½ÃÀ庸°í¼­
»óǰÄÚµå
1602226

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : À¯Çüº°, ¼¼Æ÷ÁÖº°, Æ®·£½ºÆå¼Çº°, ÀûÀÀÁõº°, ¿öÅ©Ç÷ο캰, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Viral Vector & Plasmid DNA Manufacturing Market by Type (Plasmid DNA, Viral Vector), Cell Line (In-vitro, In-Vivo), Transfection, Indication, Workflow, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº 2023³â¿¡ 15¾ï ´Þ·¯·Î Æò°¡µÇ¸ç, 2024³â¿¡´Â 18¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, CAGR 25.34%·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 73¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ºÎ¹®Àº À¯ÀüÀÚ Ä¡·áÁ¦, ¹é½Å, ¼¼Æ÷Ä¡·áÁ¦ ¼ö¿ä Áõ°¡¿¡ ÈûÀÔ¾î ¹ÙÀÌ¿ÀÀǾàǰ¿¡¼­ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß¿¡´Â À¯Àü ¹°ÁúÀ» ¼¼Æ÷ ³»·Î Àü´ÞÇϱâ À§ÇÑ ÅøÀÎ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í À¯ÀüÀÚ Ä¡·á ¹× DNA ¹é½Å Á¦Á¶¸¦ À§ÇÑ ÅÛÇø´ÀÎ Çö󽺹̵å DNAÀÇ Á¦Á¶°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ Á¦Á¶´Â ÃÖ±Ù À¯Àü¼º Áúȯ ¹× ¾Ï Ä¡·á Áõ°¡, ƯÈ÷ COVID-19¸¦ °è±â·Î ¹é½Å °³¹ß¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ÇʼöÀûÀÎ ºÐ¾ß·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¿ëµµ´Â À¯ÀüÀÚ Ä¡·á, ¹é½Å °³¹ß, ½ÉÁö¾î ³ó¾÷ »ý¸í°øÇÐ °­È­¿¡ À̸£±â±îÁö ´Ù¾çÇÕ´Ï´Ù. ÀÌ ºÐ¾ß´Â »ý¸í°øÇÐ ±â¾÷, ¿¬±¸±â°ü, Á¦¾àȸ»ç µî ÃÖÁ¾»ç¿ëÀÚ¸¦ ÁßÁ¡ÀûÀ¸·Î Áö¿øÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¿äÀÎÀ¸·Î´Â À¯Àü°øÇÐ ±â¼úÀÇ ¹ßÀü, »ý¸í°øÇÐ ¿¬±¸¿¡ ´ëÇÑ ÀÚ±Ý Áö¿ø Áõ°¡, Çõ½ÅÀûÀÎ Ä¡·á¹ýÀÇ ½Å¼ÓÇÑ µµÀÔÀ» ÃËÁøÇÏ´Â ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ µîÀÌ ÀÖ½À´Ï´Ù. ƯÈ÷ ¸ÂÃãÇü ÀÇ·á ºÐ¾ß´Â È®Àå °¡´ÉÇÑ Á¦Á¶ °øÁ¤°ú »ý¸í°øÇÐ ±â¾÷°ú ¼öŹÁ¦Á¶¾÷ü(CMO)ÀÇ Çù¾÷¿¡ ÀÖÀ¸¸ç, ¸¹Àº ±âȸ°¡ ÀÖ½À´Ï´Ù. ±×·¯³ª ³ôÀº Á¦Á¶ ºñ¿ë, ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, ´ë±Ô¸ð À¯ÀüÀÚÄ¡·áÁ¦ Á¦Á¶ÀÇ º¹À⼺ µîÀÌ °úÁ¦·Î ³²¾ÆÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯ÀüÀÚ ÀçÁ¶ÇÕÀ» µÑ·¯½Ñ ÀáÀçÀû ¾ÈÀü¼º ¿ì·Á¿Í À±¸®Àû °í·Á»çÇ×µµ ÇѰè·Î ÀÛ¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµÀü¿¡µµ ºÒ±¸ÇÏ°í Æ¯È÷ ºñ¿ë Àý°¨°ú È¿À²¼º Çâ»óÀ» À§ÇÑ °øÁ¤ ÃÖÀûÈ­ ¹× ÀÚµ¿È­ ºÐ¾ß¿¡¼­ ±â¼ú Çõ½Å¿¡ À¯¸®ÇÑ ºÐ¾ß°¡ ÀÖÀ¸¸ç, CRISPR ±â¼ú°ú Â÷¼¼´ë ½ÃÄö½Ì¿¡ ´ëÇÑ ÅõÀÚ´Â À¯ÀüÀÚ Ä¡·á¿¡¼­ ´Þ¼ºÇÒ ¼ö ÀÖ´Â °ÍÀÇ ÇѰ踦 ³ÐÈú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÅºÅºÇÑ °ø±Þ¸Á ÇÁ·¹ÀÓ¿öÅ©¸¦ ±¸ÃàÇÏ¸é »ý»ê º´¸ñÇö»óÀ» Å©°Ô ¿ÏÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú ±ÔÁ¦ ȯ°æÀ¸·Î Ư¡Áö¾îÁö´Â ½ÃÀåÀÇ ¿ªµ¿ÀûÀΠƯ¼ºÀº ÃÖ÷´Ü Ä¡·á¹ýÀ» Ȱ¿ëÇϰíÀÚ ÇÏ´Â ÀÌÇØ°ü°èÀڵ鿡°Ô µµÀü°ú µ¿½Ã¿¡ ±âȸÀ̱⵵ ÇÕ´Ï´Ù. ºü¸£°Ô ÁøÈ­ÇÏ´Â ÀÌ »ê¾÷¿¡¼­ Áö¼ÓÀûÀÎ ¼ºÀå°ú ¿µÇâ·Â ÀÖ´Â Çõ½ÅÀ» ÀÌ·ç±â À§Çؼ­´Â º¹ÀâÇÑ ±ÔÁ¦ ȯ°æÀ» Àß ÇìÃijª°¡¸é¼­ Ã¥ÀÓ°¨ ÀÖ°Ô Çõ½ÅÀ» ¼ö¿ëÇÏ´Â °ÍÀÌ °ü°ÇÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ[2023] 15¾ï ´Þ·¯
¿¹Ãø³â[2024] 18¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø³â[2030] 73¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 25.34%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤, Àü·«Àû ÀÇ»ç°áÁ¤, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¿ªÀû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ¿ÏÈ­Çϰí, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Àü ¼¼°è À¯ÀüÀÚ Ä¡·á ÀÓ»ó½ÃÇè Áõ°¡
    • ºÐÀÚ»ý¹°ÇÐ ±â¼úÀÇ ¹ßÀü
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA ¿ë¾×ÀÇ ³ôÀº »ý»ê ºñ¿ë
  • ½ÃÀå ±âȸ
    • ½Å±Ô ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA ¼Ö·ç¼ÇÀÇ µµÀÔ Áõ°¡
    • ¸ÂÃãÇü ÀÇ·á¿¡ ´ëÇÑ ÅõÀÚ È®´ë
  • ½ÃÀå °úÁ¦
    • À¯ÀüÀÚ Ä¡·á Á¦Ç°ÀÇ ¾ÈÀü¼º°ú È¿´É¿¡ ´ëÇÑ ¿ì·Á

