½ÃÀ庸°í¼­
»óǰÄÚµå
1610304

¼¼°èÀÇ Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, Àü°³º° ¿¹Ãø(2025-2030³â)

Predictive Maintenance for Manufacturing Industry Market by Component (Services, Solutions), Deployment (Cloud, On-Premise) - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀÇ 2023³â ½ÃÀå ±Ô¸ð´Â 26¾ï 5,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 29¾ï 9,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç CAGR 14.54%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 68¾ï 6,000¸¸ ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Á¦Á¶¾÷ ¿¹Áöº¸Àü(PdM)¿¡´Â µ¥ÀÌÅÍ ºÐ¼®°ú ¸Ó½Å·¯´×À» ÀÌ¿ëÇÏ¿© ±â±âÀÇ °íÀåÀ» ¿¹ÃøÇÏ°í º¸Àü ½ºÄÉÁÙÀ» ÃÖÀûÈ­Çϱâ À§ÇÑ ´Ù¾çÇÑ È°µ¿ÀÌ Æ÷ÇԵ˴ϴÙ. ±âÁ¸ÀÇ ½Ã°£ ±â¹Ý À¯Áö º¸¼ö ¹üÀ§¸¦ ³Ñ¾î ¾÷¹« È¿À² Çâ»ó, ´Ù¿î ŸÀÓ Àý°¨, Àåºñ ¼ö¸í ¿¬ÀåÀ» ½ÇÇöÇÕ´Ï´Ù. ¿äÁ¡Àº ºñ¿ë ÃÖ¼ÒÈ­, ¿î¿µ È¿À²¼º ¹× Á¦Á¶ ÀåºñÀÇ ¿øÈ°ÇÑ ±â´É¿¡ ´ëÇÑ ¿ä±¸°¡ Ä¿Áü¿¡ µû¶ó ¹ß»ýÇÕ´Ï´Ù. ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ½ÄÀ½·á, ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼ µî ´Ù¾çÇÑ Á¦Á¶ ºÎ¹®¿¡¼­ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â IoTÀÇ º¸±Þ, AIÀÇ Áøº¸, Àδõ½ºÆ®¸® 4.0ÀÇ Ã¤¿ë Áõ°¡ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. º¸´Ù °í±Þ½º·´°í Àú·ÅÇÑ ¼¾¼­ ±â¼ú °³¹ß, µ¥ÀÌÅÍ ºÐ¼® Ç÷§Æû °³¼±, ¸ÂÃãÇü ¼Ö·ç¼Ç ¸¸µé±â¿¡ ´ëÇÑ ¼ÒÇÁÆ®¿þ¾î Á¦°ø¾÷ü¿Í Á¦Á¶¾÷ü °£ÀÇ ÆÄÆ®³Ê½Ê À°¼º¿¡ ºñÁî´Ï½º ±âȸ°¡ ÀÖ½À´Ï´Ù. ¶ÇÇÑ µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È ¹®Á¦´Â ¿©ÀüÈ÷ Å« Àå¾Ö¹°ÀÔ´Ï´Ù.ºñÁî´Ï½º ¼ºÀåÀ» À§ÇÑ Çõ½ÅÀûÀÎ ºÐ¾ß·Î´Â º¸´Ù Á¤±³ÇÑ AI Áß½ÉÀÇ ¾Ö³Î¸®Æ½½º °³¹ß, À¯Áöº¸¼ö ¹®Á¦ ÇØ°áÀ» À§ÇÑ Áõ°­Çö½Ç(AR) ÅëÇÕ, ´Ù¾çÇÑ PdM ¿ëµµÀ» À§ÇÑ ÅëÇÕ Ç÷§Æû ±¸Ãà µî ¶ÇÇÑ, ½Ã½ºÅÛÀÇ °íÀåÀ» Á¤È®ÇÏ°Ô ¿¹ÃøÇϱâ À§ÇÑ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨¿¡ µðÁöÅÐ Æ®À©À» Ȱ¿ëÇÏ´Â °Íµµ °í·ÁÇÒ ¼ö ÀÖ´Ù°í »ý°¢ÇÕ´Ï´Ù. ¿ÀǼҽº ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ µ¿Çâ°ú PdM ½Ã½ºÅÛ °­È­¸¦À§ÇÑ ±â¼ú ¹× Çù¾÷°ú °°Àº ½ÃÀåÀº ¿©ÀüÈ÷ ¿ªµ¿ÀûÀÔ´Ï´Ù. ÇÁ·Î¼¼½º¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ´Â È®À强°ú »óÈ£ ¿î¿ë¼ºÀÌ ¿ì¼öÇÑ ±â¼ú ¼Ö·ç¼Ç¿¡ ÁÖ¸ñÇØ¾ß ÇÕ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023) 26¾ï 5,000¸¸ ´Þ·¯
ÃßÁ¤³â(2024) 29¾ï 9,000¸¸ ´Þ·¯
¿¹Ãø³â(2030) 68¾ï 6,000¸¸ ´Þ·¯
CAGR(%) 14.54%

