½ÃÀ庸°í¼­
»óǰÄÚµå
1585569

Big-Data-as-a-Service ½ÃÀå : ¼Ö·ç¼Ç À¯Çü, Á¶Á÷ ±Ô¸ð, ¹èÆ÷ ¸ðµ¨, »ê¾÷º° - ¼¼°è Àü¸Á(2025-2030³â)

Big-Data-as-a-Service Market by Solution Type (Data Analytics-as-a-Service, Data-as-a-Service, Hadoop-as-a-Service), Organization Size (Large Enterprises, Small & Medium Enterprises), Deployment Model, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 183 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

2023³â Big-Data-as-a-Service ½ÃÀå ±Ô¸ð´Â 765¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 844¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¬Æò±Õ 10.45% ¼ºÀåÇÏ¿© 2030³â¿¡´Â 1,535¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ºòµ¥ÀÌÅÍ ¼­ºñ½ºÇü ¼ÒÇÁÆ®¿þ¾î(BDaaS)´Â Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º·Î, ÀÎÇÁ¶ó³ª Àü¹® Áö½Ä¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÏÁö ¾Ê°íµµ ÃÖÁ¾ »ç¿ëÀÚ¿¡°Ô ¹æ´ëÇÑ ¾çÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ°í ºÐ¼®ÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. BDaaSÀÇ Çʿ伺Àº ±â¾÷ÀÌ »ý¼ºÇÏ´Â µ¥ÀÌÅÍÀÇ º¹À⼺°ú ¾çÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, ½ÇÇà °¡´ÉÇÑ ÅëÂû·ÂÀ» ½Å¼ÓÇÏ°í °æÁ¦ÀûÀ¸·Î µµÃâÇÒ ¼ö ÀÖ´Â È¿À²ÀûÀÎ µµ±¸°¡ ÇÊ¿äÇϱ⠶§¹®ÀÔ´Ï´Ù. ÇÊ¿äÇÑ °ÍÀÔ´Ï´Ù. ¸®½ºÅ© ¸ðµ¨¸µÀ» À§ÇÑ ±ÝÀ¶, ȯÀÚ µ¥ÀÌÅÍ ºÐ¼®À» À§ÇÑ ÇコÄɾî, °³ÀÎÈ­µÈ °í°´ °æÇèÀ» À§ÇÑ ¼Ò¸Å¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ Àû¿ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µ¥ÀÌÅÍ ±â¹Ý Àü·«À¸·Î °æÀï ¿ìÀ§¸¦ Ãß±¸ÇÏ´Â ±â¾÷, ¼­ºñ½º °³¼±°ú ¾÷¹« È¿À²È­¸¦ Ãß±¸ÇÏ´Â °ø°ø ºÎ¹® µî ´Ù¾çÇÑ ÃÖÁ¾ »ç¿ë ºÐ¾ßµµ ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 765¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 844¾ï 7,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 1,535¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 10.45%

Ŭ¶ó¿ìµå ±â¼úÀÇ ±Þ¼ÓÇÑ µµÀÔ, ÀÇ»ç°áÁ¤¿¡ ÀÖ¾î ºòµ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ÀÇÁ¸µµ Áõ°¡, »ê¾÷ Àü¹ÝÀÇ µðÁöÅÐÈ­¿¡ ÈûÀÔ¾î ½ÃÀå ¼ºÀåÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, ±ÔÁ¦ Áؼö ¹®Á¦, º¥´õ Á¾¼Ó¼º À§Çè µî ÀáÀçÀûÀÎ °úÁ¦°¡ Á¸ÀçÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸Çϰí, ƯÈ÷ ¿¹Ãø ºÐ¼® ¹× ¸Ó½Å·¯´× ÅëÇÕ°ú °°Àº ºÐ¾ß¿¡¼­ ±â¾÷µéÀÌ ¿¹Ãø ´É·Â°ú ÀÚµ¿È­¸¦ °­È­ÇÏ·Á´Â ³ë·ÂÀ¸·Î ÀÎÇØ ºñÁî´Ï½º ±âȸ´Â dzºÎÇÏ°Ô Á¸ÀçÇÕ´Ï´Ù. ±â¾÷µéÀº µ¥ÀÌÅÍ º¸¾ÈÀ» º¸ÀåÇÏ°í ¿øÈ°ÇÑ »óÈ£¿î¿ë¼ºÀ» Á¦°øÇÏ´Â °ß°íÇϰí À¯¿¬ÇÑ ¼Ö·ç¼Ç °³¹ß¿¡ ÁýÁßÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ±âȸ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. Çõ½ÅÀº ÇÏÀ̺긮µå Ŭ¶ó¿ìµå ¼Ö·ç¼Ç, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®, »ê¾÷º° ºÐ¼® ¿ëµµ¸¦ ÅëÇØ ´Ù¾çÇÑ ¿ä±¸¸¦ ÃæÁ·½Ãų ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù.

