![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1603815
³óÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå ¿¹Ãø(-2030³â) : ·Îº¿ À¯Çüº°, ¸ðºô¸®Æ¼ À¯Çüº°, ÄÄÆ÷³ÍÆ®º°, ¼ºñ½º À¯Çüº°, ÀÛ¹° À¯Çüº°, ÀÛ¾÷ ȯ°æº°, ³óÀå ±Ô¸ðº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®Crop Harvesting Robots Market Forecasts to 2030 - Global Analysis by Robot Type, Mobility Type, Component, Service Type, Crop Type, Operation Environment, Farm Size, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ³óÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀº 2024³â¿¡ 2¾ï 6,390¸¸ ´Þ·¯¸¦ Â÷ÁöÇϸç 2030³â¿¡´Â 9¾ï 8,750¸¸ ´Þ·¯¿¡ ´ÞÇϸç, ¿¹Ãø ±â°£ Áß CAGRÀº 24.6%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
³óÀÛ¹° ¼öÈ® ·Îº¿Àº ³óÀÛ¹° ¼öÈ®À» Áö¿øÇÏ°í ³ó¾÷ÀÇ »ý»ê¼º, Á¤È®¼º ¹× Áö¼Ó°¡´É¼ºÀ» ³ôÀ̱â À§ÇØ ¸¸µé¾îÁø ÀÚµ¿ ÀåºñÀÔ´Ï´Ù. ÀÌ ·Îº¿µéÀº ·Îº¿ÆÈ, AI, ¸Ó½ÅºñÀü µî ÷´Ü ±â¼úÀ» Ȱ¿ëÇØ ³óÀÛ¹°À» ¼Õ»ó ¾øÀÌ ½Äº°, ¼öÈ®, ó¸®ÇÕ´Ï´Ù. °î¹°, °úÀÏ, ä¼Ò µî ´Ù¾çÇÑ ÀÛ¹° ¼öÈ®¿¡ »ç¿ëµÇ¸ç, »ý»ê¼º Çâ»ó, ºñ¿ë Àý°¨, ³ëµ¿·Â ºÎÁ·À» ÇØ¼ÒÇϱâ À§ÇØ ³ó¾÷ »ê¾÷¿¡¼ »ç¿ëÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù.
SensorsÁö¿¡ °ÔÀçµÈ ¿¬±¸¿¡ µû¸£¸é ±¹³» ¿¬±¸±â°üÀÌ °³¹ßÇÑ ´ÙÁß ·Îº¿ ¼öÈ® ½Ã½ºÅÛÀÌ ½Ã¼³ ³óÀå¿¡¼ Àΰ£ ³ëµ¿·Â ´ëºñ 80%ÀÇ È¿À²À» ´Þ¼ºÇÑ °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù.
½É°¢ÇØÁö´Â ³ó¾÷ Àη ºÎÁ·
³óÃÌ ³ëµ¿·Â ºÎÁ·Àº ³óÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀÔ´Ï´Ù. ƯÈ÷ °í·ÉÈ¿Í À̹ΠÁ¤Ã¥ÀÌ ¾ö°ÝÇÑ ±¹°¡¿¡¼´Â ³ëµ¿·Â ºÎÁ·ÀÌ ½É°¢ÇØÁö¸é¼ ÀÚµ¿È¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ³óÀÛ¹° ¼öÈ® ·Îº¿Àº ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿ÈÇϰí Àû½Ã¿¡ ¼öÈ®À» º¸ÀåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ³ëµ¿·Â °ÝÂ÷¿¡ ´ëÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ½Å·ÚÇÒ ¼ö ÀÖ´Â ³ëµ¿·ÂÀ» È®º¸Çϱâ À§ÇØ °í±ººÐÅõÇÏ´Â ³óÀå¿¡¼ ·Îº¿ ¼Ö·ç¼ÇÀÇ µµÀÔÀº »ý»ê¼ºÀ» À¯ÁöÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ ÇʼöÀûÀÌ¾î¼ ³óÀÛ¹° ¼öÈ® ·Îº¿¿¡ ´ëÇÑ ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù.
