½ÃÀ庸°í¼­
»óǰÄÚµå
1676713

¼¼°èÀÇ ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ±¸¼º ¿ä¼Ò, ¼³Ä¡ À¯Çü, ±â¼ú, ÆÄ¶ó¹ÌÅÍ, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚº°, ¿¹Ãø(2025-2030³â)

Water Quality Online Analyzer Market by Component, Installation Type, Technology, Parameter, Application, End- User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 185 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀåÀº 2023³â¿¡ 38¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2024³â¿¡´Â 41¾ï 6,000¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù. CAGR 7.34%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 63¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2023³â) 38¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ(2024³â) 41¾ï 6,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 63¾ï 9,000¸¸ ´Þ·¯
CAGR(%) 7.34%

¿À´Ã³¯ ±Þ¼ÓÇÏ°Ô ÁøÈ­ÇÏ´Â ½ÃÀå¿¡¼­ µðÁöÅÐ ±â¼úÀº Çõ½ÅÀûÀÎ ¿Â¶óÀÎ ºÐ¼® ¼Ö·ç¼ÇÀ» µµÀÔÇÏ¿© ¼öÁú ºÐ¼®¿¡ Çõ¸íÀ» °¡Á®¿Ô½À´Ï´Ù. Á¤È®ÇÏ°í ½Ç½Ã°£ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ȯ°æÀÇ Áö¼Ó°¡´É¼ºÀ» ÇâÇÑ ÃßÁø·ÂÀ¸·Î »ê¾÷, À¯Æ¿¸®Æ¼, ¿¬±¸±â°üÀº °íµµÀÇ ºÐ¼®À» äÅÃÇÒ ¼ö¹Û¿¡ ¾ø½À´Ï´Ù. ÀÌ ±â¼ú ÁøÈ­´Â ¼öÁú ¸ð´ÏÅ͸µÀ» ÀçÁ¤ÀÇÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¾÷¹« È¿À²°ú ÀÇ»ç°áÁ¤ Á¤¹ÐµµÀÇ »õ·Î¿î ±âÁØÀ» È®¸³Çϰí ÀÖ½À´Ï´Ù.

¿Â¶óÀÎ ¼öÁú ºÐ¼®±âÀÇ ÃâÇöÀº ÀüÅëÀûÀÎ ½ÇÇè½Ç ±â¹Ý °Ë»ç°¡ Áö¼ÓÀûÀÎ µðÁöÅÐ ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ÀÇÇØ Á¡Á¡ º¸¿ÏµÇ°Å³ª ´ëüµÇ´Â »ýŰ踦 ¹Ý¿µÇÕ´Ï´Ù. ÀÌ Àåºñ´Â ÃÖ÷´Ü ¼¾¼­, µ¥ÀÌÅÍ ºÐ¼®, ¿ø°Ý ¸ð´ÏÅ͸µ ±â´ÉÀ» Ȱ¿ëÇÏ¿© ÇÁ·Î¼¼½º ÃÖÀûÈ­, »çȸ ¹× ±ÔÁ¦ ±âÁØ Áؼö, Àå±â ȯ°æ º¸È£ Àü·«¿¡ µµ¿òÀÌ µÇ´Â ½Ç½Ã°£ Áö½ÄÀ» Á¦°øÇÕ´Ï´Ù. ÀÌó·³ ¿ªµ¿ÀûÀ¸·Î º¯È­ÇÏ´Â »óȲ¿¡¼­ ±â¾÷Àº ¼öÀÚ¿ø °ü¸® Àü·«ÀÇ Çõ½Å°ú ÃÖ÷´Ü ±â¼úÀÇ ÅëÇÕÀ» °­¿äÇϰí ÀÖ½À´Ï´Ù.

R&D ÅõÀÚ Áõ°¡´Â ¾ö°ÝÇÑ ¼öÁú ±âÁØÀ» ÃæÁ·ÇÏ´Â ±ä±Þ¼º°ú ÇÔ²² ÀÌ·¯ÇÑ ¿Â¶óÀÎ ¼Ö·ç¼ÇÀÇ º¸±ÞÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÇ»ç°áÁ¤ÀÚ, ±â¼ú Àü¹®°¡, ȯ°æ ¿£Áö´Ï¾î°¡ ¹° °ü¸® ½Ã½ºÅÛÀÇ °­È­¸¦ ¸ð»öÇÏ´Â µ¿¾È, ÀÌ Á¾ÇÕÀûÀÎ ºÐ¼®Àº ½ÃÀå µ¿Çâ, ½Å±â¼ú, ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀåÀÇ ¹Ì·¡¸¦ Çü¼ºÇÏ´Â Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­¿¡ ´ëÇÑ ÀÌÇØ¸¦ ±í°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù.

