½ÃÀ庸°í¼­
»óǰÄÚµå
1589311

¼¼°èÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : À¯Çü, Á¶Á÷ ±Ô¸ð, ¾÷°èº°, ¿ëµµ, Àü°³ ¸ðµ¨º° ¿¹Ãø(2025-2030³â)

Data-Warehouse-as-a-Service Market by Type, Organization Size, Industry Vertical, Application, Usage, Deployment Model - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 187 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 26¾ï 3,000¸¸ ´Þ·¯·Î, 2024³â¿¡´Â 29¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR) 13.96%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 65¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺(DWaaS)´Â µ¥ÀÌÅÍ ½ºÅ丮Áö, ÅëÇÕ ¹× °ü¸®¸¦ À§ÇÑ Å¬¶ó¿ìµå ±â¹Ý ¸ðµ¨À» Á¦°øÇÏ´Â ½ÅÈï ¼Ö·ç¼ÇÀ¸·Î ±âÁ¸ÀÇ ¿ÂÇÁ·¹¹Ì½º µ¥ÀÌÅÍ ¿þ¾îÇϿ콺¸¦ ´ëüÇÏ´Â È®Àå °¡´ÉÇϰí È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ¸·Î ÀÛµ¿ÇÕ´Ï´Ù. ±â¾÷ÀÌ ¾öû³­ ¾çÀÇ µ¥ÀÌÅ͸¦ »ý¼ºÇÔ¿¡ µû¶ó DWaaSÀÇ Çʿ伺ÀÌ Ä¿Áö°í ÀÖÀ¸¸ç µ¥ÀÌÅÍ ½ºÆ®¸²À» °ü¸®Çϰí ÀÇ»ç °áÁ¤ ´É·ÂÀ» Çâ»ó½ÃŰ°í °æÀï·ÂÀ» °­È­ÇÏ´Â ºñ¿ë È¿À²ÀûÀÎ ¹æ¹ý ¸¦ Á¦°øÇÕ´Ï´Ù. ±× ¿ëµµ´Â ±ÝÀ¶, ¼Ò¸Å, ÇコÄɾî, Á¦Á¶ µî ´Ù¾çÇÑ ºÐ¾ß¿¡ °ÉÃÄ °ß°íÇÑ µ¥ÀÌÅÍ °ü¸®¸¦ ÅëÇØ Àü·«ÀûÀλçÀÌÆ®°ú ¾÷¹« È¿À²À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµÀÇ ¹üÀ§´Â ³Ð°í, µ¥ÀÌÅÍ Ã³¸®¿¡ ¹Îø¼º°ú Çõ½Å¼ºÀ» ¿ä±¸ÇÏ´Â Áß¼Ò±â¾÷ºÎÅÍ ´ë±â¾÷±îÁö ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀåÀº Ŭ¶ó¿ìµå ¼­ºñ½º äÅà Ȯ´ë, ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ¿©·¯ Ç÷§Æû °£ÀÇ ¿øÈ°ÇÑ ÅëÇÕÀ» ÃËÁøÇÏ´Â Çù¾÷ µµ±¸ÀÇ ¿ä±¸ µîÀÇ ¿µÇâÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ ¸¸ÇÑ ÀáÀçÀûÀÎ ºñÁî´Ï½º ±âȸ·Î´Â µðÁöÅÐ ÀüȯÀÌ È®´ëµÇ°í ÀÖ´Â °³¹ßµµ»óÁö¿ªÀ¸·ÎÀÇ ÁøÃâ, ¿¹Ãø ºÐ¼®°ú ÀÚµ¿È­¸¦ À§ÇÑ AIÀÇ ÅëÇÕ µîÀÌ ÀÖÀ¸¸ç, À̵éÀº ÆÄÆ®³Ê½ÊÀ̳ª Àü·«Àû ÅõÀÚ¸¦ ÅëÇØ Ȱ¿ëÇÑ´Ù ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ ½ÃÀåÀº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹®Á¦, ±ÔÁ¦ Áؼö ¹®Á¦, ÀáÀçÀûÀÎ º¸¾È Ãë¾àÁ¡ µî ÁøÀüÀ» ¹æÇØÇÒ ¼ö ÀÖ´Â Á¦¾à¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù.±â¾÷Àº ÀÌ·¯ÇÑ À庮À» ±Øº¹Çϱâ À§ÇØ µ¥ÀÌÅÍ º¸¾È ±â´ÉÀÇ °­È­¿Í ÄÄÇöóÀ̾𽺠Ȯº¸¿¡ ÁÖ·ÂÇØ¾ß ÇÕ´Ï´Ù. °³¼±, ¿§Áö ÄÄÇ»ÆÃÀÇ È°¿ë¿¡ ÀÇÇÑ Ã³¸® È¿À²È­°¡ Æ÷ÇԵ˴ϴÙ. ºÎµå·¯¿ò°ú Ä¿½ºÅ͸¶ÀÌ¡À» Á¦°øÇϱâ À§ÇØ ¿ÂÇÁ·¹¹Ì½º¿Í Ŭ¶ó¿ìµå ±â´ÉÀ» °áÇÕÇÑ ÇÏÀ̺긮µå µ¥ÀÌÅÍ ¼Ö·ç¼Ç¿¡ ´ëÇÑ µ¿ÇâÀÌ ¿¹»óµË´Ï´Ù. ÇÊ¿ä¿Í Àü·«À» ÀÏÄ¡½Ãų ¼ö ÀÖ´Ù¸é Å« ¼ºÀå °¡´É¼ºÀ» Áö´Ñ ¿ªµ¿ÀûÀÎ »óȲÀ» º¸¿©ÁÝ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 26¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø³â(2024) 29¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 65¾ï 6,000¸¸ ´Þ·¯
º¹ÇÕ ¿¬°£ ¼ºÀå·ü(CAGR)(%) 13.96%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¾ÆÁî ¾î ¼­ºñ½º ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¾ÆÁî ¾î ¼­ºñ½º ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ ȹµæÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀÇ ±Þ¼ÓÇÑ º¸±Þ°ú ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®¿¡ ÁÖ·Â
    • ¼¼°è µ¥ÀÌÅÍ·® Áõ°¡
    • ±â¾÷ °æ¿µ¿¡ À־ÀÇ ÀúÁö¿¬, °í¼Ó ºÐ¼®¿¡ ¼ö¿äÀÇ °íÁ¶
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • Ç¥ÁØÈ­ÀÇ ºÎÁ·
  • ½ÃÀå ±âȸ
    • Áß¼Ò±â¾÷¿¡ À־ÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺, ¾ÆÁî ¼­ºñ½ºÀÇ Ã¤¿ë Áõ°¡
    • µ¥ÀÌÅÍ ¿þ¾îÇϿ콺, ¾ÆÁî, ¼­ºñ½º ¼Ö·ç¼ÇÀÇ Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • ¼÷·ÃµÈ Àη ºÎÁ·°ú Ŭ¶ó¿ìµå µ¥ÀÌÅÍ º¸¾È

