½ÃÀ庸°í¼­
»óǰÄÚµå
1621757

¼¼°èÀÇ ¼öÁú ¼¾¼­ ½ÃÀå : À¯Çü, À¯Åë ÇüÅÂ, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº° - ¿¹Ãø(2025-2030³â)

Water Quality Sensors Market by Type (Chlorine Residual Sensor, Conductivity Sensor, ORP Sensor), Distribution Mode (Offline Mode, Online Mode), Application, End user - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 198 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀåÀº 2023³â¿¡ 20¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2024³â¿¡´Â 22¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç CAGR 8.63%·Î ¼ºÀåÇØ 2030³â¿¡´Â 37¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀå¿¡´Â pH ¼öÁØ, ʵµ, ¿ëÁ¸ »ê¼Ò, È­ÇÐÀû ¿À¿° ¹°Áú µî ´Ù¾çÇÑ ¼öÁú ¸Å°³ º¯¼ö¸¦ °¨ÁöÇϰí ÃøÁ¤Çϵµ·Ï ¼³°èµÈ ÀåÄ¡°¡ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¼¾¼­ÀÇ Çʿ伺Àº ±ÔÁ¦ Áؼö, ȯ°æ ¹®Á¦, °ø°ø ¹× ¹Î°£ ºÎ¹® ¸ðµÎ¿¡¼­ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀÇ Çʿ伺, ƯÈ÷ ¿À¿° Áõ°¡¿Í Áö¼Ó °¡´ÉÇÑ ¹° °ü¸®ÀÇ Çʿ伺À¸·Î ÀÎÇØ Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. Ä¡·á´Â ÁöÀÚü ¼öó¸®, »ê¾÷ °øÁ¤, ¾ç½Ä¾÷, ÀÚ¿¬ ¼ö¿ª ¸ð´ÏÅ͸µ µî ´Ù¾çÇÕ´Ï´Ù. ÃÖÁ¾ »ç¿ë ºÐ¾ß¿¡´Â °øÀÍ ±â¾÷, ¿¬±¸ ±â°ü, ȯ°æ º¸È£ ±â°ü, ³ó¾÷, À½·á »ê¾÷ µîÀÌ Æ÷ÇԵ˴ϴÙ. ÁÖ¿ä ¼ºÀå ¿äÀÎÀ¸·Î´Â ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡, ±ú²ýÇÑ ¹°¿¡ ´ëÇÑ Á¤ºÎÀÇ Àǹ«, ¼¾¼­ ±â¼úÀÇ ¹ßÀü, ½º¸¶Æ® ½ÃƼ ÇÁ·ÎÁ§Æ®ÀÇ ±ÞÁõ µîÀ» µé ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, IoT¿Í AIÀÇ ÅëÇÕ ¼ºÀåÀ¸·Î µ¥ÀÌÅÍ ºÐ¼® ¹× ½Ç½Ã°£ ¸ð´ÏÅ͸µ ¼Ö·ç¼ÇÀ» °­È­ÇÒ ¼ö ÀÖ´Â ÀáÀçÀû ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª °í±Þ ¼¾¼­ ½Ã½ºÅÛÀÇ ³ôÀº ºñ¿ë, ¼¾¼­ÀÇ Á¤È®¼º ¹× ³»±¸¼º°ú °°Àº ±â¼úÀû ¹®Á¦, Á¤±âÀûÀÎ À¯Áöº¸¼öÀÇ Çʿ伺 µîÀÇ Á¦¾àÀÌ ½ÃÀå È®´ëÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Çõ½ÅÀº ºñ¿ë È¿À²ÀûÀÎ ¸ÖƼ-ÆÄ¶ó¹ÌÅÍ ¼¾¼­¿Í ¿­¾ÇÇÑ È¯°æ¿¡ ÀûÇÕÇÑ °ß°íÇÑ ÀåÄ¡ °³¹ß¿¡ ÁýÁßÇÔÀ¸·Î½á ÀÌ¿ë »ç·Ê¸¦ È®´ëÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, ¹«¼± ¼¾¼­ÀÇ Ä¶¸®ºê·¹À̼ǰú ¿¡³ÊÁö È¿À²ÀÌ Çâ»óµÇ¸é äÅ÷üÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ³ª³ë ¼ÒÀç ±â¹Ý ¼¾¼­¿Í ÈÞ´ë¿ë °Ë»ç ŰƮ¿¡ ´ëÇÑ ¿¬±¸µµ À¯¸ÁÇÑ ºÐ¾ßÀÔ´Ï´Ù. °æÀï»çµéÀº ÃÖ÷´Ü ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ R&D, ÆÄÆ®³Ê½Ê, Çù¾÷¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ÀÌÇØ°ü°èÀÚµéÀº Á¤È®¼º°ú °æÁ¦¼ºÀ» È®º¸ÇÔÀ¸·Î½á, ƯÈ÷ ¹° °ü¸® ÀÎÇÁ¶ó°¡ ¾ÆÁ÷ °³¹ß ÁßÀÎ °³¹ßµµ»ó±¹¿¡¼­ ±Þ¼ºÀåÇÏ´Â ºñÁî´Ï½º ±âȸ¿¡ ÁøÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ Àå±âÀûÀÎ ¼ºÀåÀ» °¡¼ÓÇϱâ À§Çؼ­´Â ¾ö°ÝÇÑ ±ÔÁ¦¿Í ½ÃÀå ¼ö¿ä¸¦ ¸ðµÎ ÃæÁ·½Ãų ¼ö ÀÖ´Â ÀûÀÀÇü ±â¼ú¿¡ ÁýÁßÇÏ´Â °ÍÀÌ ÇʼöÀûÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 20¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ(2024³â) 22¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 37¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 8.63%