¿¬±¸´Â ó¸® ¼Óµµ¿Í µ¥ÀÌÅÍ Á¤È®µµ¸¦ ³ôÀÌ´Â °í±Þ ¾Ë°í¸®Áò °³¹ß¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¾î¾ß Çϸç, ½ÃÀåÀÇ Æ¯¼º»ó °í°´º° ¼ö¿ä¸¦ ÃæÁ·½Ã۱â À§ÇØ Áö¼ÓÀûÀ¸·Î ÁøÈ­Çϰí Àü¹®È­ÇØ¾ß Çϸç, BDaaS Á¦°ø¾÷ü´Â »óÈ£ ¿¬°áµÈ ±â±â Áõ°¡¸¦ ¿¹ÃøÇØ¾ß ÇÕ´Ï´Ù. ÀÌ´Â µ¥ÀÌÅÍ »ý¼ºÀ» ´õ¿í ÁõÆø½ÃŰ°í ½ÃÀå ¿ªÇп¡ ¿µÇâÀ» ¹ÌÃÄ º¸´Ù ½Ç½Ã°£ ºÐ¼®¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀÔ´Ï´Ù. ¸¶Áö¸·À¸·Î, ÇÁ¶óÀ̹ö½Ã ¿ì·Á¸¦ ÇØ¼ÒÇϰí Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ½Å·Ú¸¦ ³ôÀ̱â À§ÇØ °í°´ ±³À° ¹× ±â¼ú ¸®´õ¿ÍÀÇ Á¦ÈÞ¸¦ ±ÇÀåÇÕ´Ï´Ù.

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â Big-Data-as-a-Service ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ®¸¦ °ø°³ÇÕ´Ï´Ù.

ºòµ¥ÀÌÅÍ ¼­ºñ½º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ëÀ» ÅëÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÅëÇÕ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • µµÀÔ ºñ¿ë Àý°¨
    • µ¥ÀÌÅÍ »çÀ̾𽺠¹× Ŭ¶ó¿ìµå ±â¹Ý ¿¹Ãø ºÐ¼®ÀÇ È°¿ëµµ Áõ°¡
    • ½Ç½Ã°£ ÀÌÁúÀûÀÎ µ¥ÀÌÅÍ·® Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±ÔÁ¦ Áؼö ¹× º¸¾È ¹®Á¦
    • ºòµ¥ÀÌÅÍ IT ±â¼ú·Â ºÎÁ·
  • ½ÃÀå ±âȸ
    • °í±Þ ºÐ¼® ¹× µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
    • ±â¾÷µéÀÇ ITºÐ¾ß¿¡ ´ëÇÑ ¸Å·ÂÀûÀÎ ÅõÀÚ
  • ½ÃÀå °úÁ¦
    • µ¥ÀÌÅÍ ÅëÇÕÀÇ º¹À⼺°ú °³ÀÎÁ¤º¸ º¸È£ À§Çù

Portre's Five Forces: Big-Data-as-a-Service ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Big-Data-as-a-Service ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

PESTLE ºÐ¼® : Big-Data-as-a-Service ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ·Â ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº Big-Data-as-a-Service ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® Big-Data-as-a-Service ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

Big-Data-as-a-Service ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º Big-Data-as-a-Service ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Big-Data-as-a-Service ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ºòµ¥ÀÌÅÍ ¼­ºñ½º ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× Ãßõ Big-Data-as-a-Service ½ÃÀå ¼º°øÀÇ ±æÀ» ±×¸®´Ù.