Porter's Five Forces : ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces Framework´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : µ¥ÀÌÅÍ¿þ¾î ÇϿ콺 Az A ¼­ºñ½º ½ÃÀå¿¡¼­ ¿ÜºÎ ¿µÇâÀ» ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇϴµ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸ º¸°í¸¦ Á¦°øÇÕ´Ï´Ù.PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹ÃøÇÑ Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ°¡ µË´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå¿¡¼­ °æÀï ±¸µµ ÆÄ¾Ç

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¾ÆÁî ¾î ¼­ºñ½º ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±×·¡¼­ °æÀï Æ÷Áö¼Å ´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù.ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¹àÈ÷°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º µ¥ÀÌÅÍ¿þ¾î ÇϿ콺 Az A ¼­ºñ½º ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ¿¡ µû¶ó ÃæºÐÇÑ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× ±ÇÀå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¾ÆÁî ¾î ¼­ºñ½º ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ´É·Â ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ, ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼ÇÀ» ½Å¼ÓÇÏ°Ô µµÀÔÇÏ¿© ½Ç½Ã°£ µ¥ÀÌÅÍ ºÐ¼®¿¡ ÁßÁ¡À» µÐ´Ù
      • ¼¼°è¿¡¼­ Áõ°¡ÇÏ´Â µ¥ÀÌÅÍ·®
      • ±â¾÷ °æ¿µ¿¡ À־ÀÇ ³·Àº ·¹ÀÌÅÏ½Ã¿Í °í¼Ó ºÐ¼® ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • Ç¥ÁØÈ­ÀÇ ºÎÁ·
    • ±âȸ
      • Áß¼Ò±â¾÷¿¡ À־ÀÇ µ¥ÀÌÅÍ ¿þ¾îÇϿ콺, ¾ÆÁî, ¼­ºñ½ºÀÇ µµÀÔ Áõ°¡
      • µ¥ÀÌÅÍ ¿þ¾îÇϿ콺, ¾ÆÁî, ¼­ºñ½º ¼Ö·ç¼ÇÀÇ Áøº¸
    • °úÁ¦
      • ¼÷·ÃµÈ Àη ºÎÁ·°ú Ŭ¶ó¿ìµå µ¥ÀÌÅÍ º¸¾È
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : À¯Çüº°