ÀÛ¹° À¯Çü¿¡ µû¸¥ ´Ù¿ëµµ¼º Á¦ÇÑ
³óÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎ Áß Çϳª´Â ³óÀÛ¹° À¯Çü¿¡ µû¶ó ±â°èÀÇ ¹ü¿ë¼ºÀÌ Á¦ÇÑÀûÀ̶ó´Â Á¡ÀÔ´Ï´Ù. ÀϺΠ·Îº¿Àº µþ±â³ª Å丶Åä¿Í °°Àº ƯÁ¤ ÀÛ¹° ¼öÈ®¿¡ ¸Å¿ì È¿°úÀûÀÌÁö¸¸, ½Ä¹°ÀÇ ±¸Á¶¿Í ¼ºÀå ÆÐÅÏÀÌ ´Ù¸£±â ¶§¹®¿¡ ´Ù¸¥ ÀÛ¹°¿¡¼´Â Àß ÀÛµ¿ÇÏÁö ¾ÊÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼º ºÎÁ·Àº ´Ù¾çÇÑ ³ó¾÷ °æ¿µ¿¡¼ ·Îº¿ÀÇ º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. ³ó°¡´Â ¿©·¯ ÀÛ¹°¿¡ ½±°Ô ÀûÀÀÇÒ ¼ö ¾ø´Â °í°¡ÀÇ ·Îº¿ ½Ã½ºÅÛ¿¡ ÅõÀÚÇÏ´Â °ÍÀ» ÁÖÀúÇÒ ¼ö ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå ¼ºÀåÀ» µÐȽÃų ¼ö ÀÖ½À´Ï´Ù.
Á¤¹Ð³ó¾÷°úÀÇ ÅëÇÕ
³óÀÛ¹° ¼öÈ® ·Îº¿°ú Á¤¹Ð³ó¾÷ ±â¼úÀÇ ÅëÇÕÀº ½ÃÀå ¼ºÀåÀÇ Å« ±âȸ°¡ µÉ °ÍÀÔ´Ï´Ù. Á¤¹Ð³ó¾÷Àº GPS ¸ÅÇÎ, ¼¾¼, µå·Ð°ú °°Àº µ¥ÀÌÅͺ£À̽º ±â¼úÀ» »ç¿ëÇÏ¿© ³óÀÛ¾÷À» ÃÖÀûÈÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ·Îº¿ ¼öÈ®±â¿Í °áÇÕÇÏ¿© ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ÀÇ»ç°áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ¿© È¿À²¼ºÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀº º¸´Ù Á¤È®ÇÑ ¼öÈ®, ³¶ºñ °¨¼Ò, ¼öÈ®·® Áõ°¡¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ³óÀå¿¡¼ Á¤¹Ð³ó¾÷ ÅøÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ÷´Ü ·Îº¿ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¿© ½ÃÀå È®´ëÀÇ »õ·Î¿î ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¾ÈÀü±âÁØ¿¡ ´ëÇÑ ¿ì·Á
³óÀÛ¹° ¼öÈ® ·Îº¿ÀÇ º¸±ÞÀº ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ À§ÇùÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÀÌ ±â°èµéÀº »ç¶÷À̳ª ´Ù¸¥ ±â°è¿Í °¡±îÀÌ¿¡¼ ÀÛµ¿ÇϹǷΠ»ç°í³ª °íÀåÀÇ ÀáÀçÀû À§ÇèÀÌ Áõ°¡ÇÕ´Ï´Ù. ·Îº¿ÀÌ ¾ö°ÝÇÑ ¾ÈÀü ±âÁØÀ» ÁؼöÇÏ´Â °ÍÀº ³óÀÛ¹°ÀÇ ºÎ»ó°ú ¼Õ»óÀ» ¹æÁöÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ¶ÇÇÑ ½É°¢ÇÑ ¾ÈÀü»ç°í°¡ ¹ß»ýÇÏ¸é ±ÔÁ¦ ´ç±¹ÀÇ °¨½Ã¸¦ ¹Þ°Ô µÇ°í, ÀÌ´Â Á¦Á¶¾÷ü¿Í ¿î¿µÀÚÀÇ º¸Çè·á¸¦ Áõ°¡½Ãų ¼ö ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ Å×½ºÆ®¿Í ¾ÈÀü ±ÔÁ¤ Áؼö¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¿ì·Á¸¦ ÇØ°áÇÏ´Â °ÍÀº ½ÃÀåÀÇ ½Å·Ú¸¦ À¯ÁöÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.