Porter's Five Forces: ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå °ø·«À» À§ÇÑ Àü·« Åø

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. PorterÀÇ Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®À» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇϰí, º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¸ÅÃâ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÀλçÀÌÆ®À» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ¹ÙÀÌ·¯½º º¤ÅÍ Çö󽺹̵å DNA »ý»ê ½ÃÀå¿¡¼­ÀÇ ¾÷ü ½ÇÀû Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå¿¡¼­ °ø±Þ¾÷ü¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ ÅøÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀº º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ±¸ºÐÇÏ¿© »ç¿ëÀÚ°¡ Àü·«Àû ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ½Äº°ÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ºÐ¼®À» Á¦°øÇÕ´Ï´Ù. :

1. ½ÃÀå ħÅõµµ : ¾÷°è ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅ͸¦ Æ÷ÇÔÇÑ ÇöÀç ½ÃÀå ȯ°æ¿¡ ´ëÇÑ »ó¼¼ÇÑ °ËÅä.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù. :

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÔ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : À¯Çüº°

  • Çö󽺹̵å DNA
  • ¹ÙÀÌ·¯½º º¤ÅÍ
    • ¾Æµ¥³ë¼ö¹Ý ¹ÙÀÌ·¯½º
    • ¾Æµ¥³ë¹ÙÀÌ·¯½º
    • ·»Æ¼¹ÙÀÌ·¯½º

Á¦7Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¼¼Æ÷ÁÖº°

  • ½ÃÇè°ü³»
  • »ýü³»

