½ÃÀ庸°í¼­
»óǰÄÚµå
1589298

¼¼°èÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° ¿¹Ãø(2025-2030³â)

Data Collection & Labeling Market by Data Type (Audio, Image & Video, Text), End-Use Industry (Automotive, BFSI, Government) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀº 2023³â 32¾ï 6,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 39¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 22.85%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 137¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀº º¸´Ù ±¤¹üÀ§ÇÑ AI ¹× ¸Ó½Å·¯´× »ýŰèÀÇ ÇÙ½É ±¸¼º¿ä¼Ò·Î, Á¤È®¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¾Ë°í¸®ÁòÀ» ±³À°Çϱâ À§ÇÑ ¿ø½Ã µ¥ÀÌÅÍ ¼öÁý ¹× ºÐ·ù¿¡ Âü¿©Çϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ÀÇ·á, ¼Ò¸Å, ±ÝÀ¶ µî ´Ù¾çÇÑ »ê¾÷¿¡ ÅëÇÕÀÌ ÁøÇàµÇ´Â AI ¿ëµµÀ» È¿°úÀûÀ¸·Î °³¹ßÇϱâ À§Çؼ­´Â Á¤È®ÇÏ°Ô ¶óº§¸µµÈ µ¥ÀÌÅͰ¡ ±âº»À̱⠶§¹®¿¡ ÀÌ ÇÁ·Î¼¼½º´Â ÇʼöÀûÀÔ´Ï´Ù. ½ÃÀåÀÇ Çʿ伺Àº È¿°úÀûÀ¸·Î ±â´ÉÇϱâ À§ÇØ ¾öû³­ ¾çÀÇ °íǰÁú µ¥ÀÌÅ͸¦ ÇÊ¿ä·Î ÇÏ´Â AI ÁÖµµÇü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. ÀÌ ¼ö¿ä´Â ÀÚÀ²ÁÖÇà Â÷·®, ¿¹Ãø ºÐ¼®, °í°´ ¼­ºñ½º ÀÚµ¿È­, °³ÀÎÈ­µÈ ¸¶ÄÉÆÃ µîÀÇ ÃÖÁ¾ ¿ëµµ¸¦ Æ÷ÇÔÇÑ ¿©·¯ ºÎ¹®¿¡ °ÉÄ£ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ±â¹ýÀÇ Àü°³¸¦ ÃËÁøÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ (2023³â) 32¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 39¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â (2030³â) 137¾ï 8,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 22.85%

½ÃÀå ¼ºÀåÀº ÁÖ·Î AIÀÇ ±â¼úÀû Áøº¸, ºòµ¥ÀÌÅÍÀÇ º¸±Þ, AI ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡ÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ °æÀïÀ» À¯ÁöÇϱâ À§ÇØ AIÀÇ Á߿伺À» ÀνÄÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ Á᫐ Àü·«¿¡ ÁÖ·ÂÇÏ´Â °æÇâÀÌ Ä¿Áö°í ÀÖÀ¸¸ç µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µÀ» Àü¹®À¸·Î ÇÏ´Â ±â¾÷¿¡ ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ°¡ ź»ýÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, µ¥ÀÌÅÍ ¶óº§¸µ°ú °ü·ÃµÈ ³ôÀº ºñ¿ë, ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ® °ü¸® ¹× 󸮿¡ ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇÏ´Ù´Â ¹®Á¦´Â ¿©ÀüÈ÷ ³²¾Æ ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍ ÀÌ¿ë°ú ±â¹Ð À¯Áö¸¦ µÑ·¯½Ñ ¹ý·üÀº ²÷ÀÓ¾øÀÌ ÁøÈ­Çϰí Àֱ⠶§¹®¿¡ ±ÔÁ¦ Áؼö ¹®Á¦°¡ ¼ºÀåÀ» ¹æÇØÇÒ °¡´É¼ºµµ ÀÖ½À´Ï´Ù.

»õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ±â¾÷Àº ÀÚµ¿ µ¥ÀÌÅÍ ¶óº§¸µ ±â¼úÀÇ Çõ½ÅÀ» ¿ì¼±ÇØ¾ß ÇÕ´Ï´Ù. ÀÚµ¿ µ¥ÀÌÅÍ ¶óº§¸µ ±â¼úÀº ³ôÀº Á¤¹Ðµµ¸¦ º¸ÀåÇϸ鼭 ºñ¿ëÀ» Àý°¨Çϰí È¿À²¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÇÕ¼º µ¥ÀÌÅÍ »ý¼ºÀÇ °³¹ßÀº ¶ÇÇÑ ÇÁ¶óÀ̹ö½Ã ¿ì·Á¸¦ ÁÙÀÌ°í µ¥ÀÌÅÍ ¼¼Æ®¸¦ Çâ»ó½Ãų ¼ö Àֱ⠶§¹®¿¡ À¯¸ÁÇÑ ºÎ¹®ÀÔ´Ï´Ù. ÷´Ü ºÐ¼®°ú ÀÚ¿¬¾ð¾î 󸮿¡ ÅõÀÚÇÔÀ¸·Î½á ´µ¾Ó½º°¡ ´Ù¸¥ µ¥ÀÌÅÍ ºÐ¼®À» ´õ¿í ¿ëÀÌÇÏ°Ô ÇÏ°í ½ÃÀå¿¡¼­ÀÇ Àû¿ë¼ºÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå °ü°èÀÚ´Â µ¥ÀÌÅÍÀÇ ´ë·®¼º, ´Ù¾ç¼º ¹× ¼Óµµ¿¡ ´ëÀÀÇÏ´Â µµ±¸¸¦ °³¼±Çϱâ À§ÇØ Áö¼ÓÀûÀÎ R&D¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. ½ÃÀåÀÌ ¼º¼÷ÇÔ¿¡ µû¶ó µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ÇÁ·Î¼¼½º¸¦ °£¼ÒÈ­ÇÏ´Â ÅëÇÕ Ç÷§Æû ±¸ÃàÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ºñÁî´Ï½º ¼ºÀå°ú ½ÃÀå ÁöÀ§ Çâ»ó¿¡ ¹ÚÂ÷¸¦ °¡ÇÏ´Â Çõ½ÅÀ» À§ÇÑ ºñ¿ÁÇÑ Åä¾çÀ» º¸¿©ÁÝ´Ï´Ù.

½ÃÀå ¿ªÇÐ : ºü¸£°Ô ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¼¼°è »ê¾÷ÀÇ µðÁöÅÐ º¯Çõ
    • ¹ý ÁýÇà ±â°ü¿¡ ÀÇÇÑ º¸¾È ¹× °¨½Ã¿¡ À־ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ±â¼úÀÇ ³ôÀº ä¿ë·ü
    • Á¶»ç ¿ëµµ¿¡ À־ÀÇ ¸Ó½Å·¯´× ÅøÀÇ È°¿ë
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ´ë±Ô¸ð ³ëµ¿·ÂÀÇ Çʿ伺°ú °øÁ¤ºñ¿ëÀÇ ³ôÀÌ
  • ½ÃÀå ±âȸ
    • ÀÚÀ²ÁÖÇàÂ÷ÀÇ »ý»ê ´ë¼ö Áõ°¡
    • ¼Ò¼È ¹Ìµð¾î Ç÷§Æû¿¡¼­ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ÀÌ¿ëÀÇ Àü¸Á
  • ½ÃÀåÀÇ °úÁ¦
    • ÀúǰÁú °á°ú ¹× µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦

