½ÃÀ庸°í¼­
»óǰÄÚµå
1596267

·Îº¿ ºñÀü ½ÃÀå : ±¸¼º¿ä¼Ò, À¯Çü, ¿ëµµ ¹× »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Robotic Vision Market by Component (Hardware, Software), Type (2D Vision Systems, 3D Vision Systems), Application, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

·Îº¿ ºñÀü ½ÃÀåÀº 2023³â¿¡ 27¾ï 3,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 29¾ï 8,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 9.63%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 51¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

·Îº¿ ºñÀüÀº ÄÄÇ»ÅÍ ºñÀü°ú ·Îº¿ ½Ã½ºÅÛÀÇ ÅëÇÕÀ» Æ÷ÇÔÇϸç, ±â°è°¡ Àΰ£ÀÇ ½Ã°¢Ã³·³ ½Ã°¢ Á¤º¸¸¦ ÇØ¼®Çϰí ó¸®ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Á¦Á¶, ¹°·ù, ÇコÄɾî, ÀÚµ¿Â÷ »ê¾÷ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ǰÁú °Ë»ç, ¹°Ã¼ ÀνÄ, ÀÚÀ² ÁÖÇà ³»ºñ°ÔÀÌ¼Ç µîÀÇ ÀÛ¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ·Îº¿ ºñÀüÀÇ Çʿ伺Àº ÀÛ¾÷ÀÇ Á¤È®¼º, È¿À²¼º ¹× ÀÚµ¿È­ ´É·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ ÀÖ¾î Àδõ½ºÆ®¸® 4.0À» ÃßÁøÇÏ´Â µ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ÃÖÁ¾ ¿ëµµ´Â »ê¾÷ ÀÚµ¿È­, â°í °ü¸®, ¹«ÀÎ Â÷·®, ¼ö¼ú¿ë ·Îº¿¿¡ À̸£±â±îÁö ´Ù¾çÇϸç, AI¿Í ¸Ó½Å·¯´×À» ÅëÇÕÇÏ¿© ¼º´É°ú ÀÇ»ç°áÁ¤À» ÃÖÀûÈ­ÇÕ´Ï´Ù. ½ÃÀå ¼ºÀåÀÇ ¿øµ¿·ÂÀº ºñÀü ±â¼úÀÇ ¹ßÀü, AI ±â´É, »ê¾÷ Àü¹ÝÀÇ ÀÚµ¿È­ µµÀÔ Áõ°¡, ¾÷¹«»ó ³ôÀº Á¤È®µµ¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ºñÁî´Ï½º ±âȸ´Â ÀüÀÚ»ó°Å·¡ÀÇ È®´ë, ½º¸¶Æ® ÆÑÅ丮 Áõ°¡ Ãß¼¼, ³ôÀº ¼öÁØÀÇ º¸¾È ¹× ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀÇ Çʿ伺¿¡ ÀÖ½À´Ï´Ù. ±×·¯³ª ³ôÀº Ãʱ⠵µÀÔ ºñ¿ë, ÅëÇÕÀÇ º¹À⼺, µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á´Â ºü¸¥ º¸±ÞÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àϰü¼º ¾ø´Â ȯ°æ Á¶°ÇÀÇ ¹®Á¦, ½Ç½Ã°£ 󸮿¡ ÇÊ¿äÇÑ ´ë±Ô¸ð ¿¬»ê ´É·ÂÀÇ ÇѰ赵 ÀÖ½À´Ï´Ù. ƯÈ÷ À̹ÌÁö ó¸® ¾Ë°í¸®ÁòÀÇ °­È­, º¸´Ù °­·ÂÇϰí ÀûÀÀ·ÂÀÌ ¶Ù¾î³­ °¨°¢ ½Ã½ºÅÛ °³¹ß, Áõ°­Çö½Ç°ú ·Îº¿ ºñÀüÀ» À¶ÇÕÇÏ¿© Àΰ£°ú ±â°èÀÇ Çù¾÷À» °³¼±ÇÏ´Â µî Çõ½ÅÀÇ ±âȸ´Â ÃæºÐÇÕ´Ï´Ù. ¹Ì·¡¿¡´Â 3D ºñÀü°ú ±íÀÌ ÀνÄÀ» °³¼±Çϰí ÅëÁ¦µÇÁö ¾ÊÀº ȯ°æ°úÀÇ »óÈ£ ÀÛ¿ëÀ» °³¼±ÇÏ´Â µ¥ ÁßÁ¡À» µÑ ¼ö ÀÖ½À´Ï´Ù. ½ÃÀå ¿ªÇÐÀº ¼ö¸¹Àº ½Å»ý±â¾÷°ú ±âÁ¸ ±â¾÷°æÀï ±¸µµ¸¦ º¸¿©ÁÖ¸ç, Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç°ú Çù¾÷À» À§ÇÑ È¯°æÀÌ Á¶¼ºµÇ¾î ÀÖÀ½À» ½Ã»çÇÕ´Ï´Ù. ±â¾÷Àº ÆÄÆ®³Ê½ÊÀ» Ȱ¿ëÇϰí R&D¿¡ ÅõÀÚÇÏ¿© ±âÁ¸ °úÁ¦¸¦ ±Øº¹ÇÔÀ¸·Î½á ÁøÈ­ÇÏ´Â ½ÃÀå ¼ö¿ä¿Í ±â¼ú ¹ßÀüÀ» Ȱ¿ëÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 27¾ï 3,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2024³â) 29¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 51¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 9.63%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ·Îº¿ ºñÀü ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

