½ÃÀ庸°í¼­
»óǰÄÚµå
1602362

¼¼°èÀÇ À½ÇâÆÄ ¼¾¼­ ½ÃÀå : Á¦Ç° À¯Çüº°, µð¹ÙÀ̽ºº°, ¼¾½Ì ÆÄ¶ó¹ÌÅͺ°, »ê¾÷º° - ¿¹Ãø(2025-2030³â)

Acoustic Wave Sensors Market by Product Type (Baw Sensors, Saw Sensors), Device (Delay Lines, Resonators), Sensing Parameter, Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 197 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀº 2023³â¿¡ 6¾ï 4,136¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 7¾ï 4,326¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 16.28%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 18¾ï 4,432¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À½ÇâÆÄ ¼¾¼­(AWS)´Â ÁÖ·Î À½ÇâÆÄÀÇ ÀüÆÄ¸¦ ÅëÇØ ¾Ð·Â, ¿Âµµ, Áú·® µîÀÇ ¹°¸® Çö»óÀÇ º¯È­¸¦ °ËÃâÇϱâ À§ÇØ ÀÌ¿ëµÇ´Â Ư¼öÇÑ ÀåÄ¡ÀÔ´Ï´Ù. ½Ç½Ã°£À¸·Î ¹«¼± ¼¾½ÌÀÌ °¡´ÉÇϰí, ¼Òºñ Àü·Âµµ ÃÖ¼ÒÇÑÀ¸·Î ¾ïÁ¦ÇÒ ¼ö Àֱ⠶§¹®¿¡, ±× ¿ëµµ´Â ´Ù¹æ¸é¿¡ °ÉÃÄ ÀÖ½À´Ï´Ù. ƯÈ÷ »ý¹°ÇÐÀû ¿ä¼Ò¸¦ ¸ð´ÏÅ͸µÇÏ´Â ÇコÄÉ¾î »ê¾÷, ŸÀ̾îÀÇ °ø¾Ð ¸ð´ÏÅ͸µ ½Ã½ºÅÛ µîÀÇ ÀÚµ¿Â÷ »ê¾÷, º¸¾È ¿ëµµ¸¦ À§ÇÑ ¹æÀ§ »ê¾÷ µî Á¤È®µµ¿Í Á¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ȯ°æ¿¡¼­´Â ÇʼöÀûÀÔ´Ï´Ù. AWS´Â ȯ°æ ¸ð´ÏÅ͸µ, »ê¾÷ ÀÚµ¿È­, ¹Î»ý¿ë ÀüÀÚ±â±â¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, ÃÖ÷´Ü ¼¾½Ì ¼Ö·ç¼ÇÀ» ÇÊ¿ä·Î ÇÏ´Â ºÐ¾ß¿¡¼­ ¸Å¿ì Áß¿äÇÑ Á¸Àç°¡ µÇ°í ÀÖ½À´Ï´Ù. À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀÇ ¼ºÀåÀº ½º¸¶Æ® µð¹ÙÀ̽º ¼ö¿ä Áõ°¡, »ç¹°ÀÎÅͳÝ(IoT)ÀÇ º¸±Þ, »ê¾÷ ÇÁ·Î¼¼½ºÀÇ ¾ÈÀü¼º, È¿À²¼º, Á¤È®¼º¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡¿¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù. AWS¿Í IoT ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀ¸·Î ¿øÈ°ÇÑ µ¥ÀÌÅÍ ¼öÁý°ú ºÐ¼®ÀÌ ÃËÁøµÅ °æÀï»ó Å« ¿ìÀ§¸¦ Á¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷¿¡ À־ AWSÀÇ ¼ÒÇüÈ­¿Í ºñ¿ë ´ëºñ È¿°ú¸¦ ³ôÀ̱â À§ÇÑ ¿¬±¸¿¡ ´ëÇÑ ÅõÀÚ´Â ±× °¨µµ¿Í ¹üÀ§¸¦ Çâ»ó½ÃŰ¸é¼­ À¯¸®ÇÑ ±æÀ» Á¦½ÃÇÕ´Ï´Ù. ±×·¯³ª, ½ÃÀåÀÇ È®´ë´Â, °³¹ßÀÇ º¹ÀâÇÔ, ³ôÀº Á¦Á¶ ºñ¿ë, RFID³ª ¹Ì¼Ò Àü±â ±â°è ½Ã½ºÅÛ(MEMS)°ú °°Àº ´ëü ±â¼ú°úÀÇ °æÇÕÀ̶ó°í ÇÏ´Â °úÁ¦¿¡ ÀÇÇØ¼­ ¹æÇعްí ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­ ¹®Á¦µµ ¼¼°è º¸±ÞÀÇ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀÇ ±âȸ´Â ¿ø°ÝÀÇ·á¿Í ¼±Áø ÀÚµ¿Â÷ ½Ã½ºÅÛ µî ½ÅÈï ºÐ¾ßÀÇ AWS ¿ª·® È®´ë¿¡ ÀÖ½À´Ï´Ù. ÇÏÀ̺긮µå ½Ã½ºÅÛÀ» Áß½ÃÇÏ°í º¸´Ù ¶Ù¾î³­ ¼º´É°ú ½Å·Ú¼ºÀ» ½ÇÇöÇϱâ À§ÇÑ ½Å¼ÒÀ縦 ޱ¸ÇÏ´Â °ÍÀº Å« ÀÌÀÍÀ» °¡Á®¿Ã °¡´É¼ºÀÌ ÀÖ½À´Ï´Ù. AWS ½ÃÀåÀÇ ¼º°ÝÀº ¿ªµ¿ÀûÀÌ°í ±Þ¼ÓÇÑ ±â¼ú Áøº¸¿Í ½ÃÀå °æÀïÀ» Ư¡À¸·Î Çϱ⠶§¹®¿¡ ±â¾÷µéÀº ½ÃÀå ÀáÀç·ÂÀ» È¿°úÀûÀ¸·Î Ȱ¿ëÇϱâ À§ÇØ ±â¼ú µ¿Çâ°ú ±ÔÁ¦ °³Ã´À» ÁÖÀÇ ±í°Ô ¸ð´ÏÅ͸µÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 6¾ï 4,136¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 7¾ï 4,326¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 18¾ï 4,432¸¸ ´Þ·¯
CAGR(%) 16.28%