º¯ÇõÀû º¯È­ : ¼öÁú ¿Â¶óÀÎ ºÐ¼®ÀÇ »óȲÀ» ÀçÁ¤ÀÇ

ÃÖ±Ù ¸î ³âµ¿¾È ¼öÁú ºÐ¼®ÀÇ »óȲÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²Ù´Â º¯È­ÀûÀÎ º¯È­°¡ ÀϾ°í ÀÖ½À´Ï´Ù. Á¤±âÀûÀÎ »ùÇøµ°ú ½ÇÇè½Ç ±â¹Ý ºÐ¼®¿¡ ÀÇÁ¸ÇÏ´Â ±âÁ¸ÀÇ °Ë»ç ±â¼úÀº ½Å¼Ó¼º°ú Á¤È®¼ºÀÌ ¿ä±¸µÇ´Â ¼¼°è¿¡¼­ ºñÈ¿À²ÀûÀÌ°í ¹ÝÀÀÀûÀÎ °ÍÀ¸·Î °£Áֵ˴ϴÙ. »õ·Î¿î ÅëÇÕ ºÐ¼® ½Ã½ºÅÛÀº ¿øÈ°ÇÑ µ¥ÀÌÅÍ È¹µæÀ» º¸ÀåÇϰí Áö¼ÓÀûÀÎ ½Ç½Ã°£ ¸ð´ÏÅ͸µÀ» Á¦°øÇϸç Á¤È®¼º°ú ÀÀ´ä ½Ã°£ ¸ðµÎ¿¡¼­ ȹ±âÀûÀÎ ¹ßÀüÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù.

±â¼úÀÇ Áøº¸¿Í º´ÇàÇÏ¿©, ±ÔÁ¦ÀÇ º¯È­¿Í ȯ°æ ÀÇ½Ä Áõ°¡´Â ÀÌ·¯ÇÑ º¯È­¸¦ ÃËÁøÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¼ÒºñÀÚÀÇ ±â´ë°¨°ú ¹° ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ ¸ð´ÏÅ͸µ¿¡ Á÷¸éÇÑ ±â¾÷Àº ÀÎÀû ¿À·ù¸¦ ÃÖ¼ÒÈ­Çϸ鼭 º¸´Ù ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅ͸¦ Á¦°øÇÏ´Â ÀÚµ¿È­µÈ ¿ø°Ý ¸ð´ÏÅ͸µ ¼Ö·ç¼Ç¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ±â¹Ý µ¥ÀÌÅÍ °ü¸® ½Ã½ºÅÛ, ÷´Ü ¼¾¼­, °ß°íÇÑ ±³Á¤ ¼­ºñ½ºÀÇ ÅëÇÕÀº ¼ø¼öÇÑ »çÈÄ º¹±¸¿¡¼­ »çÀü ¼öÁú °ü¸®·ÎÀÇ ÆÐ·¯´ÙÀÓ À̵¿À» °¡Á®¿Ô½À´Ï´Ù.

¶ÇÇÑ ÅëÇÕ ³×Æ®¿öÅ© ȯ°æ¿¡¼­ Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º °£ÀÇ ¿¬°á¼ºÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷ÀÌ ¿î¿µ Àü·«À» ´Ù½Ã »ý°¢Çϵµ·Ï Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº Á¤È®¼º°ú ÀÛ¾÷ È¿À²À» Çâ»ó½Ãų »Ó¸¸ ¾Æ´Ï¶ó Àå±âÀûÀÎ ¿î¿µ ºñ¿ëÀ» ÁÙÀ̱â À§ÇØ Á¤È®¼º°ú Áö¼Ó°¡´É¼ºÀ» ¼±È£ÇÏ´Â ¾÷°è¿¡ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ Çõ½ÅÀûÀÎ º¯È­´Â ÇöÀç Áö¼ÓÀûÀÎ °³¼±, ¹Îø¼º ¹× È®À强ÀÌ ¼öÁú °ü¸®¸¦ ¼º°øÀûÀ¸·Î À̲ø¾î³»´Â »õ·Î¿î ´Ü°è¸¦ ¸¶·ÃÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ºÎ¹®¿¡ ´ëÇÑ ÅëÂû ½ÃÀå ¿ªÇÐ ¹× ºñÁî´Ï½º ±âȸ ºÐ¼®

¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀåÀ» »ó¼¼ÇÏ°Ô ºÐ¼®ÇÏ¸é ¾÷°èÀÇ ¿©·¯ Ãø¸éÀ» ºñÃß´Â ´Ù¸éÀûÀÎ ¼¼ºÐÈ­ÀÇ °üÁ¡ÀÌ º¸ÀÔ´Ï´Ù. ½ÃÀåÀº ÁÖ·Î ±¸¼º ¿ä¼Ò¿¡ µû¶ó ¼¼ºÐÈ­µÇ¸ç Çϵå¿þ¾î, ¼­ºñ½º ¹× ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ °ÉÃÄ Á¶»ç°¡ ¼öÇàµË´Ï´Ù. Çϵå¿þ¾î ºÐ¾ß¿¡¼­´Â ºÐ¼®±â À¯´Ö, À¯·®°è, ÆßÇÁ, ¼¾¼­ ¹× ÇÁ·Îºê¿Í °°Àº Àü¿ë À¯´ÖÀÌ Æ÷ÇԵǾî ÀÖÀ¸¸ç °¢°¢ÀÌ Á¤È®ÇÑ ÃøÁ¤ ¹× Á¦¾î¸¦ º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÇÑÆí, ¼­ºñ½º ºÎ¹®¿¡¼­´Â ±³Á¤, ¼³Ä¡, À¯Áöº¸¼ö ¼­ºñ½º¸¦ ÅëÇØ ºÎ°¡°¡Ä¡¸¦ ³ôÀÌ°í ±âº»ÀûÀÎ Çϵå¿þ¾î ÅõÀÚÀÇ ¼ö¸í°ú ½Å·Ú¼ºÀ» È®º¸ÇÏ´Â µ¥ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î Ãø¸é¿¡¼­ Á¤±³ÇÑ µ¥ÀÌÅÍ ºÐ¼® µµ±¸¿Í ¿ø°Ý ¸ð´ÏÅ͸µ Ç÷§ÆûÀº ¿ø½Ã µ¥ÀÌÅ͸¦ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ¸·Î º¯È¯ÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¿¡¼­´Â ¼³Ä¡ À¯Çüº°·Î ½ÃÀåÀ» º¥Ä¡Å¾Çü, ÈÞ´ë¿ëÇü, µ¶¸³ÇüÀ¸·Î ºÐ·ùÇϰí ÀÖ½À´Ï´Ù. °¢ ¼³Ä¡ À¯ÇüÀº °íÁ¤µÈ ½ÇÇè½Ç ȯ°æ¿¡¼­ºÎÅÍ À¯¿¬¼º°ú À̵¿¼ºÀÌ ÇÊ¿äÇÑ ¿ø°ÝÁö¿¡¼­ÀÇ ÇöÀå ÀÛ¾÷¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿î¿µ ¿ä±¸¸¦ ÃæÁ·Çϵµ·Ï Á¦À۵Ǿú½À´Ï´Ù. ±â¼ú¿¡ ±âÃÊÇÑ ±¸ºÐÀº ¿°·á ¹× ½Ã¾à, Àü±âÈ­ÇÐ ¼¾¼­, ±¤ÇÐ ¼¾¼­ÀÇ ±¸º°À» °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼ú ºÐ·ù´Â Á¤È®¼º, ºñ¿ë È¿°ú ¹× À¯Áö º¸¼ö Ãø¸é¿¡¼­ ´Ù¾çÇÑ ÀÌÁ¡À» Á¦°øÇÏ´Â ¼öÁú ÃøÁ¤ÀÇ ´Ù¾çÇÑ ¸ÞÄ¿´ÏÁòÀ» ¹Ý¿µÇÕ´Ï´Ù.