·Îº¿ ºñÀü ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ÀÚµ¿ ǰÁú °Ë»ç ¹× Á¦¾î¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • »ê¾÷¿ë ·Îº¿ÀÇ 3D ºñÀü ½Ã½ºÅÛ µµÀÔ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • °³¹ß, µµÀÔ, À¯Áö º¸¼ö¿¡ µû¸¥ ³ôÀº ºñ¿ë
  • ½ÃÀå ±âȸ
    • »ê¾÷ ÀÚµ¿È­ °³¹ßÀ» À§ÇÑ Á¤ºÎ Áö¿ø
    • ÃÖÁ¾ »ç¿ëÀÚ¿ÍÀÇ Çù¾÷À» ÅëÇÑ »ý»ê ¹× Á¦Ç° °¡¿ë¼º Çâ»ó
  • ½ÃÀå °úÁ¦
    • ·Îº¿ ºñÀü ½Ã½ºÅÛ°ú °ü·ÃµÈ ±â´ÉÀû Á¦¾à

Portre's Five Forces: ·Îº¿ ºñÀü ½ÃÀå °ø·«À» À§ÇÑ Àü·«Àû µµ±¸

Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ·Îº¿ ºñÀü ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â µ¥ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Portre's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ¸ð»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ·Îº¿ ºñÀü ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ·Îº¿ ºñÀü ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ·Îº¿ ºñÀü ½ÃÀå¿¡¼­°æÀï ±¸µµ ÆÄ¾Ç

·Îº¿ ºñÀü ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû Æ÷Áö¼Å´×À» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­, ÅëÇÕÀÇ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ·Îº¿ ºñÀü ½ÃÀå¿¡¼­ÀÇ º¥´õ ¼º°ú Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ·Îº¿ ºñÀü ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

·Îº¿ ºñÀü ½ÃÀå¿¡¼­ÀÇ ¼º°ø Àü·« ºÐ¼® ¹× Ãßõ ·Îº¿ ºñÀü ½ÃÀå¿¡¼­ÀÇ ¼º°ø °æ·Î¸¦ ±×¸³´Ï´Ù.

·Îº¿ ºñÀü ½ÃÀå Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö ÀÖµµ·Ï ÁغñÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

    Á¦6Àå ·Îº¿ ºñÀü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

    • Çϵå¿þ¾î
      • Ä«¸Þ¶ó
      • ÇÁ·¹ÀÓ ±×·¡¹ö
      • Á¡µî
      • ±¤ÇÐ
      • ÇÁ·Î¼¼¼­ ¹× ÄÁÆ®·Ñ·¯
    • ¼ÒÇÁÆ®¿þ¾î

    Á¦7Àå ·Îº¿ ºñÀü ½ÃÀå : À¯Çüº°

    • 2D ºñÀü ½Ã½ºÅÛ
    • 3D ºñÀü ½Ã½ºÅÛ
      • ·¹ÀÌÀú
      • ½Ì±Û Ä«¸Þ¶ó ¹× ¸ÖƼ Ä«¸Þ¶ó »ï°¢Ãø·®
      • ½ºÅ×·¹¿À ºñÀü
      • ±¸Á¶È­±¤
      • Time-of-Light

    Á¦8Àå ·Îº¿ ºñÀü ½ÃÀå : ¿ëµµº°

    • Á¶¸³ ¹× ºÐÇØ
    • Àý´Ü/ÇÁ·¹½º/¿¬»è
    • ÀÚÀç°ü¸®
    • ÃøÁ¤/°Ë»ç/½ÃÇè
    • Æ÷Àå ¹× ÆÈ·¹Å¸ÀÌ¡
    • ȸȭ
    • Welding & Soldering