COVID-19·Î ÀÎÇÑ ¿©Çà Á¦ÇѰú °Ç°»ó ¿ì·Á·Î ÀÎÇØ ³ëµ¿·Â ºÎÁ·ÀÌ ½ÉÈµÇ¸é¼ ³óÀÛ¹° ¼öÈ® ·Îº¿ÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ³óÀåÀº ¼öȮö¿¡ ÃæºÐÇÑ ÀηÂÀ» È®º¸ÇÏ´Â µ¥ Å« ¾î·Á¿òÀ» °ÞÀ¸¸é¼ ÀÚµ¿È·Î ÀüȯÇÏ´Â µ¥ Å« ¾î·Á¿òÀ» °Þ¾ú½À´Ï´Ù. ·Îº¿ ½Ã½ºÅÛÀº ´ë±Ô¸ð Àη ¾øÀ̵µ Áö¼ÓÀûÀÎ ÀÛ¾÷À» º¸ÀåÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ³ëµ¿·Â ºÎÁ·À» ¿ÏÈÇÏ´Â µ¥ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÆÒµ¥¹Í ÀÌÈÄ¿¡µµ ¼öÀÛ¾÷¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³·Ãß´Â ÀÚµ¿ÈÀÇ Àå±âÀûÀÎ ÀÌÁ¡ÀÌ ³óÀå¿¡¼ Á¡Á¡ ´õ ¸¹ÀÌ Àνĵʿ¡ µû¶ó °è¼ÓµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¿ÏÀü ÀÚÀ² ·Îº¿ ºÐ¾ß°¡ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ¿ÏÀü ÀÚÀ² ·Îº¿ ºÐ¾ß´Â Àΰ£ÀÇ °³ÀÔ ¾øÀÌ ÀÛµ¿ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ ½ÃÀå Á¡À¯À²À» µ¶½ÄÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ ·Îº¿Àº ÀΰøÁö´É(AI), ¸Ó½Å ºñÀü, GPS ³»ºñ°ÔÀÌ¼Ç ½Ã½ºÅÛ µî ÷´Ü ±â¼úÀ» Ȱ¿ëÇÏ¿© °úÀÏ ¹× ä¼Ò µû±â¿Í °°Àº º¹ÀâÇÑ ÀÛ¾÷À» ÀÚÀ²ÀûÀ¸·Î ¼öÇàÇÕ´Ï´Ù. ³ôÀº È¿À²¼º°ú È®À强Àº ³ëµ¿·Â ºÎÁ·ÀÌ °¡Àå ½É°¢ÇÑ ´ë±Ô¸ð ³ó¾÷ °æ¿µ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ³óÀåÀÌ ÀΰǺñ¸¦ ÁÙÀÌ¸é¼ »ý»ê¼ºÀ» ³ôÀÏ ¼ö ÀÖ´Â ¹æ¹ýÀ» ¸ð»öÇϰí ÀÖÀ¸¹Ç·Î ¿ÏÀü ÀÚÀ²Çü ·Îº¿ÀÌ ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
´ÙÁöÇü ·Îº¿ ºÐ¾ß´Â ¿¹Ãø ±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸Á
¿¹Ãø ±â°£ Áß ´ÙÁöÇü ·Îº¿ ºÐ¾ß´Â ´Ù¾çÇÑ ³ó¾÷ ȯ°æ¿¡ ÀûÀÀÇÒ ¼ö ÀÖ´Ù´Â Á¡¿¡¼ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÆòÆòÇÑ ¹çÀ̳ª ƯÁ¤ ÁöÇü¿¡ ±¹ÇÑµÈ ±âÁ¸ ·Îº¿°ú ´Þ¸®, ´ÙÁöÇü ·Îº¿Àº ¾ð´öÀ̳ª °ú¼ö¿ø°ú °°Àº ¿ïÅüºÒÅüÇÑ ÁöÇü¿¡¼µµ ¿òÁ÷ÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ü¿ë¼ºÀº ´Ù¾çÇÑ ÀÛ¹°°ú ³óÀÛ¾÷ Á¶°Ç¿¡ ÀûÇÕÇϸç, À¯¿¬ÇÑ ¼Ö·ç¼ÇÀ» ¿øÇÏ´Â ³ó°¡ »çÀÌ¿¡¼ ±× ¸Å·ÂÀÌ Ä¿Áö°í ÀÖ½À´Ï´Ù. ±â¼úÀÌ ´õ¿í ¹ßÀüÇÔ¿¡ µû¶ó ´Ù¾çÇÑ ³ó¾÷ ȯ°æ¿¡¼ ´ÙÁöÇü ·Îº¿ÀÌ ºü¸£°Ô º¸±ÞµÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ÷´Ü ³ó¾÷ ÀÎÇÁ¶ó¿Í ÀÚµ¿È ±â¼úÀÇ Á¶±â µµÀÔÀ¸·Î ½ÃÀå Á¡À¯À²À» µ¶½ÄÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¸ µð¾î(John Deere)¿Í ÇϺ£½ºÆ® Å©·ç ·Îº¸Æ½½º(Harvest CROO Robotics)¿Í °°Àº ÁÖ¿ä ±â¾÷ÀÌ ÀÌ Áö¿ª¿¡¼ °·ÂÇÑ ÀÔÁö¸¦ ±¸ÃàÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ¼¼°è ³óÀÛ¹° ¼öÈ® ·Îº¿ ½ÃÀå¿¡¼ÀÇ ¼±µµÀû ÁöÀ§¸¦ ´õ¿í °ø°íÈ÷ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó°¡´ÉÇÑ ³ó¾÷À» ÃËÁøÇϱâ À§ÇÑ Á¤ºÎÀÇ ±¸»ó°ú Á¤¹Ð³ó¾÷¿¡ ´ëÇÑ ÅõÀÚ°¡ ºÏ¹Ì, ƯÈ÷ ´ë±Ô¸ð »ó¾÷¿ë ³óÀå¿¡¼ ·Îº¿ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº Áß±¹°ú Àεµ¿Í °°Àº ½ÅÈï °æÁ¦±Ç¿¡¼ ³ó¾÷ ÀÚµ¿È¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡ÇÔ¿¡ µû¶ó °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌµé ±¹°¡´Â