¼¼ºÐÈ­ÀÇ ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿µ¿ªÀº ÆÄ¶ó¹ÌÅÍ¿¡ ±âÃÊÇÕ´Ï´Ù. ¿©±â¿¡¼­´Â Á¶·ù ¹× ½Ã¾Æ³ë¹ÚÅ׸®¾Æ, ¼¼±Õ, ¿ø»ýµ¿¹°, ¹ÙÀÌ·¯½º¸¦ Æ÷ÇÔÇÑ »ý¹°ÇÐÀû ÆÄ¶ó¹ÌÅÍ, ¿ëÁ¸ »ê¼Ò, °æµµ, Á߱ݼÓ, ¿µ¾ç¼Ò, À¯±â ¿À¿° ¹°Áú, »ìÃæÁ¦ ¹× Á¦ÃÊÁ¦, pH ·¹º§, ¿°ºÐ ¹× ¿°È­¹°, Àü À¯±â ź¼Ò¸¦ Æ÷ÇÔÇÏ´Â È­ÇÐÀû ÆÄ¶ó¹ÌÅÍ, »ö, µµÀüÀ², ¸À ¹× ³¿»õ, ¿Âµµ, ÃÑ ºÎÀ¯ °íÇü¹°, ʵµ¿Í °°Àº ¹°¸®Àû ¸Å°³º¯¼ö¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ¿ëµµ¿¡ ±Ù°ÅÇÑ ¼¼ºÐÈ­¿¡¼­´Â Á߱ݼÓ, Áú»ê¿°, ±â¸§ À¯Ãâ ¸ð´ÏÅ͸µ µîÀÇ ¿À¿° °ËÃâ, ¸À ¹× ³¿»õ³ª ʵµ °ü¸® µîÀÇ Ç°Áú º¸Áõ ´ëÃ¥, ÀÀ°í Á¦¾î, ¼Òµ¶, pH Á¶Á¤ µîÀÇ ¼öó¸® µî ±â¼úÀÇ ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ½ÃÀåÀ» ºÐ·ùÇϰí ÀÖ½À´Ï´Ù.