    Á¦9Àå ·Îº¿ ºñÀü ½ÃÀå : ¾÷°èº°

    • ÀÚµ¿Â÷
    • È­ÇÐÁ¦Ç°
    • Àü±â ¹× ÀüÀÚ
    • ½Äǰ ¹× À½·á
    • ±Ý¼Ó ¹× ±â°è
    • ÀǾàǰ ¹× È­Àåǰ
    • Á¤¹Ð°øÇÐ ¹× ±¤ÇÐ

    Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ·Îº¿ ºñÀü ½ÃÀå

    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
    • ¹Ì±¹

    Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ·Îº¿ ºñÀü ½ÃÀå

    • È£ÁÖ
    • Áß±¹
    • Àεµ
    • Àεµ³×½Ã¾Æ
    • ÀϺ»
    • ¸»·¹À̽þÆ
    • Çʸ®ÇÉ
    • ½Ì°¡Æ÷¸£
    • Çѱ¹
    • ´ë¸¸
    • ű¹
    • º£Æ®³²

    Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ·Îº¿ ºñÀü ½ÃÀå

    • µ§¸¶Å©
    • ÀÌÁýÆ®
    • Çɶõµå
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • À̽º¶ó¿¤
    • ÀÌÅ»¸®¾Æ
    • ³×´ú¶õµå
    • ³ªÀÌÁö¸®¾Æ
    • ³ë¸£¿þÀÌ
    • Æú¶õµå
    • īŸ¸£
    • ·¯½Ã¾Æ
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ½ºÆäÀÎ
    • ½º¿þµ§
    • ½ºÀ§½º
    • ÅÍŰ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • ¿µ±¹

    Á¦13Àå °æÀï ±¸µµ

    • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
    • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
    • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Àü·« ºÐ¼®°ú Á¦¾È

    ±â¾÷ ¸®½ºÆ®

    • Alphabet Inc.
    • Basler AG
    • Cisco Systems, Inc.
    • Cognex Corporation
    • FANUC Corporation
    • Intel Corporation
    • International Business Machines Corporation
    • Keyence Corporation
    • Microsoft Corporation
    • National Instruments Corporation
    • OMRON Corporation
    • Panasonic Holdings Corporation
    • Robert Bosch GmbH
    • Sick AG
    • Yaskawa Electric Corporation
    LSH

    The Robotic Vision Market was valued at USD 2.73 billion in 2023, expected to reach USD 2.98 billion in 2024, and is projected to grow at a CAGR of 9.63%, to USD 5.19 billion by 2030.

    Robotic Vision encompasses the integration of computer vision and robotic systems, enabling machines to interpret and process visual information similar to human sight. This technology is becoming indispensable in various fields including manufacturing, logistics, healthcare, and automotive industries for tasks such as quality inspection, object recognition, and autonomous navigation. The necessity of robotic vision arises from its ability to enhance precision, efficiency, and automation capabilities in operations, making it a crucial component in advancing Industry 4.0. End-use scope spans across industrial automation, warehouse management, driverless cars, and even surgical robots, integrating AI and machine learning to optimize performance and decision making. Market growth is driven by advancements in vision technology, AI capabilities, rising adoption of automation across industries, and increased demand for high precision in operations. Key opportunities lie in the expansion of e-commerce, the rising trend of smart factories, and the need for advanced security and surveillance systems. However, challenges such as high initial implementation costs, integration complexities, and concerns regarding data privacy may hinder rapid adoption. Limitations also include issues related to inconsistent environmental conditions and the need for significant computational power for real-time processing. There are ample opportunities for innovation, especially in enhancing image processing algorithms, developing more robust and adaptable sensory systems, and fusing robotic vision with augmented reality for improved collaboration between humans and machines. Future research could focus on improving 3D vision and depth perception to better interact with uncontrolled environments. Market dynamics indicate a competitive landscape with numerous startups and established firms, implying a ripe environment for innovative solutions and collaborations. Companies should leverage partnerships and invest in R&D to overcome existing challenges, thereby capitalizing on evolving market demands and technological advancements.