½ÃÀå ¿ªÇÐ : ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ ÁøÈ­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÅõÀÚ°áÁ¤, Àü·«Àû °áÁ¤ Á¤¹ÐÈ­, »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Ç¥¸é ź¼ºÆÄ ±â¹Ý ¿Âµµ ¼¾¼­¿¡ ´ëÇÑ »ê¾÷¿ë ÃÖÁ¾ »ç¿ëÀÚ ¼ö¿ä
    • »ê¾÷ °ø°£ÀÇ º¸¾È°ú °¨½Ã¿¡ ´ëÇÑ °ü½É Áõ°¡
    • Àü·Â ±â±âÀÇ Á¦Á¶¿¡¼­ À½ÇâÆÄ ¼¾¼­¿¡ÀÇ Å« ¼ö¿ä
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • °¨µµÀÇ ÀúÇÏ¿Í È£È¯¼º¿¡ °ü·ÃµÈ Á¶ÀÛ»ó ¹× ±â¼ú»óÀÇ ¹®Á¦
  • ½ÃÀå ±âȸ
    • ÀÚµ¿Â÷ ¹× ¿î¼Û ºÐ¾ßÀÇ »õ·Î¿î ¼ö¿ä
    • À½ÇâÆÄ ¼¾¼­ÀÇ Áö¼ÓÀûÀÎ Áøº¸
  • ½ÃÀåÀÇ °úÁ¦
    • ºñ¿ë È¿À²ÀûÀÎ ´ëüǰÀÇ ÀÌ¿ë °¡´É¼º