½ÃÀå ¿ªÇÐ: ºü¸£°Ô ÁøÈ­ÇÏ´Â ¼öÁú ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ½ÃÀå ÀλçÀÌÆ® °ø°³

¼öÁú ¼¾¼­ ½ÃÀåÀº ¼ö¿ä ¹× °ø±ÞÀÇ ¿ªµ¿ÀûÀÎ »óÈ£ÀÛ¿ë¿¡ ÀÇÇØ º¯È­Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½ÃÀå ¿ªÇÐÀÇ º¯È­¸¦ ÀÌÇØÇÔÀ¸·Î½á ±â¾÷Àº Á¤º¸¿¡ ÀÔ°¢ÇÑ ÅõÀÚ °áÁ¤À» ³»¸®°í, Àü·«Àû ÀÇ»ç°áÁ¤À» Á¤±³È­Çϸç, »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Æ÷ÂøÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Æ®·»µå¸¦ Á¾ÇÕÀûÀ¸·Î ÆÄ¾ÇÇÔÀ¸·Î½á ±â¾÷Àº Á¤Ä¡Àû, Áö¸®Àû, ±â¼úÀû, »çȸÀû, °æÁ¦Àû ¿µ¿ª Àü¹Ý¿¡ °ÉÄ£ ´Ù¾çÇÑ ¸®½ºÅ©¸¦ ÁÙÀÏ ¼ö ÀÖÀ¸¸ç, ¼ÒºñÀÚ Çൿ°ú ±×°ÍÀÌ Á¦Á¶ ºñ¿ë ¹× ±¸¸Å µ¿Çâ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» º¸´Ù ¸íÈ®ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ¿À¿°, È­Çй°Áú ´©Ãâ ¹× Åä¾ç ǰÁú ¾ÇÈ­ Áõ°¡
    • ¼öÁú °ü·Ã µ¥ÀÌÅ͸¦ ¸ð´ÏÅ͸µÇϰí À¯ÁöÇϱâ À§ÇÑ Á¤ºÎ ÁÖµµÀÇ ¾ö°ÝÇÑ ¼öÁú ±ÔÁ¦
    • »ê¾÷ ºÎ¹®ÀÇ ¼öÁú ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ¼¾¼­ Ȱ¿ëÀ¸·Î ÀÎÇÑ ³ôÀº Á¦Á¶ ºñ¿ë
  • ½ÃÀå ±âȸ
    • ²÷ÀÓ¾ø´Â ±â¼ú Çõ½Å°ú Á¦Ç° °³¹ß
    • ¹° ºÎÁ·°ú ¿¡³ÊÁö ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇÑ ¹° À§±â ÇØ°áÀ» À§ÇÑ ¹° Àç»ç¿ë ¹× ÀçȰ¿ëÀÇ Á߿伺 Áõ´ë
    • »óÇϼöµµ ó¸® °øÀå¿¡ ´ëÇÑ ÅõÀÚ È®´ë
    • ¸ÖƼÆÄ¶ó¹ÌÅÍ ¼¾½Ì µð¹ÙÀ̽º °³¹ß¿¡ ´ëÇÑ °ü½É Áõ°¡
  • ½ÃÀå °úÁ¦
    • ¹° ÀÎÇÁ¶ó ºÎÁ·