½ÃÀå ¿ªÇÐ: ±Þ¼ÓÈ÷ ÁøÈ­ÇÏ´Â Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯¸ð¸¦ ÀÌ·ç°í ÀÖ½À´Ï´Ù. Á¤¹ÐÈ­ ¹× »õ·Î¿î ºñÁî´Ï½º ±âȸ ȹµæ¿¡ ´ëºñ ÀÌ·¯ÇÑ µ¿ÇâÀ» Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª¿¡ °ÉÄ£ ´Ù¾çÇÑ À§ÇèÀ» ¿ÏÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, ¶ÇÇÑ ¼ÒºñÀÚ Çൿ ±×¸®°í ±×°ÍÀÌ Á¦Á¶ ºñ¿ë°ú ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ»º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Á¦Á¶¾÷¿¡¼­ÀÇ °èȹ¿ÜÀÇ ´Ù¿îŸÀÓÀ» ȸÇÇÇϱâ À§ÇÑ ¿¹Áöº¸Àü ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
    • ÀÚµ¿Â÷ÀÇ »ý»ê¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ, ÀÚµ¿Â÷ Á¦Á¶¾÷ü·Î ä¿ëÀÌ Áõ°¡
    • ´Ù¾çÇÑ Á¦Á¶¾÷¿¡¼­ ½Ç½Ã°£À¸·Î ÀÚ»ê ÃßÀû ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¿¹Áöº¸ÀüÀÇ µµÀÔ°ú À¯Áöº¸¼ö¿¡ µå´Â ºñ¿ëÀÇ ³ôÀÌ
  • ½ÃÀå ±âȸ
    • ¼¾½Ì ½Ã½ºÅÛ, IoT, AI, ºò µ¥ÀÌÅÍ µîÀÇ ¼±Áø µðÁöÅÐ ±â¼úÀÇ µµÀÔ Áõ°¡
    • ±â¼úÀûÀ¸·Î °íµµÀÇ ¿¹Áöº¸Àü ¼Ö·ç¼ÇÀÇ °¡´É¼ºÀÌ ³ô¾ÆÁü
  • ½ÃÀåÀÇ °úÁ¦
    • µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á°¡ Áõ°¡

Porter's Five Force : Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀ» Ž»öÇÏ´Â Àü·« µµ±¸

Porter's Five Force Framework´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ´ç½ÅÀº ´õ °­ÀÎÇÑ ½ÃÀå¿¡¼­ Æ÷Áö¼Å´×À» º¸ÀåÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ ¿ÜºÎ·ÎºÎÅÍÀÇ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ãȯ°æ¿äÀÎÀº Á¦Á¶¾÷ ¿¹Áöº¸Àü½ÃÀå ½ÇÀû ¿ªÇÐÀ» Çü¼ºÇϴµ¥ À־ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù. PESTLE ¿äÀÎÀ» Á¶»çÇÏ¸é ±â¾÷Àº ÀáÀçÀûÀÎ À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® : Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå °æÀï ±¸µµ ÆÄ¾Ç

Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ º¥´õÀÇ ½ÇÀûÀ» Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀå ÁýÁß, ´ÜÆíÈ­ ¹× ÅëÇÕ µ¿ÇâÀ» ¸íÈ®È÷ÇÏ°í º¥´õ´Â °æÀïÀÌ Ä¡¿­ ÇØÁü¿¡ µû¶ó ÀÚ»çÀÇ ÁöÀ§¸¦ ³ôÀÌ´Â Àü·«Àû ÀÇ»ç °áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÕ´Ï´Ù. Áö½ÄÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º : Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ¼º´É Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ³× °¡Áö »çºÐ¸éÀ» ÅëÇØ º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ºÐÇÒÇϰí Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê ¹× ¼Ö·ç¼ÇÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù.

Àü·«ºÐ¼® ¹× Ãßõ : Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå¿¡¼­ ¼º°øÀ» À§ÇÑ ±æÀ» ±×¸³´Ï´Ù.

Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀåÀÇ Àü·«ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÇÁ·¹Á𽺠°­È­¸¦ ¸ñÇ¥·Î ÇÏ´Â ±â¾÷¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Á¢±Ù¹ýÀ» ÅëÇØ °æÀï ±¸µµ¿¡¼­ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» ÀÌ·ç±âÀ§ÇÑ ½Ã½ºÅÛÀ» ±¸Ãà ÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀåÀÇ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ: ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀåÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϰí, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­: ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä Áøº¸, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú Áøº¸ µîÀ» °ËÁõÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÃÖ÷´Ü ±â¼ú, R&D Ȱµ¿, Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

¶ÇÇÑ ÀÌÇØ°ü°èÀÚ°¡ ÃæºÐÇÑ Á¤º¸¸¦ ¾ò°í ÀÇ»ç°áÁ¤À» ÇÒ ¼ö ÀÖµµ·Ï Áß¿äÇÑ Áú¹®¿¡ ´ë´äÇϰí ÀÖ½À´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå ¿¹ÃøÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹® ¹× Áö¿ªÀº ¾îµðÀԴϱî?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5. º¥´õ ½ÃÀå ÁøÀÔ¡¤Ã¶¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • Á¦Á¶¾÷¿¡ À־ÀÇ °èȹ¿ÜÀÇ ´Ù¿îŸÀÓÀ» ȸÇÇÇϱâ À§ÇÑ ¿¹Áöº¸Àü ¼Ö·ç¼Ç ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ´Ù
      • ÀÚµ¿Â÷ÀÇ »ý»ê¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ã۱â À§ÇØ ÀÚµ¿Â÷ Á¦Á¶¾÷ü°£¿¡ µµÀÔÀÌ Áõ°¡
      • ´Ù¾çÇÑ Á¦Á¶¾÷¿¡¼­ ÀÚ»êÀ» ½Ç½Ã°£À¸·Î ÃßÀûÇÏ´Â ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù
    • ¾ïÁ¦¿äÀÎ
      • ¿¹Áöº¸ÀüÀÇ µµÀÔ°ú À¯Áö¿¡ µå´Â ºñ¿ëÀÌ ³ô´Ù
    • ±âȸ
      • IoT, AI, ºòµ¥ÀÌÅÍ µîÀÇ ¼¾½Ì ½Ã½ºÅÛÀ̳ª ¼±Áø µðÁöÅÐ ±â¼úÀÇ µµÀÔ È®´ë
      • ±â¼úÀûÀ¸·Î °íµµÀÇ ¿¹Áöº¸Àü ¼Ö·ç¼ÇÀÇ ÀáÀçÀû °¡´É¼º Áõ°¡
    • °úÁ¦
      • µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á°¡ Áõ°¡
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »ç±³
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå Á¦Á¶¾÷ ¿¹Áö º¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
      • ÄÁ¼³ÆÃ
      • Áö¿ø ¹× À¯Áö º¸¼ö
      • ½Ã½ºÅÛ ÅëÇÕ
  • ¼Ö·ç¼Ç
    • ÅëÇÕÇü
    • µ¶¸³Çü