Porter's Five Forces : À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â À½ÇâÆÄ ¼¾¼­ ½ÃÀå °æÀï ±¸µµ¸¦ ÀÌÇØÇϱâ À§ÇÑ Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Porter's Five Forces ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ ޱ¸ÇÏ´Â ¸íÈ®ÇÑ ±â¼úÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» °áÁ¤ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ ±â¾÷Àº ÀÚ»çÀÇ °­Á¡À» Ȱ¿ëÇϰí, ¾àÁ¡À» ÇØ°áÇϰí, ÀáÀçÀûÀÎ °úÁ¦¸¦ ÇÇÇÒ ¼ö ÀÖÀ¸¸ç, º¸´Ù °­ÀÎÇÑ ½ÃÀå¿¡¼­ÀÇ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : À½ÇâÆÄ ¼¾¼­ ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀÎ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¾ÕÀ¸·Î ¿¹»óµÇ´Â Àû±ØÀûÀÎ ÀÇ»ç °áÁ¤À» ÇÒ Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : À½ÇâÆÄ ¼¾¼­ ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü µî ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀï Æ÷Áö¼Å´×À» ¹àÈú ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®À» ÅëÇØ ½ÃÀå ÁýÁß, ´ÜÆíÈ­, ÅëÇÕ µ¿ÇâÀ» ¹àÇô³»°í º¥´õµéÀº °æÀïÀÌ Ä¡¿­ÇØÁö´Â °¡¿îµ¥ ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : À½ÇâÆÄ ¼¾¼­ ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â À½ÇâÆÄ ¼¾¼­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÞÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº °ø±Þ¾÷üÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±âÁØÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ °ø±Þ¾÷ü¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÎ¹®È­Çϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·« ºÐ¼® ¹× Ãßõ : À½ÇâÆÄ ¼¾¼­ ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸®±â

À½ÇâÆÄ ¼¾¼­ ½ÃÀåÀÇ Àü·« ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í °³¼±À» À§ÇØ ³ë·ÂÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ üÁ¦¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·ÂÀ» Æò°¡ÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´µµ : ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇÏ°í ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡ÇÏ¸ç ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, ¿¬±¸°³¹ß Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð ¹× ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À² ¹× °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Ç¥¸é ź¼ºÆÄ ¿Âµµ ¼¾¼­¿¡ ´ëÇÑ »ê¾÷ ÃÖÁ¾ »ç¿ëÀڷκÎÅÍ ¼ö¿ä
      • »ê¾÷°ø°£ÀÇ º¸¾È°ú °¨½Ã¿¡ ´ëÇÑ ¿ì·Á Áõ°¡
      • Àü·Â ±â±â Á¦Á¶¿¡¼­ À½ÇâÆÄ ¼¾¼­ ¼ö¿ä°¡ ±ÞÁõ
    • ¾ïÁ¦¿äÀÎ
      • °¨µµ¿Í ȣȯ¼º ÀúÇÏ¿Í °ü·ÃµÈ ¿î¿µ ¹× ±â¼úÀû ¹®Á¦
    • ±âȸ
      • ÀÚµ¿Â÷ ¹× ¿î¼Û ºÎ¹®À¸·ÎºÎÅÍÀÇ »õ·Î¿î ¼ö¿ä
      • À½ÇâÆÄ ¼¾¼­ÀÇ Áö¼ÓÀûÀÎ Áøº¸
    • °úÁ¦
      • ºñ¿ë È¿À²ÀûÀÎ ´ëüǰÀÇ ÀÌ¿ë °¡´É¼º
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå À½ÇâÆÄ ¼¾¼­ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Baw ¼¾¼­
    • SH-APM ¼¾¼­
    • TSM ¼¾¼­
  • Åé ¼¾¼­
    • FPW ¼¾¼­
    • ·¹Àϸ® Ç¥¸éÆÄ ¼¾¼­
    • Sh-Saw ¼¾¼­

Á¦7Àå À½ÇâÆÄ ¼¾¼­ ½ÃÀå : µð¹ÙÀ̽ºº°

  • Áö¿¬ ¶óÀÎ
  • °øÁø±â

Á¦8Àå À½ÇâÆÄ ¼¾¼­ ½ÃÀå : ¼¾½Ì ÆÄ¶ó¹ÌÅͺ°

  • È­ÇÐ Áõ±â ¹× °¡½º
  • ½Àµµ
  • Áú·®
  • ¾Ð·Â
  • ¿Âµµ
  • ÅäÅ©
  • Á¡µµ

Á¦9Àå À½ÇâÆÄ ¼¾¼­ ½ÃÀå : ¾÷°èº°

  • ÀÚµ¿Â÷
  • ȯ°æ
  • ½Äǰ ¹× À½·á
  • ÇコÄɾî
  • »ê¾÷
  • ±º

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ À½ÇâÆÄ ¼¾¼­ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ À½ÇâÆÄ ¼¾¼­ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ À½ÇâÆÄ ¼¾¼­ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼® ¹× Á¦¾È