Big-Data-as-a-Service ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ±â¾÷Àº °æÀï ȯ°æÀÇ µµÀüÀ» ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • PorterÀÇ Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå Big-Data-as-a-Service ½ÃÀå : ¼Ö·ç¼Ç À¯Çüº°

  • Data Analytics-as-a-Service
  • Data-as-a-Service
  • Hadoop-as-a-Service

Á¦7Àå Big-Data-as-a-Service ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå Big-Data-as-a-Service ½ÃÀå : µµÀÔ ¸ðµ¨º°

  • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå
  • ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå
  • ÆÛºí¸¯ Ŭ¶ó¿ìµå

Á¦9Àå Big-Data-as-a-Service ½ÃÀå : ¾÷°èº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(B
  • °ÇÃà/°Ç¼³/ºÎµ¿»ê
  • ¼ÒºñÀç ¹× ¼Ò¸Å
  • ±³À°
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • Á¤º¸±â¼ú
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • Åë½Å
  • ¿©Çà ¹× È£½ºÇÇÅ»¸®Æ¼

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ Big-Data-as-a-Service ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Big-Data-as-a-Service ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ Big-Data-as-a-Service ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Accenture PLC
  • Amazon Web Services, Inc.
  • Cisco Systems, Inc.
  • Cloudera, Inc.
  • Dell Technologies Inc.
  • GoodData Corporation
  • Google LLC
  • Hewlett Packard Enterprise
  • Hitachi Vantara Corporation
  • Lumen Technologies, Inc.
  • Salesforce, Inc.
  • SAP SE
  • SunGard Data Systems Inc.
  • Teradata Corporation
  • UST Global Inc.
LSH 24.11.13

The Big-Data-as-a-Service Market was valued at USD 76.54 billion in 2023, expected to reach USD 84.47 billion in 2024, and is projected to grow at a CAGR of 10.45%, to USD 153.56 billion by 2030.

Big-Data-as-a-Service (BDaaS) is a cloud-based offering that provides end-users with the ability to process and analyze vast amounts of data, without investing heavily in infrastructure or expertise. This service combines data management, storage, and analytics, typically in a highly scalable environment. The necessity of BDaaS stems from the growing complexity and volume of data generated by enterprises, which requires efficient tools to draw actionable insights quickly and economically. Applications span multiple sectors, including finance for risk modeling, healthcare for patient data analysis, and retail for personalized customer experiences. End-use scopes prominently feature businesses seeking competitive edges through data-driven strategies and public sector entities aiming to improve services and operational efficiency.

KEY MARKET STATISTICS
Base Year [2023] USD 76.54 billion
Estimated Year [2024] USD 84.47 billion
Forecast Year [2030] USD 153.56 billion
CAGR (%) 10.45%

Market growth is significantly driven by the rapid adoption of cloud technologies, increasing reliance on big data analytics for decision-making, and the ongoing digitization across industries. However, potential challenges include data privacy concerns, regulatory compliance issues, and the risk of vendor lock-ins. Despite these, opportunities abound, particularly in segments like predictive analytics and machine learning integration, as businesses look to enhance predictive capabilities and automation. Companies can capitalize on these by focusing on developing robust, flexible solutions that ensure data security and offer seamless interoperability. Innovations should target hybrid cloud solutions, real-time data processing, and industry-specific analytics applications to address diversified needs.

Research should prioritize developing advanced algorithms that enhance processing speeds and data accuracy, and the market nature favors continual evolution and specialization to meet client-specific demands. BDaaS providers must also anticipate the rise in interconnected devices, which will further amplify data generation, influencing market dynamics toward more real-time analytics. Lastly, customer education and partnerships with tech leaders are recommended to alleviate privacy concerns and boost confidence in cloud-based solutions, effectively driving broader market acceptance and growth.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Big-Data-as-a-Service Market

The Big-Data-as-a-Service Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing demand for a unified solution
    • Reduction in implementation cost
    • Rising usage of data science and cloud-based predictive analytics
    • Increase in volume of real-time heterogeneous data
  • Market Restraints
    • Regulatory compliance and security issues
    • Lack of big data IT skills
  • Market Opportunities
    • Rise in demand for advanced analytics and data warehousing solutions
    • Attractive investment in IT sectors by the businesses
  • Market Challenges
    • Complexity in data consolidation and privacy threats

