½ÃÀ庸°í¼­
»óǰÄÚµå
1581269

¼¼°èÀÇ ÅºÈ­±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå : µð¹ÙÀ̽º À¯Çü, ±¸¼º, Àç·á À¯Çü, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Silicon Carbide Power Module Market by Device Type (IGBT Modules, MOSFET Modules), Configuration (Dual Module, Multi-Pack Module, Single Module), Material Type, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 194 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀåÀº 2023³â¿¡ 29¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 34¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í, 2030³â¿¡´Â 84¾ï 5,000¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 16.10%·Î ¿¹ÃøµË´Ï´Ù.

źȭ±Ô¼Ò(SiC) Àü·Â ¸ðµâ ½ÃÀåÀº ¿¡³ÊÁö È¿À² Çâ»ó, ½Ã½ºÅÛ Å©±â Ãà¼Ò, ´Ù¾çÇÑ ¿ëµµ¿¡¼­ ¿­ °ü¸® °­È­¸¦ ÃËÁøÇÏ´Â °í±Þ Àü·Â ÀüÀÚ Á¦Ç°À» Æ÷ÇÔÇÕ´Ï´Ù. SiC ÆÄ¿ö ¸ðµâÀº ÀÚµ¿Â÷, ½ÅÀç»ý¿¡³ÊÁö, »ê¾÷±â±â µîÀÇ ºÐ¾ß¿¡¼­ Àüµ¿È­ µ¿ÇâÀ» Áö¿øÇÏ´Â È¿À²ÀûÀÎ ÆÄ¿ö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó Á¡Á¡ ´õ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ƯÈ÷ Àü±âÀÚµ¿Â÷(EV), ž籤 ÀιöÅÍ, »ê¾÷¿ë ¸ðÅÍ µå¶óÀ̺꿡¼­´Â °íÈ¿À², ¼ÒÇüÈ­, °ß°í¼ºÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÃÖÁ¾ ¿ëµµ´Â ÀÚµ¿Â÷, ¿¡³ÊÁö ¹× Àü·Â, »ê¾÷, Ç×°ø¿ìÁÖ ¹× ¹æÀ§ µî ´Ù¹æ¸é¿¡ °ÉĨ´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ±ú²ýÇϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö·ÎÀÇ ¼¼°è º¯È­, ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½º ±â¼ú ¹ßÀü, EV ä¿ë Áõ°¡ µîÀÌ ÀÖ½À´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö ÀÎÇÁ¶ó ÅõÀÚ°¡ ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí SiC Àç·á Á¦Á¶¿Í ¸ðµâ ¼³°è Çõ½ÅÀÌ »õ·Î¿î ±æÀ» ¿­°í ÀÖ½À´Ï´Ù. ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ´Â ºñ¿ë È¿À²ÀûÀÎ SiC »ý»êÀ» À§ÇÑ ¿¬±¸°³¹ß °­È­, ½ÃÀå ÁøÀÔ È®´ë¸¦ À§ÇÑ ÆÄÆ®³Ê½Ê, ±â¼ú ¹ßÀüÀ» Ȱ¿ëÇϱâ À§ÇÑ Àü·«Àû ÇÕº´¿¡ ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 29¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 34¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 84¾ï 5,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 16.10%