Porter's Five Forces: ¼öÁú ¼¾¼­ ½ÃÀå Ž»öÀ» À§ÇÑ Àü·« µµ±¸

Porter's Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ½ÃÀå »óȲ°æÀï ±¸µµ¸¦ ÀÌÇØÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. PorterÀÇ Five Forces ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÇ °æÀï·ÂÀ» Æò°¡Çϰí Àü·«Àû ±âȸ¸¦ Ž»öÇÒ ¼ö ÀÖ´Â ¸íÈ®ÇÑ ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â ±â¾÷ÀÌ ½ÃÀå ³» ¼¼·Âµµ¸¦ Æò°¡ÇÏ°í ½Å±Ô »ç¾÷ÀÇ ¼öÀͼºÀ» ÆÇ´ÜÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ÅëÂû·ÂÀ» ÅëÇØ ±â¾÷Àº °­Á¡À» Ȱ¿ëÇÏ°í ¾àÁ¡À» º¸¿ÏÇϸç ÀáÀçÀûÀÎ µµÀüÀ» ÇÇÇÔÀ¸·Î½á º¸´Ù °­·ÂÇÑ ½ÃÀå Æ÷Áö¼Å´×À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

PESTLE ºÐ¼® : ¼öÁú ¼¾¼­ ½ÃÀåÀÇ ¿ÜºÎ ¿µÇâ ÆÄ¾Ç

¿ÜºÎ °Å½Ã ȯ°æ ¿äÀÎÀº ¼öÁú ¼¾¼­ ½ÃÀåÀÇ ¼º°ú ¿ªÇÐÀ» Çü¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. Á¤Ä¡Àû, °æÁ¦Àû, »çȸÀû, ±â¼úÀû, ¹ýÀû, ȯ°æÀû ¿äÀο¡ ´ëÇÑ ºÐ¼®Àº ÀÌ·¯ÇÑ ¿µÇâÀ» Ž»öÇÏ´Â µ¥ ÇÊ¿äÇÑ Á¤º¸¸¦ Á¦°øÇϸç, PESTLE ¿äÀÎÀ» Á¶»çÇÔÀ¸·Î½á ±â¾÷Àº ÀáÀçÀû À§Çè°ú ±âȸ¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ºÐ¼®À» ÅëÇØ ±â¾÷Àº ±ÔÁ¦, ¼ÒºñÀÚ ¼±È£µµ, °æÁ¦ µ¿ÇâÀÇ º¯È­¸¦ ¿¹ÃøÇÏ°í ¼±Á¦ÀûÀÌ°í ´Éµ¿ÀûÀÎ ÀÇ»ç°áÁ¤À» ³»¸± Áغñ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå Á¡À¯À² ºÐ¼® ¼öÁú¼¾¼­ ½ÃÀå¿¡¼­ÀÇ °æÀï»óȲ ÆÄ¾Ç

¼öÁú ¼¾¼­ ½ÃÀåÀÇ »ó¼¼ÇÑ ½ÃÀå Á¡À¯À² ºÐ¼®À» ÅëÇØ °ø±Þ¾÷üÀÇ ¼º°ú¸¦ Á¾ÇÕÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ±â¾÷Àº ¼öÀÍ, °í°´ ±â¹Ý, ¼ºÀå·ü°ú °°Àº ÁÖ¿ä ÁöÇ¥¸¦ ºñ±³ÇÏ¿© °æÀïÀû À§Ä¡¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¼®Àº ½ÃÀåÀÇ ÁýÁßÈ­, ´ÜÆíÈ­ ¹× ÅëÇÕ Ãß¼¼¸¦ ÆÄ¾ÇÇÒ ¼ö ÀÖÀ¸¸ç, °ø±Þ¾÷ü´Â Ä¡¿­ÇÑ °æÀï ¼Ó¿¡¼­ ÀÚ½ÅÀÇ ÀÔÁö¸¦ °­È­ÇÒ ¼ö ÀÖ´Â Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸®´Â µ¥ ÇÊ¿äÇÑ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º ¼öÁú¼¾¼­ ½ÃÀå¿¡¼­ÀÇ ¾÷ü ½ÇÀû Æò°¡