  • ¿£ÅÍÇÁ¶óÀÌÁî µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ¼­ºñ½º
  • ¿î¿µ µ¥ÀÌÅÍ ½ºÅ丮Áö

Á¦7Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦8Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : ¾÷°èº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè
  • Á¤ºÎ ¹× °ø°ø ºÎ¹®
  • ÇコÄÉ¾î ¹× ÀǾàǰ
  • Á¦Á¶¾÷
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ¼Ò¸Å¾÷ ¹× ÀüÀÚ»ó°Å·¡
  • Åë½Å ¹× IT
  • ¿©Çà ¹× È£½ºÇÇÅ»¸®Æ¼

Á¦9Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå : ¿ëµµº°

  • ÀÚ»ê¿î¿ë°ü¸®
  • °í°´ºÐ¼®
  • ºÎÁ¤ ÇàÀ§ÀÇ °ËÃâ°ú À§Çù °ü¸®
  • ¸®½ºÅ©¿Í ÄÄÇöóÀ̾𽺠°ü¸®
  • °ø±Þ¸Á °ü¸®

Á¦10Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå ¿ëµµº°

  • ºÐ¼®
  • µ¥ÀÌÅÍ ¸¶ÀÌ´×
  • º¸°í

Á¦11Àå ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå µµÀÔ ¸ðµ¨º°

  • ÇÏÀ̺긮µå Ŭ¶ó¿ìµå
  • ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµå
  • ÆÛºí¸¯ Ŭ¶ó¿ìµå

Á¦12Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼­ºñ½ºÇü µ¥ÀÌÅÍ ¿þ¾îÇϿ콺 ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • 1010data, Inc. by Advance Communication Corp.
  • Accur8 Software
  • Actian
  • Amazon Web Services, Inc.
  • Atscale
  • Cloudera, Inc.
  • Google LLC by Alphabet Inc.
  • International Business Machines Corporation
  • MarkLogic Corporation
  • Micro Focus International PLC
  • Microsoft Corporation
  • Netavis Software GmbH
  • Oracle Corporation
  • SAP SE
  • Snowflake Inc.
BJH 24.11.21

The Data-Warehouse-as-a-Service Market was valued at USD 2.63 billion in 2023, expected to reach USD 2.99 billion in 2024, and is projected to grow at a CAGR of 13.96%, to USD 6.56 billion by 2030.

Data-Warehouse-as-a-Service (DWaaS) is an emergent solution offering a cloud-based model for data storage, integration, and management, serving as a scalable and efficient alternative to traditional on-premise data warehouses. As businesses increasingly generate vast amounts of data, the necessity for DWaaS is amplified, providing a cost-effective way to manage data streams, improve decision-making capabilities, and enhance competitiveness. Applications span across various sectors, including finance, retail, healthcare, and manufacturing, where robust data management can drive strategic insights and operational efficiencies. The end-use scope is broad, catering to SMBs and large enterprises seeking agility and innovation in data handling. Market growth is influenced by the increasing adoption of cloud services, rising demand for real-time data analytics, and the need for collaboration tools that facilitate seamless integration across multiple platforms. Notable potential opportunities include expanding into developing regions where digital transformation is growing and the integration of AI for predictive analytics and automation, which can be capitalized on through partnerships and strategic investments. However, the market does face limitations such as data privacy concerns, regulatory compliance issues, and potential security vulnerabilities that could hinder progress. Businesses need to focus on enhancing data security features and ensuring compliance to overcome these barriers. Key areas for innovation and research involve developing advanced machine learning algorithms, improving data governance frameworks, and leveraging edge computing for processing efficiency. As the market nature evolves, a trend towards hybrid data solutions is expected, blending on-premise and cloud capabilities to offer flexibility and customization. Overall, the DWaaS market presents a dynamic landscape with significant growth potential, provided businesses address the challenges and align their strategies with evolving technological advancements and user needs.

KEY MARKET STATISTICS
Base Year [2023] USD 2.63 billion
Estimated Year [2024] USD 2.99 billion
Forecast Year [2030] USD 6.56 billion
CAGR (%) 13.96%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Data-Warehouse-as-a-Service Market

The Data-Warehouse-as-a-Service Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Rapid adoption of cloud-based solutions and focus on real-time data analysis
    • Increasing volume of data worldwide
    • Rising demand for low latency and high speed analytics in an enterprise management
  • Market Restraints
    • Lack of standardization
  • Market Opportunities
    • Rise in adoption of data warehouse-as-service among SMEs
    • Advancements in data-warehouse-as-a-service solutions
  • Market Challenges
    • Scarcity of skilled personnel and cloud data security