¸¶Áö¸·À¸·Î ÃÖÁ¾ »ç¿ëÀÚ ±â¹Ý ¼¼ºÐÈ­´Â ¼öÁú ¿Â¶óÀÎ ºÐ¼® ÀåÄ¡°¡ ¹èÄ¡µÈ ´Ù¾çÇÑ ÀÀ¿ë ºÐ¾ß¸¦ °­Á¶ÇÕ´Ï´Ù. ÁÖ¿ä ÃÖÁ¾ »ç¿ëÀÚ ºÎ¹®¿¡´Â ¾î¾÷ ¸ð´ÏÅ͸µ ¹× Á¾ÇÕÀûÀÎ ¼öÁú °ü¸®¿¡ ÁßÁ¡À» µÐ ¾ç½Ä, ÇÏõ ¸ð´ÏÅ͸µ ¹× Æó¼ö 󸮸¦ ¸ðµÎ Æ÷ÇÔÇϴ ȯ°æ ¿ëµµ, À½½Ä ¹× Á¦¾à »ê¾÷¿¡ À̸£´Â »ê¾÷ ºÐ¾ß, µµ½Ã Áö¿ª »çȸÀÇ ¼öÁú ¿ä±¸¿¡ ´ëÀÀÇÏ´Â ÁöÀÚü¿¡¼­ÀÇ »ç¿ëÀÌ Æ÷ÇԵ˴ϴÙ. ÀÌ·¯ÇÑ ¼¼ºÐÈ­´Â ½ÃÀå ¼ö¿ä ÃËÁø¿äÀο¡ ´ëÇÑ ¼¼¹ÐÇÑ °üÁ¡À» Á¦°øÇϰí ÀÇ»ç °áÁ¤ÀÚ¿¡°Ô ÅõÀÚ ¿ì¼± ¼øÀ§ ÁöÁ¤°ú ´Ù¾çÇÑ °í°´ ¿ä±¸¿¡ ¸Â´Â Çõ½ÅÀûÀÎ ¼Ö·ç¼Ç Á¶Á¤¿¡ ´ëÇÑ Áß¿äÇÑ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼öÁú ¿À¿°ÀÌ Àΰ£ÀÇ °Ç°­°ú »ýŰ迡 ¹ÌÄ¡´Â ¿µÇâ¿¡ ´ëÇÑ ¼¼°èÀÇ Àνİú ¿ì·Á Áõ°¡
      • »ê¾÷È­¿Í µµ½ÃÈ­ÀÇ ¹ßÀüÀ¸·Î È¿À²ÀûÀÎ ¹° °ü¸® ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡
      • »ý»ê¼ºÀ» ³ôÀ̱â À§ÇØ ÃÖÀûÀÇ ¼öÁúÀ» È®º¸ÇÑ´Ù°í ÇÏ´Â ¾ç½Ä¾÷À̳ª ³ó¾÷ ¾÷°è·ÎºÎÅÍ ¼ö¿ä Áõ°¡
    • ¾ïÁ¦¿äÀÎ
      • ¼öÁú ¿Â¶óÀÎ ºÐ¼® ÀåÄ¡ÀÇ µµÀÔ°ú ½ÇÀå¿¡´Â ³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë
    • ±âȸ
      • ¼¾¼­ ±â¼úÀÇ Áøº¸¿¡ ÀÇÇØ ¼öÁú ¿Â¶óÀÎ ºÐ¼® ÀåÄ¡ÀÇ È¿À²ÀÌ Çâ»ó
      • »ê¾÷°è³ª ȯ°æ ±â°ü¿ëÀ¸·Î, ¿ÜÃâó¿¡¼­ÀÇ ¼öÁú °Ë»ç¿ëÀÇ ÈÞ´ë¿ë ºÐ¼® ÀåÄ¡ÀÇ °³¹ß
    • °úÁ¦
      • ¿Â¶óÀÎ ¼öÁú ºÐ¼® ÀåÄ¡ÀÇ »ç¿ë¿¡ ¼ö¹ÝÇÏ´Â µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾ÈÀÇ ¿ì·Á
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • ±¸¼º ¿ä¼Ò : ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸®¿Í ¿ø°Ý ¾×¼¼½º·Î ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ È£°¨µµ°¡ ³ô¾ÆÁö°í ÀÖ´Ù
    • ¼³Ä¡ À¯Çü : ºü¸£°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ÃøÁ¤ °á°ú·Î À̵¿ Áß¿¡ ¼öÁú °Ë»ç¸¦ À§ÇÑ ÈÞ´ë¿ë ºÐ¼® ÀåºñÀÇ ÀαⰡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
    • ±â¼ú : °ß°í¼º°ú ½Ç½Ã°£ ¸ð´ÏÅ͸µ ´É·ÂÀ¸·Î Àü±âÈ­ÇÐ ¼¾¼­ ä¿ë Áõ°¡
    • ¸Å°³ º¯¼ö : »ê¾÷ »ç¿ë ¹× °øÁß º¸°Ç È®º¸¿¡ ÇʼöÀûÀÎ ¹°ÀÇ Á¾ÇÕÀûÀÎ È­ÇÐ ÇÁ·ÎÆÄÀϸµÀÇ Çʿ伺À¸·Î ÀÎÇØ È­ÇÐ ¸Å°³º¯¼öÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
    • ÀÀ¿ë : ¼ö¿ª ³»ÀÇ Æ¯Á¤ ¿À¿°¹°ÁúÀ» ¸ð´ÏÅ͸µÇϱâ À§ÇÑ ¿À¿° °ËÃâ¿¡ À־ÀÇ ¼öÁú ¿Â¶óÀÎ ºÐ¼®±âÀÇ ÀÀ¿ë È®´ë
    • ÃÖÁ¾ »ç¿ëÀÚ : ȯ°æÀÇ Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ¼¼°èÀûÀÎ °ü½ÉÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ȯ°æ ºÐ¾ß¿¡¼­ ¼öÁú ¿Â¶óÀÎ ºÐ¼®±âÀÇ Ã¤ÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦
    • »çȸ
    • ±â¼úÀû
    • ¹ý·ü»ó
    • ȯ°æ

Á¦6Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ±¸¼º ¿ä¼Òº°

  • Çϵå¿þ¾î
    • ºÐ¼®±â À¯´Ö
    • À¯·®°è¿Í ÆßÇÁ
    • ¼¾¼­¿Í ÇÁ·Îºê
  • ¼­ºñ½º
    • ±³Á¤ ¼­ºñ½º
    • ¼³Ä¡ ¼­ºñ½º
    • À¯Áöº¸¼ö ¼­ºñ½º
  • ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç
    • µ¥ÀÌÅÍ ºÐ¼® µµ±¸
    • ¿ø°Ý ¸ð´ÏÅ͸µ