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ¼öÁú ¼¾¼­ ½ÃÀå¿¡¼­ º¥´õ¸¦ Æò°¡ÇÏ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ÀÌ ¸ÅÆ®¸¯½º¸¦ ÅëÇØ ºñÁî´Ï½º Á¶Á÷Àº º¥´õÀÇ ºñÁî´Ï½º Àü·«°ú Á¦Ç° ¸¸Á·µµ¸¦ ±â¹ÝÀ¸·Î Æò°¡ÇÏ¿© ¸ñÇ¥¿¡ ºÎÇÕÇÏ´Â Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖÀ¸¸ç, 4°³ÀÇ »çºÐ¸éÀ¸·Î º¥´õ¸¦ ¸íÈ®Çϰí Á¤È®ÇÏ°Ô ¼¼ºÐÈ­ÇÏ¿© Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·« ¸ñÇ¥¿¡ °¡Àå ÀûÇÕÇÑ ÆÄÆ®³Ê¿Í ¼Ö·ç¼ÇÀ» ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀå¿¡¼­ ¼º°øÇϱâ À§ÇÑ Àü·« ºÐ¼® ¹× Ãßõ ¼öÁú ¼¾¼­ ½ÃÀå ¼º°ø °æ·Î¸¦ ±×¸³´Ï´Ù.

¼öÁú ¼¾¼­ ½ÃÀåÀÇ Àü·«Àû ºÐ¼®Àº ¼¼°è ½ÃÀå¿¡¼­ ÀÔÁö¸¦ °­È­ÇϰíÀÚ ÇÏ´Â ±â¾÷¿¡°Ô ÇʼöÀûÀÔ´Ï´Ù. ÁÖ¿ä ÀÚ¿ø, ¿ª·® ¹× ¼º°ú ÁöÇ¥¸¦ °ËÅäÇÔÀ¸·Î½á ±â¾÷Àº ¼ºÀå ±âȸ¸¦ ½Äº°ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ °æÀï ȯ°æÀÇ °úÁ¦¸¦ ±Øº¹ÇÏ°í »õ·Î¿î ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇÏ¿© Àå±âÀûÀÎ ¼º°øÀ» °ÅµÑ ¼ö Àִ ü°è¸¦ ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ÁÖ¿ä °ü½É ºÐ¾ß¸¦ Æ÷°ýÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ºÐ¼®À» Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõµµ : ÇöÀç ½ÃÀå ȯ°æÀÇ »ó¼¼ÇÑ °ËÅä, ÁÖ¿ä ±â¾÷ÀÇ ±¤¹üÀ§ÇÑ µ¥ÀÌÅÍ, ½ÃÀå µµ´Þ ¹üÀ§ ¹× Àü¹ÝÀûÀÎ ¿µÇâ·Â Æò°¡.

2. ½ÃÀå °³Ã´µµ: ½ÅÈï ½ÃÀå¿¡¼­ÀÇ ¼ºÀå ±âȸ¸¦ ÆÄ¾ÇÇϰí, ±âÁ¸ ºÐ¾ßÀÇ È®Àå °¡´É¼ºÀ» Æò°¡Çϸç, ¹Ì·¡ ¼ºÀåÀ» À§ÇÑ Àü·«Àû ·Îµå¸ÊÀ» Á¦°øÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù°¢È­ : ÃÖ±Ù Á¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ¾÷°èÀÇ ÁÖ¿ä ¹ßÀü, ½ÃÀåÀ» Çü¼ºÇÏ´Â Àü·«Àû ÅõÀÚ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : °æÀï ±¸µµ¸¦ öÀúÈ÷ ºÐ¼®ÇÏ¿© ½ÃÀå Á¡À¯À², »ç¾÷ Àü·«, Á¦Ç° Æ÷Æ®Æú¸®¿À, ÀÎÁõ, ±ÔÁ¦ ´ç±¹ÀÇ ½ÂÀÎ, ƯÇã µ¿Çâ, ÁÖ¿ä ±â¾÷ÀÇ ±â¼ú ¹ßÀü µîÀ» °ËÅäÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµÇ´Â ÷´Ü ±â¼ú, ¿¬±¸ °³¹ß Ȱµ¿ ¹× Á¦Ç° Çõ½ÅÀ» °­Á¶ÇÕ´Ï´Ù.