Á¦8Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : Æ®·£½ºÆå¼Çº°

  • ¾ÈÁ¤µÈ Æ®·£½ºÆå¼Ç
  • Àϰú¼º Æ®·£½ºÆå¼Ç

Á¦9Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ÀûÀÀÁõº°

  • ¾Ï
  • À¯Àü¼º Áúȯ
  • °¨¿°Áõ

Á¦10Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¿öÅ©Ç÷ο캰

  • ´Ù¿î½ºÆ®¸² ó¸®
    • ÃæÀü ¸¶°¨
    • Á¤Á¦
  • ¾÷½ºÆ®¸² ó¸®
    • º¤ÅÍ ÁõÆø°ú È®Àå
    • º¤ÅÍ È¸¼ö/¼öÈ®

Á¦11Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¿ëµµº°

  • ¼¼Æ÷Ä¡·á
  • À¯ÀüÀÚ Ä¡·á
  • ¹é½ÅÇÐ

Á¦12Àå ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¦¾à¡¤¹ÙÀÌ¿ÀÀǾàǰ ±â¾÷
  • Á¶»ç±â°ü

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦14Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ¡¤Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • ¿µ±¹

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®

±â¾÷ ¸®½ºÆ®

  • Charles River Laboratories International, Inc.
  • GE HealthCare Technologies, Inc.
  • Biovian Oy
  • c-LEcta GmbH
  • Batavia Biosciences B.V.
  • Thermo Fisher Scientific Inc.
  • Takara Bio Inc.
  • Avid Bioservices, Inc.
  • Wuxi AppTec Co., Ltd.
  • PerkinElmer Inc.
  • REGENXBIO Inc.
  • Lonza Group Ltd.
  • Advanced BioScience Laboratories, Inc.
  • Miltenyi Biotec B.V. & Co. KG
  • Genezen Laboratories, Inc.
  • FILTROX AG
  • Genezen
  • Merck KGaA
  • Akron Biotech
  • uniQure N.V.
  • Kaneka Eurogentec S.A.
  • BioNTech IMFS GmbH
  • Creative Biogene
  • Forge Biologics By Ajinomoto Co., Inc.
  • Spark Therapeutics, Inc.
  • FUJIFILM Diosynth Biotechnologies Inc.
  • GeneOne Life Science, Inc.
KSA 24.12.10

The Viral Vector & Plasmid DNA Manufacturing Market was valued at USD 1.50 billion in 2023, expected to reach USD 1.88 billion in 2024, and is projected to grow at a CAGR of 25.34%, to USD 7.32 billion by 2030.

The viral vector and plasmid DNA manufacturing sector plays a pivotal role in biopharmaceuticals, driven by the increasing demand for gene therapies, vaccines, and cell therapies. It encompasses the production of viral vectors, which are tools for delivering genetic material into cells, and plasmid DNA, which serves as a template for gene therapy and DNA vaccine production. Such manufacturing is essential due to the rise in genetic disorders, cancer therapies, and the recent spotlight on vaccine development, particularly in the wake of COVID-19. Applications span across gene therapy, vaccine development, and even in enhancing agricultural biotechnologies. The sector prominently supports end-users such as biotech companies, research institutes, and pharmaceutical firms. Key factors influencing market growth include advancements in genetic engineering techniques, increased funding for biotech research, and regulatory approvals facilitating the faster introduction of innovative therapies. Opportunities abound in scalable manufacturing processes and collaboration between biotech companies and Contract Manufacturing Organizations (CMOs), especially for personalized medicine. Challenges include high production costs, stringent regulatory frameworks, and complexity in large-scale gene therapy production. Limitations also arise from potential safety concerns and ethical considerations surrounding genetic modifications. Despite these challenges, there are lucrative areas for innovation, notably in process optimization and automation to reduce costs and improve efficiency. Investment in CRISPR technology and next-gen sequencing can also push the boundary of what's achievable in genetic therapy. Moreover, developing robust supply chain frameworks can significantly alleviate production bottlenecks. The market's dynamic nature, characterized by rapid technological advancements and regulatory environments, presents both a challenge and an opportunity for stakeholders looking to leverage cutting-edge therapies. Embracing these innovations responsibly while navigating the intricate regulatory landscape will be key for sustained growth and impactful breakthroughs in this rapidly evolving industry.