    KEY MARKET STATISTICS
    Base Year [2023] USD 2.73 billion
    Estimated Year [2024] USD 2.98 billion
    Forecast Year [2030] USD 5.19 billion
    CAGR (%) 9.63%

    Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Robotic Vision Market

    The Robotic Vision Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

    • Market Drivers
      • Growing demand for automatic quality inspection & control
      • Increasing deployment of 3D vision systems in industrial robotics
    • Market Restraints
      • High cost associated with the development, implementation, and maintenance
    • Market Opportunities
      • Government support for developing industrial automation
      • Collaborative efforts with end-users to increase production and product accessibility
    • Market Challenges
      • Functional constraints associated with the robotic vision system

    Porter's Five Forces: A Strategic Tool for Navigating the Robotic Vision Market

    Porter's five forces framework is a critical tool for understanding the competitive landscape of the Robotic Vision Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

    PESTLE Analysis: Navigating External Influences in the Robotic Vision Market

    External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Robotic Vision Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

    Market Share Analysis: Understanding the Competitive Landscape in the Robotic Vision Market

    A detailed market share analysis in the Robotic Vision Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

    FPNV Positioning Matrix: Evaluating Vendors' Performance in the Robotic Vision Market

    The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Robotic Vision Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

    Strategy Analysis & Recommendation: Charting a Path to Success in the Robotic Vision Market

    A strategic analysis of the Robotic Vision Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

    Key Company Profiles

    The report delves into recent significant developments in the Robotic Vision Market, highlighting leading vendors and their innovative profiles. These include Alphabet Inc., Basler AG, Cisco Systems, Inc., Cognex Corporation, FANUC Corporation, Intel Corporation, International Business Machines Corporation, Keyence Corporation, Microsoft Corporation, National Instruments Corporation, OMRON Corporation, Panasonic Holdings Corporation, Robert Bosch GmbH, Sick AG, and Yaskawa Electric Corporation.

    Market Segmentation & Coverage

    This research report categorizes the Robotic Vision Market to forecast the revenues and analyze trends in each of the following sub-markets:

    • Based on Component, market is studied across Hardware and Software. The Hardware is further studied across Cameras, Frame Grabbers, Lighting, Optics, and Processors & Controllers.
    • Based on Type, market is studied across 2D Vision Systems and 3D Vision Systems. The 3D Vision Systems is further studied across Laser, Single- & Multi-Camera Triangulation, Stereo Vision, Structured Light, and Time-of-Light.
    • Based on Application, market is studied across Assembling & Disassembling, Cutting, Pressing, & Grinding, Material Handling, Measurement, Inspection, & Testing, Packaging & Palletizing, Painting, and Welding & Soldering.
    • Based on Industry, market is studied across Automotive, Chemical, Electrical & Electronics, Food & Beverages, Metals & Machinery, Pharmaceuticals & Cosmetics, and Precision Engineering & Optics.
    • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

    The report offers a comprehensive analysis of the market, covering key focus areas:

    1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

    2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

    3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

    4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

    5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

    The report also answers critical questions to aid stakeholders in making informed decisions:

    1. What is the current market size, and what is the forecasted growth?

    2. Which products, segments, and regions offer the best investment opportunities?

    3. What are the key technology trends and regulatory influences shaping the market?

    4. How do leading vendors rank in terms of market share and competitive positioning?

    5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

    Table of Contents

    1. Preface

    • 1.1. Objectives of the Study
    • 1.2. Market Segmentation & Coverage
    • 1.3. Years Considered for the Study
    • 1.4. Currency & Pricing
    • 1.5. Language
    • 1.6. Stakeholders

    2. Research Methodology

    • 2.1. Define: Research Objective
    • 2.2. Determine: Research Design
    • 2.3. Prepare: Research Instrument
    • 2.4. Collect: Data Source
    • 2.5. Analyze: Data Interpretation
    • 2.6. Formulate: Data Verification
    • 2.7. Publish: Research Report
    • 2.8. Repeat: Report Update

    3. Executive Summary

    4. Market Overview

    5. Market Insights

    • 5.1. Market Dynamics
      • 5.1.1. Drivers
        • 5.1.1.1. Growing demand for automatic quality inspection & control
        • 5.1.1.2. Increasing deployment of 3D vision systems in industrial robotics
      • 5.1.2. Restraints
        • 5.1.2.1. High cost associated with the development, implementation, and maintenance
      • 5.1.3. Opportunities
        • 5.1.3.1. Government support for developing industrial automation
        • 5.1.3.2. Collaborative efforts with end-users to increase production and product accessibility
      • 5.1.4. Challenges
        • 5.1.4.1. Functional constraints associated with the robotic vision system
    • 5.2. Market Segmentation Analysis
    • 5.3. Porter's Five Forces Analysis
      • 5.3.1. Threat of New Entrants
      • 5.3.2. Threat of Substitutes
      • 5.3.3. Bargaining Power of Customers
      • 5.3.4. Bargaining Power of Suppliers
      • 5.3.5. Industry Rivalry
    • 5.4. PESTLE Analysis
      • 5.4.1. Political
      • 5.4.2. Economic
      • 5.4.3. Social
      • 5.4.4. Technological
      • 5.4.5. Legal
      • 5.4.6. Environmental