±â¾÷ ¸ñ·Ï

  • Abracon LLC
  • ALTANOVA GROUP
  • Althen Gmbh
  • Boston Piezo-Optics Inc.
  • CeramTec GmbH
  • Christian Burkert GmbH & Co. KG
  • Columbia Research Laboratories, Inc.
  • COMSOL AB
  • CTS Corporation
  • Dytran Instruments Inc
  • Electronic Sensor Technology Inc.
  • Endress Hauser Flow AG
  • General Electric Company
  • H. Heinz MeBwiderstande Gmbh
  • Hawk Measurement Systems
  • Honeywell International Inc.
  • KYOCERA AVX Components Corporation
  • Microchip Technology Inc.
  • Murata Manufacturing Co., Ltd.
  • NanoTemper Technologies
  • Northrop Grumman Corporation
  • Panasonic Holdings Corporation
  • Precision Acoustics Ltd
  • Pro-micron GmbH
  • RF SAW Inc.
  • Sensor Technology Ltd.
  • Siemens AG
  • STMicroelectronics NV
  • Transense Technologies PLC
  • Vectron International, Inc.
AJY 24.12.10

The Acoustic Wave Sensors Market was valued at USD 641.36 million in 2023, expected to reach USD 743.26 million in 2024, and is projected to grow at a CAGR of 16.28%, to USD 1,844.32 million by 2030.

Acoustic Wave Sensors (AWS) are specialized devices utilized primarily for detecting changes in physical phenomena such as pressure, temperature, or mass through acoustic wave propagation. Their scope has expanded across numerous applications due to their unique ability to provide real-time, wireless sensing and minimal power consumption. They are essential in environments where precision and accuracy are imperative, notably in industries like healthcare for monitoring biological elements, in automotive industries for tire pressure monitoring systems, and in defense for security applications. AWS plays a crucial role in environmental monitoring, industrial automation, and consumer electronics, making them pivotal in sectors demanding cutting-edge sensing solutions. Growth in the acoustic wave sensor market is fueled by the rising demand for smart devices, proliferation of the Internet of Things (IoT), and increasing focus on safety, efficiency, and accuracy within industrial processes. Opportunities abound in the integration of AWS with IoT systems, promoting seamless data collection and analytics which offer significant competitive advantages. For businesses, investing in research to enhance the miniaturization and cost-effectiveness of AWS, while improving their sensitivity and range, presents lucrative pathways. However, market expansion is hampered by challenges such as development complexity, high production costs, and competition from alternative technologies like RFID and microelectromechanical systems (MEMS). Standardization issues also pose a barrier to global adoption. Innovation opportunities lie in expanding AWS capabilities within emerging areas such as telemedicine and advanced automotive systems. Emphasizing hybrid systems and exploring new materials for better performance and reliability can offer significant benefits. The nature of the AWS market is dynamic and characterized by rapid technological advancements and firm competition, requiring companies to closely monitor technological trends and regulatory developments to leverage market potential effectively.

KEY MARKET STATISTICS
Base Year [2023] USD 641.36 million
Estimated Year [2024] USD 743.26 million
Forecast Year [2030] USD 1,844.32 million
CAGR (%) 16.28%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Acoustic Wave Sensors Market

The Acoustic Wave Sensors Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Demand from industrial end-users for surface acoustic wave-based temperature sensors
    • Increasing concerns relating to security and surveillance of industrial spaces
    • Significant demand for acoustic wave sensors for manufacturing electric power equipment
  • Market Restraints
    • Operational and technical problems pertinent to reduced sensitivity and compatibility
  • Market Opportunities
    • Emerging demand from the automotive and transportation sector
    • Ongoing advancements in acoustic wave sensors
  • Market Challenges
    • Availability of cost-efficient alternatives

Porter's Five Forces: A Strategic Tool for Navigating the Acoustic Wave Sensors Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Acoustic Wave Sensors Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Acoustic Wave Sensors Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Acoustic Wave Sensors Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Acoustic Wave Sensors Market

A detailed market share analysis in the Acoustic Wave Sensors Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Acoustic Wave Sensors Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Acoustic Wave Sensors Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Acoustic Wave Sensors Market

A strategic analysis of the Acoustic Wave Sensors Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Acoustic Wave Sensors Market, highlighting leading vendors and their innovative profiles. These include Abracon LLC, ALTANOVA GROUP, Althen Gmbh, Boston Piezo-Optics Inc., CeramTec GmbH, Christian Burkert GmbH & Co. KG, Columbia Research Laboratories, Inc., COMSOL AB, CTS Corporation, Dytran Instruments Inc, Electronic Sensor Technology Inc., Endress+Hauser Flow AG, General Electric Company, H. Heinz MeBwiderstande Gmbh, Hawk Measurement Systems, Honeywell International Inc., KYOCERA AVX Components Corporation, Microchip Technology Inc., Murata Manufacturing Co., Ltd., NanoTemper Technologies, Northrop Grumman Corporation, Panasonic Holdings Corporation, Precision Acoustics Ltd, Pro-micron GmbH, RF SAW Inc., Sensor Technology Ltd., Siemens AG, STMicroelectronics N.V., Transense Technologies PLC, and Vectron International, Inc..