ÀÌÇØ°ü°èÀÚµéÀÌ ÃæºÐÇÑ Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï ´ÙÀ½°ú °°Àº Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯µµ Á¦°øÇÕ´Ï´Ù.

1. ÇöÀç ½ÃÀå ±Ô¸ð¿Í ÇâÈÄ ¼ºÀå Àü¸ÁÀº?

2. ÃÖ°íÀÇ ÅõÀÚ ±âȸ¸¦ Á¦°øÇÏ´Â Á¦Ç°, ºÎ¹®, Áö¿ªÀº?

3. ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ±â¼ú µ¿Çâ°ú ±ÔÁ¦ÀÇ ¿µÇâÀº?

4. ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²°ú °æÀï Æ÷Áö¼ÇÀº?

5.º¥´õ ½ÃÀå ÁøÀÔ ¹× ö¼ö Àü·«ÀÇ ¿øµ¿·ÂÀÌ µÇ´Â ¼öÀÍ¿ø°ú Àü·«Àû ±âȸ´Â ¹«¾ùÀΰ¡?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • °úÁ¦
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ¹ý·ü
    • ȯ°æ

Á¦6Àå ¼öÁú ¼¾¼­ ½ÃÀå : À¯Çüº°

  • ÀÜ·ù ¿°¼Ò ¼¾¼­
  • Àüµµ ºñÀ² ¼¾¼­
  • ORP ¼¾¼­
  • PH ¼¾¼­
  • TOC ¼¾¼­
  • ʵµ ¼¾¼­

Á¦7Àå ¼öÁú ¼¾¼­ ½ÃÀå : À¯Åë ¸ðµåº°

  • ¿ÀÇÁ¶óÀÎ ¸ðµå
  • ¿Â¶óÀÎ ¸ðµå

Á¦8Àå ¼öÁú ¼¾¼­ ½ÃÀå : ¿ëµµº°

  • ³ó¾÷ ¿ë¼ö ¸ð´ÏÅ͸µ
  • ÇÏõ È­Çй°Áú ´©¼³ °¨Áö
  • À½·á¼ö ¼öÁú °ü¸®
  • ¾ç½Ä
  • ¼ö°æÀç¹è
  • ÇØ¾ç ¿À¿° ·¹º§ °ü¸® ¹× ¸ð´ÏÅ͸µ
  • ¼ö¿µÀå ¿ø°Ý ÃøÁ¤
  • Æó¼ö ó¸®

Á¦9Àå ¼öÁú ¼¾¼­ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ó¸® ½Ã¼³
  • ±Þ¼ö ½Ã¼³

Á¦10Àå ¾Æ¸Þ¸®Ä«ÀÇ ¼öÁú ¼¾¼­ ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦11Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼öÁú ¼¾¼­ ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦12Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼öÁú ¼¾¼­ ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦13Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023³â
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023³â
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸®½ºÆ®

  • Atlas Scientific, LLC
  • Danaher Corporation
  • Hanna Instruments, Inc.
  • HORIBA, Ltd.
  • Innovative Sensor Technology IST AG
  • KROHNE Group
  • Libelium Comunicaciones Distribuidas SL
  • Myron L Company
  • O'Keefe Controls Co.
  • ProMinent Fluid Controls, Inc.
  • Rika Sensors
  • Schneider Electric SE
  • Schroeder Industries
  • Shanghai BOQU Instrument Co.,Ltd
  • The Miura Group
  • Thermo Fisher Scientific Inc.
  • Xylem Inc.
LSH 25.01.03

The Water Quality Sensors Market was valued at USD 2.08 billion in 2023, expected to reach USD 2.26 billion in 2024, and is projected to grow at a CAGR of 8.63%, to USD 3.72 billion by 2030.