±×·¯³ª SiC ±â¼ú°ú °ü·ÃµÈ ³ôÀº ºñ¿ë°ú Ư¼ö Á¦Á¶ °øÁ¤ÀÇ Çʿ伺°ú °°Àº °úÁ¦´Â ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ °ø±Þ¸ÁÀÇ Á¦¾à°ú ±â¼úÀÇ º¹À⼺Àº Å« Àå¾Ö¹°ÀÌ µÇ¾ú½À´Ï´Ù. ½ÃÀå °æÀï °ÝÈ­¿Í ±ÔÁ¦ Ʋµµ ¼ºÀå ±Ëµµ¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ±â¾÷Àº ºñ¿ë È¿À²ÀûÀÎ Á¦Á¶ ±â¼ú °³¹ß°ú SiC ±â¼ú È®À强 Çâ»ó¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ±â¼ú Çõ½Å ºÐ¾ß¿¡´Â ¹æ¿­ ¹æ¹ý °­È­, SiC¿Í ´Ù¸¥ ¹ÝµµÃ¼ Àç·áÀÇ ÅëÇÕ, ±âÁ¸ ½Ã½ºÅÛÀÇ ±¸ÇöÀ» ´Ü¼øÈ­ÇÏ´Â ¸ðµâ ¼³°è µîÀÌ Æ÷Ç﵃ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ¿ªÇÐÀº ±Þ¼ÓÇÑ ±â¼ú ÁøÈ­¿Í °æÀï ¾Ð·ÂÀ» Ư¡À¸·Î Çϸç, ¾ÕÀ¸·Î °¡±â À§Çؼ­´Â Áö¼ÓÀûÀÎ ±â¼ú Çõ½ÅÀÌ ÇÊ¿äÇÕ´Ï´Ù. ¿¡³ÊÁö È¿À²ÀûÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±â¾÷Àº ȯ°æ Áö¼Ó¼º°ú È¿À²¼º¿¡ µû¸¥ ¿¬±¸¿¡ ÅõÀÚÇÔÀ¸·Î½á ÀÚº»À» ¾òÀ» ¼ö ÀÖÀ¸¸ç, °á±¹ ¾÷°è Àü¹Ý¿¡ °ÉÃÄ SiC ÆÄ¿ö ¸ðµâÀÌ ³Î¸® ¹Þ¾Æ µé¿©Áý´Ï´Ù. ´õ ¿øÈ°ÇÏ°Ô ¸¶À̱׷¹À̼ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­Çϴ źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿Àû ÀÎ »óÈ£ ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦ÀûÀÎ ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ½°ú µ¿½Ã¿¡, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ëÀ̳ª ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Àü·Â, ÀÚµ¿Â÷ ¼½Å͸¦ ¾÷µî±ÞÇϱâ À§ÇÑ »ê¾÷È­¿Í ±Ù´ëÈ­ÀÇ ¼ºÀå
    • ÀÚµ¿Â÷ »ê¾÷ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå ÀÚµ¿Â÷¿ë SiC ÆÄ¿ö ¸ðµâÀÇ Ã¤¿ëÀÌ Áõ°¡.
    • SiC ±â¼úÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ Á¤ºÎ ¹× ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • SiC ÆÄ¿ö ¸ðµâÀÇ Ç¥ÁØÈ­¿Í »ç¾çÀÌ ºÎÁ·Çϱ⠶§¹®¿¡ ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÏ¿© ÃÖÁ¾ »ç¿ëÀÚ °£ÀÇ Ã¤¿ëÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.
  • ½ÃÀå ±âȸ
    • ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹ßÀüÀ¸·Î Ç×°ø¿ìÁÖ ¹× Åë½Å µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Çõ½ÅÀÌ ÃËÁøµË´Ï´Ù.
    • º¸´Ù ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡ ´ëÀÀÇÏ´Â ¼º´É°ú È¿À²ÀÇ Çâ»ó
  • ½ÃÀåÀÇ °úÁ¦
    • ÆÄ¿ö µð¹ÙÀ̽ºÀÇ ¼º´É°ú ¼öÀ²¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â SiC ÆÄ¿ö ¸ðµâÀÇ »ý»ê¿¡ À־ÀÇ ±â¼úÀû À庮

Porter's Five Forces : źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡ ´ëÇÑ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå¿¡¼­ ¼º°ø¿¡ ´ëÇÑ ±æÀ» ±×¸³´Ï´Ù.

źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Àü·Â, ÀÚµ¿Â÷ ºÎ¹®ÀÇ ¾÷µî±Þ¸¦ ÇâÇÑ °ø¾÷È­¿Í ±Ù´ëÈ­ÀÇ ÁøÀü
      • ÀÚµ¿Â÷ ¾÷°è¿¡¼­´Â ¼ö¿ä°¡ ³ô¾ÆÁö°í, Àü±âÀÚµ¿Â÷¿Í ÇÏÀ̺긮µå ÀÚµ¿Â÷¿¡ SiC ÆÄ¿ö ¸ðµâÀ» ä¿ëÇÏ´Â ÄÉÀ̽º°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
      • SiC ±â¼úÀÇ ¿¬±¸ °³¹ß¿¡ ´ëÇÑ Á¤ºÎ ¹× ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • SiC ÆÄ¿ö ¸ðµâÀÇ Ç¥ÁØÈ­¿Í »ç¾çÀÇ ºÎÁ·À¸·Î ȣȯ¼º ¹®Á¦°¡ ¹ß»ýÇÏ¿© ÃÖÁ¾ »ç¿ëÀÚ °£ÀÇ Ã¤¿ëÀÌ Áö¿¬µÇ°í ÀÖ½À´Ï´Ù.
    • ±âȸ
      • ÆÄ¿ö ÀÏ·ºÆ®·Î´Ð½ºÀÇ ¹ßÀüÀº Ç×°ø¿ìÁÖ ¹× Åë½Å°ú °°Àº ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù.
      • º¸´Ù ³ôÀº Àü¾Ð°ú ¿Âµµ¿¡ ´ëÀÀÇØ, ÆÛÆ÷¸Õ½º¿Í È¿À²À» Çâ»ó
    • °úÁ¦
      • SiC ÆÄ¿ö ¸ðµâÀÇ Á¦Á¶¿¡ À־ÀÇ ±â¼úÀû À庮ÀÌ ÆÄ¿ö µð¹ÙÀ̽ºÀÇ ¼º´É°ú ¼öÀ²¿¡ ¿µÇâ
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå : µð¹ÙÀ̽º À¯Çüº°

  • IGBT ¸ðµâ
  • MOSFET ¸ðµâ

Á¦7Àå źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå : ±¸¼ºº°

  • µà¾ó ¸ðµâ
  • ¸ÖƼÆÑ ¸ðµâ
  • ½Ì±Û ¸ðµâ

Á¦8Àå źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå : ¼ÒÀç À¯Çüº°

  • ¼ø¼ö źȭ±Ô¼Ò(SiC)
  • źȭ±Ô¼Ò ³ªÀÌÅ»¸®¾Æµå(SiCN)

Á¦9Àå źȭ±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • Ç×°ø¿ìÁÖ ¹× ¹æ¾î
  • ÀÚµ¿Â÷
  • °¡Àü
  • »ê¾÷
  • ½ÅÀç»ý¿¡³ÊÁö
  • Åë½Å

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ÅºÈ­±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÅºÈ­±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÅºÈ­±Ô¼Ò ÆÄ¿ö ¸ðµâ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • onsemiÀÇ Â÷¼¼´ë EliteSiC MOSFETÀº ¿¡³ÊÁö È¿À²À» 20% Çâ»ó½ÃÄÑ EV, ÃæÀü±â, ž籤 ¹ßÀü, Áö¼Ó°¡´É¼ºÀ» ¼±µµÇÕ´Ï´Ù.
    • ZF Friedrichshafen°ú NXP´Â ÷´Ü SiC ±â¼úÀ» 800 º¼Æ® EV ÀιöÅÍ¿¡ ÅëÇÕÇÏ¿© È¿À²¼º, ¼º´É ¹× Áö¼Ó°¡´É¼ºÀ» Çâ»ó½Ã۱â À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù.
    • Mitsubishi Electric, Àü±âÀÚµ¿Â÷¿ë J3½Ã¸®Áî źȭ±Ô¼Ò Àü·Â ¹ÝµµÃ¼ ¸ðµâ 6±âÁ¾À» ¹ßÇ¥, ¼¼°èÀÇ Å»Åº¼ÒÈ­¿Í ½ÃÀå È®´ë¸¦ Áö¿ø
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Advanced Power Electronics Corp.
  • Danfoss A/S
  • Efficient Power Conversion Corporation(EPC)
  • Fuji Electric Co., Ltd.
  • GeneSic Semiconductor, Inc.
  • Global Power Technologies Group
  • Infineon Technologies AG
  • IXYS Corporation
  • Littelfuse, Inc.
  • Microchip Technology Corporation
  • Mitsubishi Electric Corporation
  • Navitas Semiconductor
  • Powerex Inc.
  • Renesas Electronics Corporation
  • ROHM Semiconductor
  • Semiconductor Components Industries, LLC
  • Semikron International GmbH
  • STMicroelectronics
  • STMicroelectronics NV
  • Toshiba Corporation
  • United Silicon Carbide Inc.
  • VisIC Technologies
  • Wolfspeed, Inc.
BJH 24.11.07