Porter's Five Forces: A Strategic Tool for Navigating the Big-Data-as-a-Service Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Big-Data-as-a-Service Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Big-Data-as-a-Service Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Big-Data-as-a-Service Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Big-Data-as-a-Service Market

A detailed market share analysis in the Big-Data-as-a-Service Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Big-Data-as-a-Service Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Big-Data-as-a-Service Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Big-Data-as-a-Service Market

A strategic analysis of the Big-Data-as-a-Service Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Big-Data-as-a-Service Market, highlighting leading vendors and their innovative profiles. These include Accenture PLC, Amazon Web Services, Inc., Cisco Systems, Inc., Cloudera, Inc., Dell Technologies Inc., GoodData Corporation, Google LLC, Hewlett Packard Enterprise, Hitachi Vantara Corporation, Lumen Technologies, Inc., Salesforce, Inc., SAP SE, SunGard Data Systems Inc., Teradata Corporation, and UST Global Inc..

Market Segmentation & Coverage

This research report categorizes the Big-Data-as-a-Service Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Solution Type, market is studied across Data Analytics-as-a-Service, Data-as-a-Service, and Hadoop-as-a-Service.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises.
  • Based on Deployment Model, market is studied across Hybrid Cloud, Private Cloud, and Public Cloud.
  • Based on Industry, market is studied across Aerospace & Defense, Automotive & Transportation, Banking, Financial Services & Insurance, Building, Construction & Real Estate, Consumer Goods & Retail, Education, Energy & Utilities, Government & Public Sector, Healthcare & Life Sciences, Information Technology, Manufacturing, Media & Entertainment, Telecommunication, and Travel & Hospitality.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing demand for a unified solution
      • 5.1.1.2. Reduction in implementation cost
      • 5.1.1.3. Rising usage of data science and cloud-based predictive analytics
      • 5.1.1.4. Increase in volume of real-time heterogeneous data
    • 5.1.2. Restraints
      • 5.1.2.1. Regulatory compliance and security issues
      • 5.1.2.2. Lack of big data IT skills
    • 5.1.3. Opportunities
      • 5.1.3.1. Rise in demand for advanced analytics and data warehousing solutions
      • 5.1.3.2. Attractive investment in IT sectors by the businesses
    • 5.1.4. Challenges
      • 5.1.4.1. Complexity in data consolidation and privacy threats
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Big-Data-as-a-Service Market, by Solution Type

  • 6.1. Introduction
  • 6.2. Data Analytics-as-a-Service
  • 6.3. Data-as-a-Service
  • 6.4. Hadoop-as-a-Service

7. Big-Data-as-a-Service Market, by Organization Size

  • 7.1. Introduction
  • 7.2. Large Enterprises
  • 7.3. Small & Medium Enterprises

8. Big-Data-as-a-Service Market, by Deployment Model

  • 8.1. Introduction
  • 8.2. Hybrid Cloud
  • 8.3. Private Cloud
  • 8.4. Public Cloud

9. Big-Data-as-a-Service Market, by Industry

  • 9.1. Introduction
  • 9.2. Aerospace & Defense
  • 9.3. Automotive & Transportation
  • 9.4. Banking, Financial Services & Insurance
  • 9.5. Building, Construction & Real Estate
  • 9.6. Consumer Goods & Retail
  • 9.7. Education
  • 9.8. Energy & Utilities
  • 9.9. Government & Public Sector
  • 9.10. Healthcare & Life Sciences
  • 9.11. Information Technology
  • 9.12. Manufacturing
  • 9.13. Media & Entertainment
  • 9.14. Telecommunication
  • 9.15. Travel & Hospitality

10. Americas Big-Data-as-a-Service Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Big-Data-as-a-Service Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Big-Data-as-a-Service Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Accenture PLC
  • 2. Amazon Web Services, Inc.
  • 3. Cisco Systems, Inc.
  • 4. Cloudera, Inc.
  • 5. Dell Technologies Inc.
  • 6. GoodData Corporation
  • 7. Google LLC
  • 8. Hewlett Packard Enterprise
  • 9. Hitachi Vantara Corporation
  • 10. Lumen Technologies, Inc.
  • 11. Salesforce, Inc.
  • 12. SAP SE
  • 13. SunGard Data Systems Inc.
  • 14. Teradata Corporation
  • 15. UST Global Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