KEY MARKET STATISTICS
Base Year [2023] USD 1.50 billion
Estimated Year [2024] USD 1.88 billion
Forecast Year [2030] USD 7.32 billion
CAGR (%) 25.34%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Viral Vector & Plasmid DNA Manufacturing Market

The Viral Vector & Plasmid DNA Manufacturing Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing number of gene therapy clinical trials worldwide
    • Growing advancement in molecular biology technologies
  • Market Restraints
    • High cost of manufacturing of viral vector & plasmid DNA solutions
  • Market Opportunities
    • Growing introduction of novel viral vector & plasmid DNA solutions
    • Rising investment in personalized medicine
  • Market Challenges
    • Concerns regarding the safety and efficacy of gene therapy products

Porter's Five Forces: A Strategic Tool for Navigating the Viral Vector & Plasmid DNA Manufacturing Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Viral Vector & Plasmid DNA Manufacturing Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Viral Vector & Plasmid DNA Manufacturing Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Viral Vector & Plasmid DNA Manufacturing Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Viral Vector & Plasmid DNA Manufacturing Market

A detailed market share analysis in the Viral Vector & Plasmid DNA Manufacturing Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Viral Vector & Plasmid DNA Manufacturing Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Viral Vector & Plasmid DNA Manufacturing Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Key Company Profiles

The report delves into recent significant developments in the Viral Vector & Plasmid DNA Manufacturing Market, highlighting leading vendors and their innovative profiles. These include Charles River Laboratories International, Inc., GE HealthCare Technologies, Inc., Biovian Oy, c-LEcta GmbH, Batavia Biosciences B.V., Thermo Fisher Scientific Inc., Takara Bio Inc., Avid Bioservices, Inc., Wuxi AppTec Co., Ltd., PerkinElmer Inc., REGENXBIO Inc., Lonza Group Ltd., Advanced BioScience Laboratories, Inc., Miltenyi Biotec B.V. & Co. KG, Genezen Laboratories, Inc., FILTROX AG, Genezen, Merck KGaA, Akron Biotech, uniQure N.V., Kaneka Eurogentec S.A., BioNTech IMFS GmbH, Creative Biogene, Forge Biologics By Ajinomoto Co., Inc., Spark Therapeutics, Inc., FUJIFILM Diosynth Biotechnologies Inc., and GeneOne Life Science, Inc..

Market Segmentation & Coverage

This research report categorizes the Viral Vector & Plasmid DNA Manufacturing Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Plasmid DNA and Viral Vector. The Viral Vector is further studied across Adeno-Associated Virus, Adenovirus, and Lentivirus.
  • Based on Cell Line, market is studied across In-vitro and In-Vivo.
  • Based on Transfection, market is studied across Stable Transfection and Transient Transfection.
  • Based on Indication, market is studied across Cancer, Genetic Disorder, and Infectious Disease.
  • Based on Workflow, market is studied across Downstream Processing and Upstream Processing. The Downstream Processing is further studied across Fill-finish and Purification. The Upstream Processing is further studied across Vector Amplification & Expansion and Vector Recovery/Harvesting.
  • Based on Application, market is studied across Cell Therapy, Gene Therapy, and Vaccinology.
  • Based on End User, market is studied across Pharmaceutical & Biopharmaceutical Companies and Research Institutes.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing number of gene therapy clinical trials worldwide
      • 5.1.1.2. Growing advancement in molecular biology technologies
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of manufacturing of viral vector & plasmid DNA solutions
    • 5.1.3. Opportunities
      • 5.1.3.1. Growing introduction of novel viral vector & plasmid DNA solutions
      • 5.1.3.2. Rising investment in personalized medicine
    • 5.1.4. Challenges
      • 5.1.4.1. Concerns regarding the safety and efficacy of gene therapy products
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Cell Line: Growing usage of in-vitro cell lines in controlled laboratory environments
    • 5.2.2. Type: Increasing need for plasmid DNA manufacturing to deliver genetic material into cells
    • 5.2.3. Transfection: Rising popularity of stable transfection for gene therapy and drug development
    • 5.2.4. End User: Expanding the potential of viral vectors & plasmid DNA across pharmaceutical & biopharmaceutical companies for the development and production of next-generation vaccines
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental
  • 5.5. Client Customization

6. Viral Vector & Plasmid DNA Manufacturing Market, by Type

  • 6.1. Introduction
  • 6.2. Plasmid DNA
  • 6.3. Viral Vector
    • 6.3.1. Adeno-Associated Virus
    • 6.3.2. Adenovirus
    • 6.3.3. Lentivirus