    6. Robotic Vision Market, by Component

    • 6.1. Introduction
    • 6.2. Hardware
      • 6.2.1. Cameras
      • 6.2.2. Frame Grabbers
      • 6.2.3. Lighting
      • 6.2.4. Optics
      • 6.2.5. Processors & Controllers
    • 6.3. Software

    7. Robotic Vision Market, by Type

    • 7.1. Introduction
    • 7.2. 2D Vision Systems
    • 7.3. 3D Vision Systems
      • 7.3.1. Laser
      • 7.3.2. Single- & Multi-Camera Triangulation
      • 7.3.3. Stereo Vision
      • 7.3.4. Structured Light
      • 7.3.5. Time-of-Light

    8. Robotic Vision Market, by Application

    • 8.1. Introduction
    • 8.2. Assembling & Disassembling
    • 8.3. Cutting, Pressing, & Grinding
    • 8.4. Material Handling
    • 8.5. Measurement, Inspection, & Testing
    • 8.6. Packaging & Palletizing
    • 8.7. Painting
    • 8.8. Welding & Soldering

    9. Robotic Vision Market, by Industry

    • 9.1. Introduction
    • 9.2. Automotive
    • 9.3. Chemical
    • 9.4. Electrical & Electronics
    • 9.5. Food & Beverages
    • 9.6. Metals & Machinery
    • 9.7. Pharmaceuticals & Cosmetics
    • 9.8. Precision Engineering & Optics

    10. Americas Robotic Vision Market

    • 10.1. Introduction
    • 10.2. Argentina
    • 10.3. Brazil
    • 10.4. Canada
    • 10.5. Mexico
    • 10.6. United States

    11. Asia-Pacific Robotic Vision Market

    • 11.1. Introduction
    • 11.2. Australia
    • 11.3. China
    • 11.4. India
    • 11.5. Indonesia
    • 11.6. Japan
    • 11.7. Malaysia
    • 11.8. Philippines
    • 11.9. Singapore
    • 11.10. South Korea
    • 11.11. Taiwan
    • 11.12. Thailand
    • 11.13. Vietnam

    12. Europe, Middle East & Africa Robotic Vision Market

    • 12.1. Introduction
    • 12.2. Denmark
    • 12.3. Egypt
    • 12.4. Finland
    • 12.5. France
    • 12.6. Germany
    • 12.7. Israel
    • 12.8. Italy
    • 12.9. Netherlands
    • 12.10. Nigeria
    • 12.11. Norway
    • 12.12. Poland
    • 12.13. Qatar
    • 12.14. Russia
    • 12.15. Saudi Arabia
    • 12.16. South Africa
    • 12.17. Spain
    • 12.18. Sweden
    • 12.19. Switzerland
    • 12.20. Turkey
    • 12.21. United Arab Emirates
    • 12.22. United Kingdom

    13. Competitive Landscape

    • 13.1. Market Share Analysis, 2023
    • 13.2. FPNV Positioning Matrix, 2023
    • 13.3. Competitive Scenario Analysis
      • 13.3.1. CapSen Robotics Launches Robotic Bin Picking With 3D Vision
      • 13.3.2. Two Hitachi Group Companies to Merge to Expand Robotic SI Business in Japan and ASEAN Countries
      • 13.3.3. Ganymed Robotics Raises Additional Euro 15 Million through Series B Extension Bringing Total Amount to Euro 36 Million
      • 13.3.4. Robotic Vision Platform Luxonis Announces its First Open Source Personal Robot, rae
    • 13.4. Strategy Analysis & Recommendation

    Companies Mentioned

    • 1. Alphabet Inc.
    • 2. Basler AG
    • 3. Cisco Systems, Inc.
    • 4. Cognex Corporation
    • 5. FANUC Corporation
    • 6. Intel Corporation
    • 7. International Business Machines Corporation
    • 8. Keyence Corporation
    • 9. Microsoft Corporation
    • 10. National Instruments Corporation
    • 11. OMRON Corporation
    • 12. Panasonic Holdings Corporation
    • 13. Robert Bosch GmbH
    • 14. Sick AG
    • 15. Yaskawa Electric Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