Á¦7Àå Á¦Á¶¾÷ ¿¹Áö º¸Àü ½ÃÀå : Àü°³º°

  • Ŭ¶ó¿ìµå
  • ¿ÂÇÁ·¹¹Ì½º

Á¦8Àå ¾Æ¸Þ¸®Ä« Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦10Àå À¯·´¡¤Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Á¦Á¶¾÷ ¿¹Áöº¸Àü ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦11Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼® 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • Altair Engineering Inc.
  • DINGO Software Pty. Ltd.
  • Ecolibrium Inc.
  • Fiix Inc. by Rockwell Automation, Inc.
  • General Electric Company
  • Honeywell International Inc.
  • International Business Machines Corporation
  • Limble Solutions, LLC
  • Micro Focus International PLC
  • Microsoft Corporation
  • OPEX Group
  • Robert Bosch GmbH
  • Schneider Electric SE
  • Sigma Industrial Precision SL
  • Software AG
JHS 24.12.20

The Predictive Maintenance for Manufacturing Industry Market was valued at USD 2.65 billion in 2023, expected to reach USD 2.99 billion in 2024, and is projected to grow at a CAGR of 14.54%, to USD 6.86 billion by 2030.

Predictive Maintenance (PdM) in the manufacturing industry encompasses a range of activities designed to anticipate equipment failures and optimize maintenance schedules using data analytics and machine learning. It goes beyond traditional time-based maintenance by leveraging real-time data, enhancing operational efficiency, reducing downtime, and extending equipment lifespan. The necessity of PdM arises from the increasing need for cost minimization, operational efficiency, and the seamless functioning of manufacturing units. Its application relies heavily on sensors, cloud computing, artificial intelligence, and the Internet of Things (IoT), making it crucial across various manufacturing sectors such as automotive, aerospace, food & beverage, and energy & utilities. Key growth factors include the proliferation of IoT, advancements in AI, and the increasing adoption of Industry 4.0. Additionally, the demand for improved productivity, risk mitigation, and asset management drives its market growth. Opportunities lie in developing more advanced and affordable sensor technologies, improving data analytics platforms, and fostering partnerships between software providers and manufacturers to create customized solutions. However, challenges such as high initial implementation costs, data integration complexities, and the need for skilled personnel can impede market growth. Further, issues around data privacy and security remain significant hurdles. Innovation areas for business growth include the development of more sophisticated AI-driven analytics, integration of augmented reality (AR) for maintenance troubleshooting, and the creation of a unified platform for various PdM applications. Companies could also explore leveraging digital twins for simulation models to predict system failures accurately. The market remains dynamic, with a trend toward open-source software solutions and collaborations between tech companies and manufacturers to enhance PdM systems. To capitalize on these opportunities, businesses should focus on scalable and interoperable technology solutions that can be easily integrated into existing manufacturing processes.