ÀΰǺñ »ó½Â°ú ³óÃÌ Áö¿ªÀÇ ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ ³ó°¡°¡ ³óÀÛ¹° ¼öÈ®¿¡ ·Îº¿ ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ º¸Á¶±Ý°ú ±â¼ú ¹ßÀüÀ» ÅëÇÑ ³ó¾÷ Çö´ëÈ¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÀÌ Áö¿ªÀÇ ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Çõ½ÅÀûÀÎ ³ó¹ýÀ» ÅëÇØ ½Ä·®¾Èº¸¸¦ °³¼±ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖÀ¸¸ç, ÀÌ ½ÃÀå¿¡¼ °í¼ºÀå Áö¿ªÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Crop Harvesting Robots Market is accounted for $263.9 million in 2024 and is expected to reach $987.5 million by 2030, growing at a CAGR of 24.6% during the forecast period. Crop harvesting robots are automated devices made to help with crop harvesting, enhancing agricultural productivity, accuracy, and sustainability. These robots identify, pick, and handle crops without causing damage by utilizing cutting-edge technologies like robotic arms, AI, and machine vision. They are used to harvest a range of crops, such as grains, fruits, and vegetables, and are being used more and more in the agricultural industry to boost productivity, cut expenses, and solve labor shortages.
According to research published in Sensors, a Korean research institute's multiple-robot harvesting system achieved 80% efficiency compared to human labor in facility farm settings.
Growing shortage of agricultural workers
The increasing shortage of agricultural workers is a significant driver of the crop harvesting robots market. Labor shortages, particularly in countries with aging populations and stricter immigration policies, have led to a growing reliance on automation. Crop harvesting robots offer a solution to this labor gap by automating repetitive tasks and ensuring timely harvesting. As farms struggle to find reliable labor, the adoption of robotic solutions becomes critical to maintaining productivity and reducing operational costs, thereby driving the demand for crop harvesting robots.
Limited versatility across crop types
One of the major restraints in the crop harvesting robots market is the limited versatility of these machines across different crop types. While some robots are highly effective at harvesting specific crops like strawberries or tomatoes, they may not perform as well with other crops due to varying plant structures and growth patterns. This lack of flexibility limits their widespread adoption across diverse farming operations. Farmers may hesitate to invest in expensive robotic systems that cannot be easily adapted for multiple crop types, slowing market growth.
