½ÃÀ庸°í¼­
»óǰÄÚµå
1585403

¼¼°èÀÇ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ¹èÄ¡º°, ºÐ¾ßº°-¿¹Ãø(2025-2030³â)

Autonomous Data Platform Market by Component (Platform, Services), Deployment (Cloud, On-Premises), Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 17¾ï 6,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 20¾ï 9,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 18.97%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 59¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§ÆûÀº ÀΰøÁö´É°ú ¸Ó½Å·¯´×À» Ȱ¿ëÇÏ¿© ÃÖ¼ÒÇÑÀÇ ÀÎÀû °³ÀÔÀ¸·Î µ¥ÀÌÅÍ Á᫐ ÇÁ·Î¼¼½º¸¦ °ü¸®, ÃÖÀûÈ­ ¹× È®ÀåÇϵµ·Ï ¼³°èµÈ °íµµÀÇ ¼Ö·ç¼ÇÀÔ´Ï´Ù. ÀÌ ±â¼úÀº µ¥ÀÌÅÍ °ü¸®ÀÇ È¿À²¼ºÀ» ³ôÀ̰í ÀÇ»ç °áÁ¤ÀÇ Á¤È®¼ºÀ» ³ôÀÌ°í ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ°í ¾÷¹«¸¦ °£¼ÒÈ­ÇÏ¿© Çõ½ÅÀ» ÃßÁøÇÏ·Á´Â Á¶Á÷¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ±ÝÀ¶, ÇコÄɾî, ¼Ò¸Å¾÷, Á¦Á¶¾÷ µî ´Ù·®ÀÇ µ¿Àû µ¥ÀÌÅÍ °ü¸®°¡ ¾÷¹« ¼º°ø¿¡ ÇʼöÀûÀÎ ´Ù¾çÇÑ ¾÷°è¿¡ ÀÀ¿ëµÇ°í ÀÖ½À´Ï´Ù. ÀÌ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â µ¥ÀÌÅÍ »ýŰèÀÇ º¹ÀâÈ­, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ºñ¿ë È¿À²ÀûÀÎ µ¥ÀÌÅÍ °ü¸® ¼Ö·ç¼ÇÀÇ Çʿ伺 µîÀÌ ÀÖ½À´Ï´Ù. °Ô´Ù°¡ AI¿Í ¸Ó½Å·¯´× ±â¼úÀÇ Áøº¸´Â ±â¾÷ÀÌ °æÀï ¿ìÀ§¸¦ ¾ò±â À§ÇØ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§ÆûÀÇ ´É·ÂÀ» Ȱ¿ëÇÏ´Â Å« ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ±â¾÷Àº ÀÌ·¯ÇÑ ±âȸ¸¦ ÃæºÐÈ÷ Ȱ¿ëÇϱâ À§ÇØ AI ÅëÇÕ°ú Áö¼ÓÀûÀÎ ÇнÀ ¸ÞÄ¿´ÏÁò¿¡ ÅõÀÚÇÏ´Â °ÍÀÌ ÁÁ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ º¸¾È ¹®Á¦, ³ôÀº µµÀÔ ºñ¿ë, °í±Þ AI ±¸µ¿ Ç÷§ÆûÀ» ´Ù·ç´Â ±â¼ú °ÝÂ÷¿Í °°Àº °úÁ¦´Â ½ÃÀå ¼ºÀå¿¡ Å« Á¦¾àÀ» °¡Çϰí ÀÖ½À´Ï´Ù. ½ÃÀå °³Ã´ÀÚ´Â ÀÌ·¯ÇÑ °úÁ¦¸¦ ¿ÏÈ­Çϱâ À§ÇØ °ß°íÇÑ º¸¾È ÇÁ·¹ÀÓ¿öÅ©¿Í È®Àå °¡´ÉÇÑ ¼Ö·ç¼Ç °³¹ß¿¡ ÁÖ·ÂÇÒ °ÍÀ» ±ÇÀåÇÕ´Ï´Ù. Ž»öÀÇ ¿©Áö°¡ ÀÖ´Â Çõ½ÅÀûÀÎ ºÐ¾ß¿¡´Â ¿¹Ãø ºÐ¼® ´É·Â °­È­, ¾÷°è ƯȭµÈ ÀÚÀ² ¼Ö·ç¼Ç °³¹ß, »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º ¼³°è °³¼± µîÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ ÆÄÆ®³Ê½Ê°ú Çù¾÷¿¡ Âü¿©ÇÔÀ¸·Î½á Á¦Ç° °³¹ß°ú ½ÃÀå ħÅõ¸¦ ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀåÀº ¿ªµ¿ÀûÀÌ¸ç ±â¼úÀû »óȲÀº ²÷ÀÓ¾øÀÌ ÁøÈ­Çϰí Àֱ⠶§¹®¿¡ °ü·Ã¼ºÀ» À¯ÁöÇϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ Á¶»ç¿Í ÀûÀÀÀÌ ÇÊ¿äÇÕ´Ï´Ù. ºñÁî´Ï½º ¼ºÀåÀ» À¯ÁöÇÏ°í ½ÃÀå µ¿Çâ°ú ¼ÒºñÀÚ ¼±È£µµ¸¦ ±íÀÌ ÆÄ¾ÇÇϱâ À§Çؼ­´Â ±â¼ú ¾÷±×·¹À̵å, ³ëµ¿·Â ±â¼ú °³¹ß, °í°´ Á᫐ ¼Ö·ç¼Ç ¼³°è¿¡ ´ëÇÑ Àü·«Àû ÅõÀÚ°¡ °¡Àå Áß¿äÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 17¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 20¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 59¾ï 5,000¸¸ ´Þ·¯
CAGR(%) 18.97%