KEY MARKET STATISTICS
Base Year [2023] USD 2.65 billion
Estimated Year [2024] USD 2.99 billion
Forecast Year [2030] USD 6.86 billion
CAGR (%) 14.54%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Predictive Maintenance for Manufacturing Industry Market

The Predictive Maintenance for Manufacturing Industry Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Growing demand for predictive maintenance solutions to avoid unplanned downtime for manufacturing industries
    • Rising adoption among the automakers to improve vehicle production and safety
    • Increasing need for asset tracking in real-time across various manufacturing industries
  • Market Restraints
    • High cost of installation and maintenance of predictive maintenance
  • Market Opportunities
    • Increasing deployment of sensing systems and advanced digital technologies such as IoT, AI, and big data
    • Rising potential for technologically advanced predictive maintenance solutions
  • Market Challenges
    • Rising concerns about data security and privacy

Porter's Five Forces: A Strategic Tool for Navigating the Predictive Maintenance for Manufacturing Industry Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Predictive Maintenance for Manufacturing Industry Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Predictive Maintenance for Manufacturing Industry Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Predictive Maintenance for Manufacturing Industry Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Predictive Maintenance for Manufacturing Industry Market

A detailed market share analysis in the Predictive Maintenance for Manufacturing Industry Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Predictive Maintenance for Manufacturing Industry Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Predictive Maintenance for Manufacturing Industry Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Predictive Maintenance for Manufacturing Industry Market

A strategic analysis of the Predictive Maintenance for Manufacturing Industry Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Predictive Maintenance for Manufacturing Industry Market, highlighting leading vendors and their innovative profiles. These include Altair Engineering Inc., DINGO Software Pty. Ltd., Ecolibrium Inc., Fiix Inc. by Rockwell Automation, Inc., General Electric Company, Honeywell International Inc., International Business Machines Corporation, Limble Solutions, LLC, Micro Focus International PLC, Microsoft Corporation, OPEX Group, Robert Bosch GmbH, Schneider Electric SE, Sigma Industrial Precision S.L., and Software AG.

Market Segmentation & Coverage

This research report categorizes the Predictive Maintenance for Manufacturing Industry Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Component, market is studied across Services and Solutions. The Services is further studied across Managed Services and Professional Services. The Professional Services is further studied across Consulting, Support & Maintenance, and System Integration. The Solutions is further studied across Integrated and Standalone.
  • Based on Deployment, market is studied across Cloud and On-Premise.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing demand for predictive maintenance solutions to avoid unplanned downtime for manufacturing industries
      • 5.1.1.2. Rising adoption among the automakers to improve vehicle production and safety
      • 5.1.1.3. Increasing need for asset tracking in real-time across various manufacturing industries
    • 5.1.2. Restraints
      • 5.1.2.1. High cost of installation and maintenance of predictive maintenance
    • 5.1.3. Opportunities
      • 5.1.3.1. Increasing deployment of sensing systems and advanced digital technologies such as IoT, AI, and big data
      • 5.1.3.2. Rising potential for technologically advanced predictive maintenance solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Rising concerns about data security and privacy
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Predictive Maintenance for Manufacturing Industry Market, by Component

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Managed Services
    • 6.2.2. Professional Services
      • 6.2.2.1. Consulting
      • 6.2.2.2. Support & Maintenance
      • 6.2.2.3. System Integration
  • 6.3. Solutions
    • 6.3.1. Integrated
    • 6.3.2. Standalone

7. Predictive Maintenance for Manufacturing Industry Market, by Deployment

  • 7.1. Introduction
  • 7.2. Cloud
  • 7.3. On-Premise

8. Americas Predictive Maintenance for Manufacturing Industry Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Predictive Maintenance for Manufacturing Industry Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Predictive Maintenance for Manufacturing Industry Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Altair Engineering Inc.
  • 2. DINGO Software Pty. Ltd.
  • 3. Ecolibrium Inc.
  • 4. Fiix Inc. by Rockwell Automation, Inc.
  • 5. General Electric Company
  • 6. Honeywell International Inc.
  • 7. International Business Machines Corporation
  • 8. Limble Solutions, LLC
  • 9. Micro Focus International PLC
  • 10. Microsoft Corporation
  • 11. OPEX Group
  • 12. Robert Bosch GmbH
  • 13. Schneider Electric SE
  • 14. Sigma Industrial Precision S.L.
  • 15. Software AG
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