Integration with precision agriculture
The integration of crop harvesting robots with precision agriculture technologies presents a significant opportunity for market growth. Precision agriculture uses data-driven techniques such as GPS mapping, sensors, and drones to optimize farming practices. When combined with robotic harvesters, these technologies can enhance efficiency by enabling real-time monitoring and decision-making. This integration allows for more precise harvesting, reduced waste, and improved yields. As farms increasingly adopt precision agriculture tools, the demand for advanced robotic systems is expected to rise, creating new opportunities for market expansion.
Concerns regarding safety standards
Safety concerns pose a threat to the widespread adoption of crop harvesting robots. These machines operate in close proximity to humans and other machinery, raising potential risks of accidents or malfunctions. Ensuring that robots adhere to strict safety standards is crucial to prevent injuries or damage to crops. Additionally, any high-profile safety incidents could lead to regulatory scrutiny and increased insurance costs for manufacturers and operators. Addressing these concerns through rigorous testing and compliance with safety regulations is essential for maintaining market confidence.
The COVID-19 pandemic accelerated the adoption of crop harvesting robots as labor shortages worsened due to travel restrictions and health concerns. Farms faced significant challenges in securing enough workers during peak harvest seasons, prompting a shift toward automation. Robotic systems helped mitigate these labor gaps by ensuring continuous operations without the need for large human workforces. Post-pandemic, this trend is expected to continue as farms increasingly recognize the long-term benefits of automation in reducing dependence on manual labor.
The fully autonomous robots segment is expected to be the largest during the forecast period
Over the forecasted timeframe, the fully autonomous robots segment is anticipated to dominate the market share due to its ability to operate without human intervention. These robots leverage advanced technologies such as artificial intelligence (AI), machine vision, and GPS navigation systems to perform complex tasks like picking fruits or vegetables autonomously. Their high efficiency and scalability make them ideal for large-scale farming operations where labor shortages are most acute. As farms look for ways to improve productivity while reducing labor costs, fully autonomous robots are expected to lead the market.
The multi-terrain robots segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the multi-terrain robots segment is predicted to witness the highest growth rate due to its adaptability across various farming environments. Unlike traditional robots that are limited to flat fields or specific terrains, multi-terrain robots can navigate uneven landscapes such as hillsides or orchards. This versatility makes them suitable for a wide range of crops and farming conditions, increasing their appeal among farmers seeking flexible solutions. As technology advances further, multi-terrain robots are expected to experience rapid adoption across diverse agricultural settings.
During the estimation period, the North America region is anticipated to dominate the market share due to its advanced agricultural infrastructure and early adoption of automation technologies. The region's strong presence of key players like John Deere and Harvest CROO Robotics further supports its leadership position in the global crop harvesting robots market. Additionally, government initiatives promoting sustainable farming practices and investments in precision agriculture are driving demand for robotic solutions in North America, particularly in large-scale commercial farms.
During the forecast period, the Asia Pacific region is anticipated to register the highest CAGR due to increasing investments in agricultural automation across emerging economies like China and India. These countries are facing rising labor costs and shortages in rural areas, prompting farmers to adopt robotic solutions for crop harvesting. Additionally, government support for modernizing agriculture through subsidies and technological advancements is fueling growth in this region. The Asia Pacific's focus on improving food security through innovative farming practices positions it as a high-growth region in this market.
Key players in the market
Some of the key players in Crop Harvesting Robots Market include CNH Industrial N.V., AGCO Corporation, John Deere (Deere & Company), Harvest CROO Robotics, Abundant Robotics Inc., Agrobot, FFRobotics, Harvest Automation, Inc., Dogtooth Technologies Ltd., Energid Technologies, Cerescon BV, SwarmFarm, Green Robot Machinery, Blue River Technology, and Naio Technologies.
In August 2024, AGCO Corporation, a global leader in the design, manufacture and distribution of agricultural machinery and precision ag technology, will launch new products and highlight its many farmer-focused solutions at the 2024 Farm Progress Show in Boone, Iowa, on August 27-29. Alongside new tractors from its Fendt(R) and Massey Ferguson(R) brands, AGCO's exhibit will feature displays from PTx Trimble(TM), Precision Planting(R), FarmerCore(TM) and a host of entertaining events throughout the show.
In January 2022, John Deere launched the new John Deere 8R autonomous tractor. This tractor is ready for large-scale production and will begin shipping to farmers in 2022. John Deere raised the bar for a new level of agriculture autonomy from one of the most trusted and recognizable brands worldwide.