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

ÀÚÀ²ÀûÀÎ µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ °æ°¨ÇÒ ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¶Ç´Â ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÀÎÁö ÄÄÇ»ÆÃ ±â¼ú°ú °í±Þ ¾Ö³Î¸®Æ½½ºÀÇ Ã¤¿ë Áõ°¡
    • »óÈ£¿¬°á µð¹ÙÀ̽º¿Í ¼Ò¼È ¹Ìµð¾îÀÇ °æÀÌÀûÀÎ ¼ºÀå¿¡ ÀÇÇÑ ºñ±¸Á¶È­ µ¥ÀÌÅÍ·® Áõ°¡
    • º¹ÀâÇÑ µ¥ÀÌÅÍ·® Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • º¹ÀâÇÑ ºÐ¼® ÇÁ·Î¼¼½º¿Í Á¦ÇÑµÈ ¼÷·Ã ³ëµ¿·Â
  • ½ÃÀå ±âȸ
    • Áß¼Ò±â¾÷¿¡¼­ÀÇ ¼ö¿ä Áõ°¡¿Í Ŭ¶ó¿ìµå ±â¼úÀÇ Ã¤¿ë Áõ°¡
    • ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§ÆûÀÇ ±â¼úÀû Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¹ý°ú ÄÄÇöóÀ̾ð½º

Porter's Five Forces : ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æ ±×¸®±â

ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·ÎÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ÀÎÁö ÄÄÇ»ÆÃ ±â¼ú°ú °í±Þ ºÐ¼®ÀÇ Ã¤¿ë Áõ°¡
      • »óÈ£¿¬°áµÈ µð¹ÙÀ̽º¿Í ¼Ò¼È ¹Ìµð¾îÀÇ °æÀÌÀûÀÎ ¼ºÀåÀ¸·Î ºñ±¸Á¶È­µÈ µ¥ÀÌÅÍ ¾ç Áõ°¡
      • º¹ÀâÇÑ µ¥ÀÌÅÍ Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • º¹ÀâÇÑ ºÐ¼® ÇÁ·Î¼¼½º¿Í Á¦ÇÑµÈ ¼÷·Ã ³ëµ¿·Â
    • ±âȸ
      • Áß¼Ò±â¾÷¿¡¼­ÀÇ ¼ö¿ä Áõ°¡¿Í Ŭ¶ó¿ìµå ±â¼úÀÇ Ã¤¿ë Áõ°¡
      • ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû¿¡ À־ÀÇ ±â¼úÀû Áøº¸
    • °úÁ¦
      • µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¹ý°ú ÄÄÇöóÀ̾ð½º
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Ç÷§Æû
  • ¼­ºñ½º
    • Á¶¾ð
    • ÅëÇÕ
    • Áö¿ø ¹× À¯Áö º¸¼ö

Á¦7Àå ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå : ¾÷°èº°

  • BFSI
  • Á¤ºÎ
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¦Á¶¾÷
  • ¼Ò¸Å
  • Åë½Å ¹× ¹Ìµð¾î

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚÀ²Çü µ¥ÀÌÅÍ Ç÷§Æû ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Accenture Corporation
  • Alteryx, Inc.
  • Amazon Web Services, Inc.
  • Cloudera, Inc.
  • DataRobot, Inc.
  • DvSum Inc.
  • Hewlett Packard Enterprise Development LP
  • IBM Corporation
  • Infosys Limited
  • Microsoft Corporation
  • Oracle Corporation
  • Qubole, Inc. by Idera, Inc.
  • VMware, Inc
  • Wipro Limited
  • Zaloni, Inc.
AJY 24.11.14

The Autonomous Data Platform Market was valued at USD 1.76 billion in 2023, expected to reach USD 2.09 billion in 2024, and is projected to grow at a CAGR of 18.97%, to USD 5.95 billion by 2030.