Market Segmentation & Coverage

This research report categorizes the Acoustic Wave Sensors Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Product Type, market is studied across Baw Sensors and Saw Sensors. The Baw Sensors is further studied across SH-APM Sensors and TSM Sensor. The Saw Sensors is further studied across FPW Sensors, Rayleigh Surface Wave Sensors, and Sh-Saw Sensors.
  • Based on Device, market is studied across Delay Lines and Resonators.
  • Based on Sensing Parameter, market is studied across Chemical Vapor & Gas, Humidity, Mass, Pressure, Temperature, Torque, and Viscosity.
  • Based on Industry, market is studied across Automotive, Environment, Food & Beverages, Healthcare, Industrial, and Military.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Demand from industrial end-users for surface acoustic wave-based temperature sensors
      • 5.1.1.2. Increasing concerns relating to security and surveillance of industrial spaces
      • 5.1.1.3. Significant demand for acoustic wave sensors for manufacturing electric power equipment
    • 5.1.2. Restraints
      • 5.1.2.1. Operational and technical problems pertinent to reduced sensitivity and compatibility
    • 5.1.3. Opportunities
      • 5.1.3.1. Emerging demand from the automotive and transportation sector
      • 5.1.3.2. Ongoing advancements in acoustic wave sensors
    • 5.1.4. Challenges
      • 5.1.4.1. Availability of cost-efficient alternatives
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Acoustic Wave Sensors Market, by Product Type

  • 6.1. Introduction
  • 6.2. Baw Sensors
    • 6.2.1. SH-APM Sensors
    • 6.2.2. TSM Sensor
  • 6.3. Saw Sensors
    • 6.3.1. FPW Sensors
    • 6.3.2. Rayleigh Surface Wave Sensors
    • 6.3.3. Sh-Saw Sensors

7. Acoustic Wave Sensors Market, by Device

  • 7.1. Introduction
  • 7.2. Delay Lines
  • 7.3. Resonators

8. Acoustic Wave Sensors Market, by Sensing Parameter

  • 8.1. Introduction
  • 8.2. Chemical Vapor & Gas
  • 8.3. Humidity
  • 8.4. Mass
  • 8.5. Pressure
  • 8.6. Temperature
  • 8.7. Torque
  • 8.8. Viscosity

9. Acoustic Wave Sensors Market, by Industry

  • 9.1. Introduction
  • 9.2. Automotive
  • 9.3. Environment
  • 9.4. Food & Beverages
  • 9.5. Healthcare
  • 9.6. Industrial
  • 9.7. Military

10. Americas Acoustic Wave Sensors Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Acoustic Wave Sensors Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Acoustic Wave Sensors Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Abracon LLC
  • 2. ALTANOVA GROUP
  • 3. Althen Gmbh
  • 4. Boston Piezo-Optics Inc.
  • 5. CeramTec GmbH
  • 6. Christian Burkert GmbH & Co. KG
  • 7. Columbia Research Laboratories, Inc.
  • 8. COMSOL AB
  • 9. CTS Corporation
  • 10. Dytran Instruments Inc
  • 11. Electronic Sensor Technology Inc.
  • 12. Endress+Hauser Flow AG
  • 13. General Electric Company
  • 14. H. Heinz MeBwiderstande Gmbh
  • 15. Hawk Measurement Systems
  • 16. Honeywell International Inc.
  • 17. KYOCERA AVX Components Corporation
  • 18. Microchip Technology Inc.
  • 19. Murata Manufacturing Co., Ltd.
  • 20. NanoTemper Technologies
  • 21. Northrop Grumman Corporation
  • 22. Panasonic Holdings Corporation
  • 23. Precision Acoustics Ltd
  • 24. Pro-micron GmbH
  • 25. RF SAW Inc.
  • 26. Sensor Technology Ltd.
  • 27. Siemens AG
  • 28. STMicroelectronics N.V.
  • 29. Transense Technologies PLC
  • 30. Vectron International, Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