Porter's Five Forces : µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces Framework´Â µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀïÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» ¼³¸íÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» ÇØ°áÇϰí ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ ¼³¸íÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ¼¼ºÐÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í °ø±Þ¾÷ü´Â °æÀïÀÌ Ä¡¿­ÇØÁö¸é¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ Çà·ÄÀ» ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ: µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ Á¸À縦 °­È­ÇÏ·Á´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ¸¶·ÃÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ ´Ù·ç´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÎ¹®¿¡¼­ÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» ¼³¸íÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, »ê¾÷ÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â Áß¿äÇÑ Áú¹®¿¡µµ ´äº¯Çϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°è »ê¾÷ÀÇ µðÁöÅÐ º¯Çõ
      • ¹ý ÁýÇà ±â°ü¿¡ ÀÇÇÑ º¸¾È ¹× °¨½Ã¿¡ À־ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ±â¼úÀÇ Ã¤¿ë·üÀÌ ³ô´Ù
      • ¿¬±¸ ¿ëµµ¿¡ À־ÀÇ ¸Ó½Å·¯´× ÅøÀÇ È°¿ë
    • ¾ïÁ¦¿äÀÎ
      • ´ë±Ô¸ð ³ëµ¿·Â°ú ³ôÀº °øÁ¤ ºñ¿ëÀÌ ÇÊ¿ä
    • ±âȸ
      • ÀÚÀ²ÁÖÇàÂ÷ »ý»ê Áõ°¡
      • ¼Ò¼È ¹Ìµð¾î Ç÷§Æû¿¡¼­ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µÀÇ ÀÌ¿ëÀÇ Àü¸Á
    • °úÁ¦
      • °á°ú ǰÁúÀÌ ³·°í µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • ¼Ò°³
  • À½¼º
  • À̹ÌÁö¿Í µ¿¿µ»ó
  • ÅØ½ºÆ®

Á¦7Àå µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • ¼Ò°³
  • ÀÚµ¿Â÷
  • BFSI
  • Á¤ºÎ
  • ÀÇ·á
  • IT
  • ¼Ò¸Å ¹× E-Commerce

Á¦8Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå

  • ¼Ò°³
  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå

  • ¼Ò°³
  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¼öÁý ¹× ¶óº§¸µ ½ÃÀå

  • ¼Ò°³
  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Alegion Inc.
  • Amazon.com, Inc.
  • Appen Limited
  • Capgemini SE
  • Centaur Labs Inc.
  • Cogito Tech LLC
  • DataLabeler
  • iMerit
  • INFOLKS PVT LTD
  • Labelbox, Inc.
  • Reality Analytics Inc.
  • Scale AI, Inc.
  • SHAIP
  • Snorkel AI, Inc.
  • Summa Linguae SA
BJH 24.11.21

The Data Collection & Labeling Market was valued at USD 3.26 billion in 2023, expected to reach USD 3.99 billion in 2024, and is projected to grow at a CAGR of 22.85%, to USD 13.78 billion by 2030.

The data collection and labeling market is a vital component in the broader AI and machine learning ecosystem, involving the gathering and categorization of raw data to train algorithms for improved accuracy and performance. This process is essential because accurately labeled data is fundamental to developing effective AI applications, which are increasingly being integrated into various industries such as automotive, healthcare, retail, and finance. The market's necessity stems from the growing demand for AI-driven solutions that require vast amounts of high-quality data to function effectively. This demand is driving the deployment of data collection and labeling methodologies across multiple sectors, where end-use applications include autonomous vehicles, predictive analytics, customer service automation, and personalized marketing.

KEY MARKET STATISTICS
Base Year [2023] USD 3.26 billion
Estimated Year [2024] USD 3.99 billion
Forecast Year [2030] USD 13.78 billion
CAGR (%) 22.85%

Market growth is primarily influenced by technological advancements in AI, the proliferation of big data, and increased investments in AI technologies. As companies recognize the importance of AI to stay competitive, they are increasingly focusing on data-driven strategies, creating potential opportunities for businesses specializing in data collection and labeling. However, challenges persist, such as data privacy concerns, high costs associated with data labeling, and the need for skilled personnel to manage and process large datasets. Additionally, regulatory compliance issues can impede growth, as the laws surrounding data usage and confidentiality are continually evolving.