Porter's Five Forces: A Strategic Tool for Navigating the Data-Warehouse-as-a-Service Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Data-Warehouse-as-a-Service Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Data-Warehouse-as-a-Service Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Data-Warehouse-as-a-Service Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Data-Warehouse-as-a-Service Market

A detailed market share analysis in the Data-Warehouse-as-a-Service Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Data-Warehouse-as-a-Service Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Data-Warehouse-as-a-Service Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Data-Warehouse-as-a-Service Market

A strategic analysis of the Data-Warehouse-as-a-Service Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Data-Warehouse-as-a-Service Market, highlighting leading vendors and their innovative profiles. These include 1010data, Inc. by Advance Communication Corp., Accur8 Software, Actian, Amazon Web Services, Inc., Atscale, Cloudera, Inc., Google LLC by Alphabet Inc., International Business Machines Corporation, MarkLogic Corporation, Micro Focus International PLC, Microsoft Corporation, Netavis Software GmbH, Oracle Corporation, SAP SE, and Snowflake Inc..

Market Segmentation & Coverage

This research report categorizes the Data-Warehouse-as-a-Service Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Enterprise Data Warehouse as a Service and Operational Data Storage.
  • Based on Organization Size, market is studied across Large Enterprises and Small & Medium-Sized Enterprises.
  • Based on Industry Vertical, market is studied across Banking, Financial Services, & Insurance, Government & Public Sector, Healthcare & Pharmaceuticals, Manufacturing, Media & Entertainment, Retail & Ecommerce, Telecommunications & IT, and Travel & Hospitality.
  • Based on Application, market is studied across Asset Management, Customer Analytics, Fraud Detection & Threat Management, Risk & Compliance Management, and Supply Chain Management.
  • Based on Usage, market is studied across Analytics, Data Mining, and Reporting.
  • Based on Deployment Model, market is studied across Hybrid Cloud, Private Cloud, and Public Cloud.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rapid adoption of cloud-based solutions and focus on real-time data analysis
      • 5.1.1.2. Increasing volume of data worldwide
      • 5.1.1.3. Rising demand for low latency and high speed analytics in an enterprise management
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of standardization
    • 5.1.3. Opportunities
      • 5.1.3.1. Rise in adoption of data warehouse-as-service among SMEs
      • 5.1.3.2. Advancements in data-warehouse-as-a-service solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Scarcity of skilled personnel and cloud data security
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Data-Warehouse-as-a-Service Market, by Type

  • 6.1. Introduction
  • 6.2. Enterprise Data Warehouse as a Service
  • 6.3. Operational Data Storage

7. Data-Warehouse-as-a-Service Market, by Organization Size

  • 7.1. Introduction
  • 7.2. Large Enterprises
  • 7.3. Small & Medium-Sized Enterprises

8. Data-Warehouse-as-a-Service Market, by Industry Vertical

  • 8.1. Introduction
  • 8.2. Banking, Financial Services, & Insurance
  • 8.3. Government & Public Sector
  • 8.4. Healthcare & Pharmaceuticals
  • 8.5. Manufacturing
  • 8.6. Media & Entertainment
  • 8.7. Retail & Ecommerce
  • 8.8. Telecommunications & IT
  • 8.9. Travel & Hospitality

9. Data-Warehouse-as-a-Service Market, by Application

  • 9.1. Introduction
  • 9.2. Asset Management
  • 9.3. Customer Analytics
  • 9.4. Fraud Detection & Threat Management
  • 9.5. Risk & Compliance Management
  • 9.6. Supply Chain Management

10. Data-Warehouse-as-a-Service Market, by Usage

  • 10.1. Introduction
  • 10.2. Analytics
  • 10.3. Data Mining
  • 10.4. Reporting

11. Data-Warehouse-as-a-Service Market, by Deployment Model

  • 11.1. Introduction
  • 11.2. Hybrid Cloud
  • 11.3. Private Cloud
  • 11.4. Public Cloud

12. Americas Data-Warehouse-as-a-Service Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Data-Warehouse-as-a-Service Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Data-Warehouse-as-a-Service Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
  • 15.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. 1010data, Inc. by Advance Communication Corp.
  • 2. Accur8 Software
  • 3. Actian
  • 4. Amazon Web Services, Inc.
  • 5. Atscale
  • 6. Cloudera, Inc.
  • 7. Google LLC by Alphabet Inc.
  • 8. International Business Machines Corporation
  • 9. MarkLogic Corporation
  • 10. Micro Focus International PLC
  • 11. Microsoft Corporation
  • 12. Netavis Software GmbH
  • 13. Oracle Corporation
  • 14. SAP SE
  • 15. Snowflake Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