The water quality sensors market encompasses devices designed to detect and measure the different parameters of water quality, such as pH levels, turbidity, dissolved oxygen, and chemical contaminants. The necessity for these sensors is increasingly driven by regulatory compliance, environmental concerns, and the need for continuous monitoring in both public and private sectors, particularly with the rise in pollution and the need for sustainable water management. Applications span across municipal water treatment, industrial processes, aquaculture, and natural water bodies monitoring. End-use sectors include utility companies, research institutes, environmental protection agencies, agriculture, and the beverage industry. Key growth influencers include heightened awareness of environmental issues, government mandates for clean water, advancements in sensor technology, and a surge in smart city projects. Moreover, the growth in IoT and AI integration has created potential opportunities for enhanced data analytics and real-time monitoring solutions. However, limitations such as high costs of advanced sensor systems, technical challenges in terms of sensor accuracy and durability, along with the need for regular maintenance present hurdles to market expansion. Innovations could focus on developing cost-effective, multi-parameter sensors, and robust devices suitable for harsh environments which would expand their use cases. Additionally, enhancing the calibration and energy-efficiency of wireless sensors could drive adoption rates. Research in nanomaterial-based sensors and portable testing kits also represents promising areas. The water quality sensors market is characterized by continuous evolution with a competitive landscape that sees players investing in R&D, partnerships, and collaborations to develop cutting-edge solutions. By addressing accuracy and affordability, stakeholders can tap into burgeoning opportunities, particularly in developing regions where infrastructure for water management is still developing. Thus, a focus on adaptive technology that meets both stringent regulations and market demand is essential to fostering long-term growth.

KEY MARKET STATISTICS
Base Year [2023] USD 2.08 billion
Estimated Year [2024] USD 2.26 billion
Forecast Year [2030] USD 3.72 billion
CAGR (%) 8.63%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Water Quality Sensors Market

The Water Quality Sensors Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increase in Pollution, Chemical Leakages and Degraded Soil Quality
    • Stringent Water Regulations Led by the Government to Monitor and Maintain the Data Concerning Water Quality
    • Growing Need to Monitor Water Quality in the Industrial Sector
  • Market Restraints
    • High Production Cost of Utilization of Sensors
  • Market Opportunities
    • Constant Innovations and Product Development
    • Increasing Prominence of Water Reuse and Recycling in Resolving the Water Crisis due to Water scarcity and Rising Energy Costs
    • Increasing Investments in Water and Wastewater Treatment Plants
    • Growing Focus on Developing Multiparameter Sensing Device
  • Market Challenges
    • Lack of Water Infrastructure

Porter's Five Forces: A Strategic Tool for Navigating the Water Quality Sensors Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Water Quality Sensors Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Water Quality Sensors Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Water Quality Sensors Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Water Quality Sensors Market

A detailed market share analysis in the Water Quality Sensors Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Water Quality Sensors Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Water Quality Sensors Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Water Quality Sensors Market

A strategic analysis of the Water Quality Sensors Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Water Quality Sensors Market, highlighting leading vendors and their innovative profiles. These include Atlas Scientific, LLC, Danaher Corporation, Hanna Instruments, Inc., HORIBA, Ltd., Innovative Sensor Technology IST AG, KROHNE Group, Libelium Comunicaciones Distribuidas SL, Myron L Company, O'Keefe Controls Co., ProMinent Fluid Controls, Inc., Rika Sensors, Schneider Electric SE, Schroeder Industries, Shanghai BOQU Instrument Co.,Ltd, The Miura Group, Thermo Fisher Scientific Inc., and Xylem Inc..

Market Segmentation & Coverage

This research report categorizes the Water Quality Sensors Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Chlorine Residual Sensor, Conductivity Sensor, ORP Sensor, PH Sensor, TOC Sensor, and Turbidity Sensor.
  • Based on Distribution Mode, market is studied across Offline Mode and Online Mode.
  • Based on Application, market is studied across Agriculture Water Monitoring, Chemical Leakage Detection In Rivers, Drinking Water Quality Control, Fish Farming, Hydroponics, Sea Pollution Level Control & Monitoring, Swimming Pool Remote Measurement, and Waste Water Treatment.
  • Based on End user, market is studied across Treatment Plants and Water Distribution Facilities.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increase in Pollution, Chemical Leakages and Degraded Soil Quality
      • 5.1.1.2. Stringent Water Regulations Led by the Government to Monitor and Maintain the Data Concerning Water Quality
      • 5.1.1.3. Growing Need to Monitor Water Quality in the Industrial Sector
    • 5.1.2. Restraints
      • 5.1.2.1. High Production Cost of Utilization of Sensors
    • 5.1.3. Opportunities
      • 5.1.3.1. Constant Innovations and Product Development
      • 5.1.3.2. Increasing Prominence of Water Reuse and Recycling in Resolving the Water Crisis due to Water scarcity and Rising Energy Costs
      • 5.1.3.3. Increasing Investments in Water and Wastewater Treatment Plants
      • 5.1.3.4. Growing Focus on Developing Multiparameter Sensing Device
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of Water Infrastructure
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Rising preference for pH sensors for wastewater treatment and food & beverage processing
    • 5.2.2. Distribution mode: Increasing utilization of online distribution of water quality sensors to monitor parameters through remote access
    • 5.2.3. Application: Expanding usage of water quality sensors for drinking water quality control
    • 5.2.4. End User: Growing potential of water quality sensors in treatment plants for ensuring public health and safety
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Water Quality Sensors Market, by Type