7. Viral Vector & Plasmid DNA Manufacturing Market, by Cell Line

  • 7.1. Introduction
  • 7.2. In-vitro
  • 7.3. In-Vivo

8. Viral Vector & Plasmid DNA Manufacturing Market, by Transfection

  • 8.1. Introduction
  • 8.2. Stable Transfection
  • 8.3. Transient Transfection

9. Viral Vector & Plasmid DNA Manufacturing Market, by Indication

  • 9.1. Introduction
  • 9.2. Cancer
  • 9.3. Genetic Disorder
  • 9.4. Infectious Disease

10. Viral Vector & Plasmid DNA Manufacturing Market, by Workflow

  • 10.1. Introduction
  • 10.2. Downstream Processing
    • 10.2.1. Fill-finish
    • 10.2.2. Purification
  • 10.3. Upstream Processing
    • 10.3.1. Vector Amplification & Expansion
    • 10.3.2. Vector Recovery/Harvesting

11. Viral Vector & Plasmid DNA Manufacturing Market, by Application

  • 11.1. Introduction
  • 11.2. Cell Therapy
  • 11.3. Gene Therapy
  • 11.4. Vaccinology

12. Viral Vector & Plasmid DNA Manufacturing Market, by End User

  • 12.1. Introduction
  • 12.2. Pharmaceutical & Biopharmaceutical Companies
  • 12.3. Research Institutes

13. Americas Viral Vector & Plasmid DNA Manufacturing Market

  • 13.1. Introduction
  • 13.2. Argentina
  • 13.3. Brazil
  • 13.4. Canada
  • 13.5. Mexico
  • 13.6. United States

14. Asia-Pacific Viral Vector & Plasmid DNA Manufacturing Market

  • 14.1. Introduction
  • 14.2. Australia
  • 14.3. China
  • 14.4. India
  • 14.5. Indonesia
  • 14.6. Japan
  • 14.7. Malaysia
  • 14.8. Philippines
  • 14.9. Singapore
  • 14.10. South Korea
  • 14.11. Taiwan
  • 14.12. Thailand
  • 14.13. Vietnam

15. Europe, Middle East & Africa Viral Vector & Plasmid DNA Manufacturing Market

  • 15.1. Introduction
  • 15.2. Denmark
  • 15.3. Egypt
  • 15.4. Finland
  • 15.5. France
  • 15.6. Germany
  • 15.7. Israel
  • 15.8. Italy
  • 15.9. Netherlands
  • 15.10. Nigeria
  • 15.11. Norway
  • 15.12. Poland
  • 15.13. Qatar
  • 15.14. Russia
  • 15.15. Saudi Arabia
  • 15.16. South Africa
  • 15.17. Spain
  • 15.18. Sweden
  • 15.19. Switzerland
  • 15.20. Turkey
  • 15.21. United Arab Emirates
  • 15.22. United Kingdom

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2023
  • 16.2. FPNV Positioning Matrix, 2023
  • 16.3. Competitive Scenario Analysis
    • 16.3.1. Ajinomoto Co., Inc. to Acquire Forge Biologics for USD 620 Million
    • 16.3.2. Genezen Secures USD 18.5 Million in Growth Equity to Expand Viral Vector Development and Manufacturing Capabilities
    • 16.3.3. CCRM Partners with Membio to Streamline Production of Viral Vectors for Cell and Gene Therapies

Companies Mentioned

  • 1. Charles River Laboratories International, Inc.
  • 2. GE HealthCare Technologies, Inc.
  • 3. Biovian Oy
  • 4. c-LEcta GmbH
  • 5. Batavia Biosciences B.V.
  • 6. Thermo Fisher Scientific Inc.
  • 7. Takara Bio Inc.
  • 8. Avid Bioservices, Inc.
  • 9. Wuxi AppTec Co., Ltd.
  • 10. PerkinElmer Inc.
  • 11. REGENXBIO Inc.
  • 12. Lonza Group Ltd.
  • 13. Advanced BioScience Laboratories, Inc.
  • 14. Miltenyi Biotec B.V. & Co. KG
  • 15. Genezen Laboratories, Inc.
  • 16. FILTROX AG
  • 17. Genezen
  • 18. Merck KGaA
  • 19. Akron Biotech
  • 20. uniQure N.V.
  • 21. Kaneka Eurogentec S.A.
  • 22. BioNTech IMFS GmbH
  • 23. Creative Biogene
  • 24. Forge Biologics By Ajinomoto Co., Inc.
  • 25. Spark Therapeutics, Inc.
  • 26. FUJIFILM Diosynth Biotechnologies Inc.
  • 27. GeneOne Life Science, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