The Silicon Carbide Power Module Market was valued at USD 2.97 billion in 2023, expected to reach USD 3.42 billion in 2024, and is projected to grow at a CAGR of 16.10%, to USD 8.45 billion by 2030.

The Silicon Carbide (SiC) Power Module market encompasses advanced power electronics that facilitate improved energy efficiency, reduced system size, and enhanced thermal management across various applications. SiC power modules are increasingly necessary due to the growing demand for efficient power systems to support electrification trends in sectors like automotive, renewable energy, and industrial equipment. They are particularly vital for electric vehicles (EVs), solar inverters, and industrial motor drives, where high efficiency, compactness, and robustness are crucial. The end-use scope spans automotive, energy and power, industrial, aerospace and defense, among others. Key growth factors include the global shift toward clean and sustainable energy, technological advancements in power electronics, and the rising adoption of EVs. Investments in renewable energy infrastructure further drive market expansion, while innovations in SiC material fabrication and module design open new avenues. The potential opportunities lie in increased R&D for cost-efficient SiC production, partnerships to broaden market reach, and strategic mergers to leverage technology advances.

KEY MARKET STATISTICS
Base Year [2023] USD 2.97 billion
Estimated Year [2024] USD 3.42 billion
Forecast Year [2030] USD 8.45 billion
CAGR (%) 16.10%

However, challenges such as high costs associated with SiC technology and the need for specialized manufacturing processes limit market growth. Additionally, supply chain constraints and technological complexities pose significant hurdles. The market's competitive nature and evolving regulatory frameworks also affect the trajectory of growth. Businesses should focus on developing cost-effective manufacturing techniques and improving the scalability of SiC technologies. Areas of innovation could involve enhanced heat dissipation methods, integration of SiC with other semiconductor materials, and modular designs that simplify implementation in existing systems. Market dynamics are characterized by rapid technological evolution and competitive pressures, necessitating continuous innovation to stay ahead. As the demand for energy-efficient solutions escalates, businesses can capitalize by investing in research that aligns with environmental sustainability and efficiency, ultimately leading to a wider acceptance and smoother transition towards SiC power modules across industries.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Silicon Carbide Power Module Market

The Silicon Carbide Power Module Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growth in industrialization and modernization to upgrade the power & automotive sectors
    • Growing demand in the automotive industry is increasingly adopting SiC power modules for electric and hybrid vehicles
    • Increased governmental and private sector investments in R&D for SiC technology
  • Market Restraints
    • Lack of standardization and specifications for SiC power modules creating compatibility issues and slow adoption among end-user
  • Market Opportunities
    • Advancements in power electronics fostering innovation in various fields such as aerospace and telecommunications
    • Enhancing performance & efficiency handling higher voltages and temperatures
  • Market Challenges
    • Technological barriers in the production of SiC power modules affecting the performance and yield of power devices

Porter's Five Forces: A Strategic Tool for Navigating the Silicon Carbide Power Module Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Silicon Carbide Power Module Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Silicon Carbide Power Module Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Silicon Carbide Power Module Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Silicon Carbide Power Module Market

A detailed market share analysis in the Silicon Carbide Power Module Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Silicon Carbide Power Module Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Silicon Carbide Power Module Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Silicon Carbide Power Module Market

A strategic analysis of the Silicon Carbide Power Module Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Silicon Carbide Power Module Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Advanced Power Electronics Corp., Danfoss A/S, Efficient Power Conversion Corporation (EPC), Fuji Electric Co., Ltd., GeneSic Semiconductor, Inc., Global Power Technologies Group, Infineon Technologies AG, IXYS Corporation, Littelfuse, Inc., Microchip Technology Corporation, Mitsubishi Electric Corporation, Navitas Semiconductor, Powerex Inc., Renesas Electronics Corporation, ROHM Semiconductor, Semiconductor Components Industries, LLC, Semikron International GmbH, STMicroelectronics, STMicroelectronics N.V., Toshiba Corporation, United Silicon Carbide Inc., VisIC Technologies, and Wolfspeed, Inc..