  • 6.1. Introduction
  • 6.2. Chlorine Residual Sensor
  • 6.3. Conductivity Sensor
  • 6.4. ORP Sensor
  • 6.5. PH Sensor
  • 6.6. TOC Sensor
  • 6.7. Turbidity Sensor

7. Water Quality Sensors Market, by Distribution Mode

  • 7.1. Introduction
  • 7.2. Offline Mode
  • 7.3. Online Mode

8. Water Quality Sensors Market, by Application

  • 8.1. Introduction
  • 8.2. Agriculture Water Monitoring
  • 8.3. Chemical Leakage Detection In Rivers
  • 8.4. Drinking Water Quality Control
  • 8.5. Fish Farming
  • 8.6. Hydroponics
  • 8.7. Sea Pollution Level Control & Monitoring
  • 8.8. Swimming Pool Remote Measurement
  • 8.9. Waste Water Treatment

9. Water Quality Sensors Market, by End user

  • 9.1. Introduction
  • 9.2. Treatment Plants
  • 9.3. Water Distribution Facilities

10. Americas Water Quality Sensors Market

  • 10.1. Introduction
  • 10.2. Argentina
  • 10.3. Brazil
  • 10.4. Canada
  • 10.5. Mexico
  • 10.6. United States

11. Asia-Pacific Water Quality Sensors Market

  • 11.1. Introduction
  • 11.2. Australia
  • 11.3. China
  • 11.4. India
  • 11.5. Indonesia
  • 11.6. Japan
  • 11.7. Malaysia
  • 11.8. Philippines
  • 11.9. Singapore
  • 11.10. South Korea
  • 11.11. Taiwan
  • 11.12. Thailand
  • 11.13. Vietnam

12. Europe, Middle East & Africa Water Quality Sensors Market

  • 12.1. Introduction
  • 12.2. Denmark
  • 12.3. Egypt
  • 12.4. Finland
  • 12.5. France
  • 12.6. Germany
  • 12.7. Israel
  • 12.8. Italy
  • 12.9. Netherlands
  • 12.10. Nigeria
  • 12.11. Norway
  • 12.12. Poland
  • 12.13. Qatar
  • 12.14. Russia
  • 12.15. Saudi Arabia
  • 12.16. South Africa
  • 12.17. Spain
  • 12.18. Sweden
  • 12.19. Switzerland
  • 12.20. Turkey
  • 12.21. United Arab Emirates
  • 12.22. United Kingdom

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2023
  • 13.2. FPNV Positioning Matrix, 2023
  • 13.3. Competitive Scenario Analysis
    • 13.3.1. New water pollution monitoring system to make waves in the environmental monitoring sector
    • 13.3.2. NEW EUROPEAN RESEARCH PROJECT
    • 13.3.3. IIT Guwahati, Bombay, European partners building sensor to check Indian water quality
  • 13.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Atlas Scientific, LLC
  • 2. Danaher Corporation
  • 3. Hanna Instruments, Inc.
  • 4. HORIBA, Ltd.
  • 5. Innovative Sensor Technology IST AG
  • 6. KROHNE Group
  • 7. Libelium Comunicaciones Distribuidas SL
  • 8. Myron L Company
  • 9. O'Keefe Controls Co.
  • 10. ProMinent Fluid Controls, Inc.
  • 11. Rika Sensors
  • 12. Schneider Electric SE
  • 13. Schroeder Industries
  • 14. Shanghai BOQU Instrument Co.,Ltd
  • 15. The Miura Group
  • 16. Thermo Fisher Scientific Inc.
  • 17. Xylem Inc.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