruits, Grains, and Vegetables.
  • Based on Component, market is studied across Hardware, Services, and Software. The Hardware is further studied across Actuators, Robotic Arms, and Sensors.
  • Based on Operation, market is studied across Autonomous Robots and Semi-Autonomous Robot.
  • Based on Farming Type, market is studied across Greenhouse Farming, Open Field Farming, and Vertical Farming.
  • Based on Functionalities, market is studied across Monitoring, Picking, Pruning, Sorting, and Weeding.
  • Based on Application, market is studied across Large-scale Farming, Medium-scale Farming, and Small-scale Farming.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing need for efficiency and productivity in agriculture sector with rising global food demand
      • 5.1.1.2. Growing labor shortage in agriculture sector

Availability of government support to promote the adoption of advanced agricultural technologies

    • 5.1.2. Restraints
      • 5.1.2.1. High cost of acquiring crop harvesting robots
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing technological innovations in the development of crop harvesting robots
      • 5.1.3.2. High potential with rising focus on precision agriculture
    • 5.1.4. Challenges
      • 5.1.4.1. Certain technical limitations with crop harvesting robots
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Growing usage of software in crop harvesting robots for the automation, data analysis, and precise operation
    • 5.2.2. Application: High potential of crop harvesting robots across large-scale farming for enhancing efficiency and reducing labor costs
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Crop Harvesting Robots Market, by Type of Crop

  • 6.1. Introduction
  • 6.2. Fruits
  • 6.3. Grains
  • 6.4. Vegetables

7. Crop Harvesting Robots Market, by Component

  • 7.1. Introduction
  • 7.2. Hardware
    • 7.2.1. Actuators
    • 7.2.2. Robotic Arms
    • 7.2.3. Sensors
  • 7.3. Services
  • 7.4. Software

8. Crop Harvesting Robots Market, by Operation

  • 8.1. Introduction
  • 8.2. Autonomous Robots
  • 8.3. Semi-Autonomous Robot

9. Crop Harvesting Robots Market, by Farming Type

  • 9.1. Introduction
  • 9.2. Greenhouse Farming
  • 9.3. Open Field Farming
  • 9.4. Vertical Farming

10. Crop Harvesting Robots Market, by Functionalities

  • 10.1. Introduction
  • 10.2. Monitoring
  • 10.3. Picking
  • 10.4. Pruning
  • 10.5. Sorting
  • 10.6. Weeding

11. Crop Harvesting Robots Market, by Application

  • 11.1. Introduction
  • 11.2. Large-scale Farming
  • 11.3. Medium-scale Farming
  • 11.4. Small-scale Farming

12. Americas Crop Harvesting Robots Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Crop Harvesting Robots Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Crop Harvesting Robots Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Expansion of Wootzano Crop Harvesting Robots into the Malaysian Market Through Strategic Partnership
    • 15.3.2. Tertill and Harvest Automation Join Forces to Innovate Specialty Crop Solutions
    • 15.3.3. Researchers of AI Robot Research Division's Department of Robotics and Mechatronics developed the multiple-robot system
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Farm Technologies, Inc.
  • 2. Agrointelli ApS
  • 3. Blue River Technology
  • 4. Cerescon B.V.
  • 5. Dogtooth Technologies Limited
  • 6. Farming Revolution GmbH
  • 7. FFRobotics
  • 8. Fieldwork Robotics Ltd.
  • 9. Harvest Automation, Inc.
  • 10. Harvest CROO Robotics
  • 11. Ibex Automation Ltd.
  • 12. KUBOTA Corporation
  • 13. Muddy Machines Ltd.
  • 14. Naio Technologies SAS
  • 15. Panasonic Corporation
  • 16. Root AI, Inc.
  • 17. Saga Robotics AS
  • 18. Shibuya Corporation
  • 19. SkySquirrel Technologies Inc.
  • 20. Soft Robotics Inc.
  • 21. Tertill Corporation
  • 22. Tortuga Agricultural Technologies, Inc.
  • 23. Traptic, Inc.
  • 24. Yamaha Motor Co., Ltd.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