To capitalize on emerging opportunities, businesses should prioritize innovation in automated data labeling technologies, which can reduce costs and improve efficiency while ensuring high accuracy. The development of synthetic data generation is another promising area, as it mitigates privacy concerns and enriches datasets. Investing in advanced analytics and natural language processing can further facilitate nuanced data interpretations and expand market applicability. Market players should focus on continuous R&D to improve tools that handle data volubility, variety, and velocity. As the market matures, there is a shift towards creating integrative platforms that streamline data collection and labeling processes, indicating fertile ground for innovation that can spur business growth and enhance market position.

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data Collection & Labeling Market

The Data Collection & Labeling Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Digital transformation of industries worldwide
    • High adoption of data collection & labeling technologies in security & surveillance by law enforcement agencies
    • Utilization of machine learning tools in research applications
  • Market Restraints
    • Need for a large workforce and high cost of process
  • Market Opportunities
    • Rising production of autonomous vehicles
    • Prospects for the usage of data collection & labeling in social media platforms
  • Market Challenges
    • Low quality results and data privacy issues

Porter's Five Forces: A Strategic Tool for Navigating the Data Collection & Labeling Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data Collection & Labeling Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data Collection & Labeling Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data Collection & Labeling Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data Collection & Labeling Market

A detailed market share analysis in the Data Collection & Labeling Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data Collection & Labeling Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data Collection & Labeling Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data Collection & Labeling Market

A strategic analysis of the Data Collection & Labeling Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data Collection & Labeling Market, highlighting leading vendors and their innovative profiles. These include Alegion Inc., Amazon.com, Inc., Appen Limited, Capgemini SE, Centaur Labs Inc., Cogito Tech LLC, DataLabeler, iMerit, INFOLKS PVT LTD, Labelbox, Inc., Reality Analytics Inc., Scale AI, Inc., SHAIP, Snorkel AI, Inc., and Summa Linguae S.A..

Market Segmentation & Coverage

This research report categorizes the Data Collection & Labeling Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Data Type, market is studied across Audio, Image & Video, and Text.
  • Based on End-Use Industry, market is studied across Automotive, BFSI, Government, Healthcare, IT, and Retail & E-commerce.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Digital transformation of industries worldwide
      • 5.1.1.2. High adoption of data collection & labeling technologies in security & surveillance by law enforcement agencies
      • 5.1.1.3. Utilization of machine learning tools in research applications
    • 5.1.2. Restraints
      • 5.1.2.1. Need for a large workforce and high cost of process
    • 5.1.3. Opportunities
      • 5.1.3.1. Rising production of autonomous vehicles
      • 5.1.3.2. Prospects for the usage of data collection & labeling in social media platforms
    • 5.1.4. Challenges
      • 5.1.4.1. Low quality results and data privacy issues
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data Collection & Labeling Market, by Data Type

  • 6.1. Introduction
  • 6.2. Audio
  • 6.3. Image & Video
  • 6.4. Text

7. Data Collection & Labeling Market, by End-Use Industry

  • 7.1. Introduction
  • 7.2. Automotive
  • 7.3. BFSI
  • 7.4. Government
  • 7.5. Healthcare
  • 7.6. IT
  • 7.7. Retail & E-commerce

8. Americas Data Collection & Labeling Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Data Collection & Labeling Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Data Collection & Labeling Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Alegion Inc.
  • 2. Amazon.com, Inc.
  • 3. Appen Limited
  • 4. Capgemini SE
  • 5. Centaur Labs Inc.
  • 6. Cogito Tech LLC
  • 7. DataLabeler
  • 8. iMerit
  • 9. INFOLKS PVT LTD
  • 10. Labelbox, Inc.
  • 11. Reality Analytics Inc.
  • 12. Scale AI, Inc.
  • 13. SHAIP
  • 14. Snorkel AI, Inc.
  • 15. Summa Linguae S.A.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