Á¦7Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ¼³Ä¡ À¯Çüº°

  • º¥Ä¡Å¾
  • ÈÞ´ë¿ë
  • µ¶¸³Çü

Á¦8Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ±â¼úº°

  • ¿°·á¿Í ½Ã¾à
  • Àü±âÈ­ÇÐ ¼¾¼­
  • ±¤ÇÐ ¼¾¼­

Á¦9Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ÆÄ¶ó¹ÌÅͺ°

  • »ý¹°ÇÐÀû ÆÄ¶ó¹ÌÅÍ
    • Á¶·ù¿Í ½Ã¾Æ³ë¹ÚÅ׸®¾Æ
    • ¹ÚÅ׸®¾Æ
    • ¿ø»ýµ¿¹°
    • ¹ÙÀÌ·¯½º
  • È­ÇÐ ÆÄ¶ó¹ÌÅÍ
    • ¿ëÁ¸»ê¼Ò
    • °æµµ
    • Á߱ݼÓ
    • ¿µ¾ç¼Ò
    • À¯±â¿À¿°¹°Áú
    • »ìÃæÁ¦¿Í Á¦ÃÊÁ¦
    • pH ·¹º§
    • ¿°ºÐ°ú ¿°È­¹°
    • ÃÑ À¯±â ź¼Ò
  • ¹°¸®Àû ÆÄ¶ó¹ÌÅÍ
    • »ö
    • ÀüµµÀ²
    • ¸À°ú Çâ±â
    • ¿Âµµ
    • ÃÑ ºÎÀ¯¹°Áú
    • ʵµ

Á¦10Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ¿ëµµº°

  • ¿À¿° °ËÃâ
    • Áß±Ý¼Ó ¸ð´ÏÅ͸µ
    • Áú»ê¿° ¸ð´ÏÅ͸µ
    • ±â¸§ À¯Ãâ °¨Áö
  • ǰÁú º¸Áõ
    • ¸À°ú ³¿»õÀÇ ÄÁÆ®·Ñ
    • ʵµ Á¦¾î
  • ¼öó¸®
    • ÀÀ°íÁ¦¾î
    • ¼Òµ¶
    • pH Á¶Á¤

Á¦11Àå ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¾ç½Ä¾÷
    • ¾î¾÷ °¨½Ã
    • ¼öÁú °ü¸®
  • ȯ°æ
    • ÇÏõ °¨½Ã
    • Æó¼ö ó¸®
  • »ê¾÷
    • ½ÄÀ½·á ¾÷°è
    • Á¦¾à¾÷°è
  • ½Ã¿µ

Á¦12Àå ¾Æ¸Þ¸®Ä« ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå

  • ¾Æ¸£ÇîÆ¼³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦13Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼öÁú ¿Â¶óÀÎ ºÐ¼®±â ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍŰ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦15Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2023
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2023
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
  • Àü·« ºÐ¼®°ú Á¦¾È

±â¾÷ ¸ñ·Ï

  • ABB Ltd.
  • Aqualabo
  • Badger Meter, Inc.
  • bNovate Technologies
  • Campbell Scientific, Inc.
  • Chemtrac LLC
  • Christian Burkert GmbH & Co. KG
  • Emerson Electric Co.
  • Endress Hauser Group Services AG
  • GE Vernova
  • Hanna Instruments, Inc.
  • Honeywell International Inc.
  • HORIBA, Ltd.
  • Krohne Group
  • LaMotte Company
  • Metrohm AG
  • Mettler-Toledo International Inc.
  • Pentair PLC
  • Process Insights, Inc.
  • Shanghai BOQU Instrument Co., Ltd
  • Shenzhen Lianhua Technology Co., Ltd.
  • Shimadzu Corporation
  • Siemens AG
  • SWAN Analytical Instruments AG
  • Teledyne Technologies Incorporated
  • Thermo Fisher Scientific Inc.
  • Tintometer GmbH
  • Veolia Water Technologies & Solutions
  • Veralto Corporation
  • Xylem Inc.
  • Yokogawa Electric Corporation
SHW 25.03.20

The Water Quality Online Analyzer Market was valued at USD 3.89 billion in 2023 and is projected to grow to USD 4.16 billion in 2024, with a CAGR of 7.34%, reaching USD 6.39 billion by 2030.