An autonomous data platform is a sophisticated solution designed to leverage artificial intelligence and machine learning to manage, optimize, and scale data-driven processes with minimal human intervention. This technology is crucial for organizations seeking to enhance data management efficiency, improve decision-making accuracy, and drive innovation by automating repetitive tasks and streamlining operations. Its application spans across various industries including finance, healthcare, retail, and manufacturing, where managing large volumes of dynamic data is essential for operational success. Key growth factors influencing this market include the increasing complexity of data ecosystems, growing demand for real-time data analytics, and the need for cost-effective data management solutions. Moreover, advancements in AI and machine learning technologies are creating significant opportunities for organizations to harness the capabilities of autonomous data platforms to gain a competitive edge. Businesses are recommended to invest in AI integration and continuous learning mechanisms to fully capitalize on these opportunities. However, challenges such as data security concerns, high implementation costs, and the skill gap in handling sophisticated AI-driven platforms pose significant limitations to market growth. Market players are encouraged to focus on developing robust security frameworks and scalable solutions to mitigate these challenges. Innovation areas ripe for exploration include enhancing predictive analytics capabilities, developing industry-specific autonomous solutions, and improving user-friendly interface designs. Additionally, engaging in partnerships and collaborations can drive product development and market penetration. The market is dynamic, with a constantly evolving technological landscape, necessitating ongoing research and adaptation to maintain relevance. Strategic investments in technology upgrades, workforce skill development, and customer-centric solution design are paramount for sustaining business growth and gaining deeper insights into market trends and consumer preferences.

KEY MARKET STATISTICS
Base Year [2023] USD 1.76 billion
Estimated Year [2024] USD 2.09 billion
Forecast Year [2030] USD 5.95 billion
CAGR (%) 18.97%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Autonomous Data Platform Market

The Autonomous Data Platform Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rising adoption of cognitive computing technology and advanced analytics
    • Increasing unstructured data volume due to the phenomenal growth of interconnected devices and social media
    • Growing volume of complex data
  • Market Restraints
    • Complex analytical process and limited skilled workforce
  • Market Opportunities
    • Growing demand from SMEs and increasing cloud technology adoption
    • Technological advancements in autonomous data platform
  • Market Challenges
    • Data privacy laws and compliance

Porter's Five Forces: A Strategic Tool for Navigating the Autonomous Data Platform Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Autonomous Data Platform Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Autonomous Data Platform Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Autonomous Data Platform Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Autonomous Data Platform Market

A detailed market share analysis in the Autonomous Data Platform Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Autonomous Data Platform Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Autonomous Data Platform Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Autonomous Data Platform Market

A strategic analysis of the Autonomous Data Platform Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Autonomous Data Platform Market, highlighting leading vendors and their innovative profiles. These include Accenture Corporation, Alteryx, Inc., Amazon Web Services, Inc., Cloudera, Inc., DataRobot, Inc., DvSum Inc., Hewlett Packard Enterprise Development LP, IBM Corporation, Infosys Limited, Microsoft Corporation, Oracle Corporation, Qubole, Inc. by Idera, Inc., VMware, Inc, Wipro Limited, and Zaloni, Inc..

Market Segmentation & Coverage

This research report categorizes the Autonomous Data Platform Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Platform and Services. The Services is further studied across Advisory, Integration, and Support & Maintenance.
  • Based on Deployment, market is studied across Cloud and On-Premises.
  • Based on Vertical, market is studied across BFSI, Government, Healthcare & Life Sciences, Manufacturing, Retail, and Telecommunication & Media.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising adoption of cognitive computing technology and advanced analytics
      • 5.1.1.2. Increasing unstructured data volume due to the phenomenal growth of interconnected devices and social media
      • 5.1.1.3. Growing volume of complex data
    • 5.1.2. Restraints
      • 5.1.2.1. Complex analytical process and limited skilled workforce
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing demand from SMEs and increasing cloud technology adoption
      • 5.1.3.2. Technological advancements in autonomous data platform
    • 5.1.4. Challenges
      • 5.1.4.1. Data privacy laws and compliance
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Autonomous Data Platform Market, by Component

  • 6.1. Introduction
  • 6.2. Platform
  • 6.3. Services
    • 6.3.1. Advisory
    • 6.3.2. Integration
    • 6.3.3. Support & Maintenance

7. Autonomous Data Platform Market, by Deployment

  • 7.1. Introduction
  • 7.2. Cloud
  • 7.3. On-Premises

8. Autonomous Data Platform Market, by Vertical

  • 8.1. Introduction
  • 8.2. BFSI
  • 8.3. Government
  • 8.4. Healthcare & Life Sciences
  • 8.5. Manufacturing
  • 8.6. Retail
  • 8.7. Telecommunication & Media

9. Americas Autonomous Data Platform Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Autonomous Data Platform Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Autonomous Data Platform Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Accenture Corporation
  • 2. Alteryx, Inc.
  • 3. Amazon Web Services, Inc.
  • 4. Cloudera, Inc.
  • 5. DataRobot, Inc.
  • 6. DvSum Inc.
  • 7. Hewlett Packard Enterprise Development LP
  • 8. IBM Corporation
  • 9. Infosys Limited
  • 10. Microsoft Corporation
  • 11. Oracle Corporation
  • 12. Qubole, Inc. by Idera, Inc.
  • 13. VMware, Inc
  • 14. Wipro Limited
  • 15. Zaloni, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