Market Segmentation & Coverage

This research report categorizes the Silicon Carbide Power Module Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Device Type, market is studied across IGBT Modules and MOSFET Modules.
  • Based on Configuration, market is studied across Dual Module, Multi-Pack Module, and Single Module.
  • Based on Material Type, market is studied across Pure Silicon Carbide (SiC) and Silicon-Carbide-Nitride (SiCN).
  • Based on End-User, market is studied across Aerospace & Defense, Automotive, Consumer Electronics, Industrial, Renewable Energy, and Telecommunications.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growth in industrialization and modernization to upgrade the power & automotive sectors
      • 5.1.1.2. Growing demand in the automotive industry is increasingly adopting SiC power modules for electric and hybrid vehicles
      • 5.1.1.3. Increased governmental and private sector investments in R&D for SiC technology
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of standardization and specifications for SiC power modules creating compatibility issues and slow adoption among end-user
    • 5.1.3. Opportunities
      • 5.1.3.1. Advancements in power electronics fostering innovation in various fields such as aerospace and telecommunications
      • 5.1.3.2. Enhancing performance & efficiency handling higher voltages and temperatures
    • 5.1.4. Challenges
      • 5.1.4.1. Technological barriers in the production of SiC power modules affecting the performance and yield of power devices
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Silicon Carbide Power Module Market, by Device Type

  • 6.1. Introduction
  • 6.2. IGBT Modules
  • 6.3. MOSFET Modules

7. Silicon Carbide Power Module Market, by Configuration

  • 7.1. Introduction
  • 7.2. Dual Module
  • 7.3. Multi-Pack Module
  • 7.4. Single Module

8. Silicon Carbide Power Module Market, by Material Type

  • 8.1. Introduction
  • 8.2. Pure Silicon Carbide (SiC)
  • 8.3. Silicon-Carbide-Nitride (SiCN)

9. Silicon Carbide Power Module Market, by End-User

  • 9.1. Introduction
  • 9.2. Aerospace & Defense
  • 9.3. Automotive
  • 9.4. Consumer Electronics
  • 9.5. Industrial
  • 9.6. Renewable Energy
  • 9.7. Telecommunications

10. Americas Silicon Carbide Power Module Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Silicon Carbide Power Module Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Silicon Carbide Power Module Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. onsemi's next-gen EliteSiC MOSFETs boost energy efficiency by 20%, lead in EVs, chargers, solar, and sustainability
    • 13.3.2. ZF Friedrichshafen and NXP collaborate to integrate advanced SiC technology into 800-volt EV inverters, enhancing efficiency, performance, and sustainability
    • 13.3.3. Mitsubishi Electric unveils six new J3-Series silicon carbide power semiconductor modules for electric vehicles, supporting global decarbonization and market expansion
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Advanced Power Electronics Corp.
  • 3. Danfoss A/S
  • 4. Efficient Power Conversion Corporation (EPC)
  • 5. Fuji Electric Co., Ltd.
  • 6. GeneSic Semiconductor, Inc.
  • 7. Global Power Technologies Group
  • 8. Infineon Technologies AG
  • 9. IXYS Corporation
  • 10. Littelfuse, Inc.
  • 11. Microchip Technology Corporation
  • 12. Mitsubishi Electric Corporation
  • 13. Navitas Semiconductor
  • 14. Powerex Inc.
  • 15. Renesas Electronics Corporation
  • 16. ROHM Semiconductor
  • 17. Semiconductor Components Industries, LLC
  • 18. Semikron International GmbH
  • 19. STMicroelectronics
  • 20. STMicroelectronics N.V.
  • 21. Toshiba Corporation
  • 22. United Silicon Carbide Inc.
  • 23. VisIC Technologies
  • 24. Wolfspeed, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