KEY MARKET STATISTICS
Base Year [2023] USD 3.89 billion
Estimated Year [2024] USD 4.16 billion
Forecast Year [2030] USD 6.39 billion
CAGR (%) 7.34%

In today's rapidly evolving market, digital technology has revolutionized water quality analysis by introducing innovative online analyzer solutions. The increased demand for accurate, real-time data and the drive toward environmental sustainability have forced industries, public utilities, and research organizations to embrace advanced analytics. This technological evolution is not only redefining water quality monitoring but is also establishing a new benchmark for operational efficiency and decision-making accuracy.

The advent of online water quality analyzers reflects an ecosystem in which traditional laboratory-based testing is increasingly complemented-or even replaced-by continuous, digital monitoring systems. These devices harness state-of-the-art sensors, data analytics, and remote monitoring capabilities to provide real-time insights that inform process optimization, compliance with social and regulatory standards, and long-term environmental protection strategies. In this dynamically shifting landscape, organizations are compelled to innovate and integrate cutting-edge technology into their water resource management strategies.

The growing investment in research and development combined with the urgency of meeting stringent water quality standards is driving the proliferation of these online solutions. As decision-makers, technical experts, and environmental engineers seek to enhance water management systems, this comprehensive analysis offers a deeper understanding of market trends, emerging technologies, and the comprehensive segmentation that is shaping the future of the water quality online analyzer market.

Transformative Shifts: Redefining the Landscape of Water Quality Online Analysis

The last few years have witnessed transformative shifts that are fundamentally altering the water quality analysis landscape. Traditional testing methodologies, which relied on periodic sampling and laboratory-based analyses, are increasingly viewed as inefficient and reactive in a world that demands immediacy and precision. New integrated analyzer systems ensure seamless data acquisition and offer continuous real-time monitoring, a leap forward in both accuracy and response time.

In parallel with technological advancements, regulatory changes and a growing environmental consciousness have played significant roles in prompting this transformation. Faced with rising consumer expectations and intense scrutiny regarding water safety, organizations are investing in automated and remote monitoring solutions that provide more reliable data while minimizing human error. The integration of cloud-based data management systems, advanced sensors, and robust calibration services has resulted in a paradigm shift from purely reactive remediation to proactive water quality management.

Moreover, the growing connectivity between hardware, software, and services in an integrated network environment has encouraged companies to rethink their operational strategies. These systems not only offer enhanced precision and operational efficiency but also reduce long-term operational costs, thereby making them indispensable for industries that prioritize accuracy and sustainability. This transformative shift is now setting a new stage where continuous improvement, agility, and scalability are the cornerstones of successful water quality management.

Key Segmentation Insights: Dissecting Market Dynamics and Opportunities

An in-depth analysis of the water quality online analyzer market reveals a multifaceted segmentation perspective that illuminates various dimensions of the industry. The market is primarily segmented based on Component, where the study extends across Hardware, Services, and Software Solutions. Within hardware, analyzers include specialized units such as analyzer units, flow meters & pumps, and sensors & probes, each playing a critical role in ensuring precise measurement and control. Meanwhile, the services segment focuses on the value addition through calibration, installation, and maintenance services, ensuring lifespan and reliability of the fundamental hardware investments. On the software side, sophisticated data analysis tools and remote monitoring platforms are pivotal in converting raw data into actionable insights.

Further segmentation based on Installation Type divides the market into benchtop, portable, and stand-alone solutions. Each installation type is crafted to meet differing operational needs, ranging from fixed laboratory settings to remote field operations requiring flexibility and mobility. The segmentation based on Technology underscores distinctions among dyes & reagents, electrochemical sensors, and optical sensors. This technological categorization reflects the different mechanisms by which water quality can be determined, offering various benefits in terms of accuracy, cost-effectiveness, and maintenance.

Another critical area of segmentation is based on Parameter. Here, market insights are derived by examining biological parameters that include algae & cyanobacteria, bacteria, protozoa, and viruses; chemical parameters, which involve dissolved oxygen, hardness, heavy metals, nutrients, organic pollutants, pesticides & herbicides, pH level, salinity & chloride, and total organic carbon; and physical parameters, comprising aspects like color, conductivity, taste & odor, temperature, total suspended solids, and turbidity. The segmentation based on Application categorizes the market by the end use of the technology, encompassing pollution detection-such as heavy metal, nitrate, and oil spill monitoring-quality assurance measures, including taste & odor and turbidity control, and water treatment aspects like coagulation control, disinfection, and pH adjustment.

Finally, segmentation based on End-User highlights the varied application areas where water quality online analyzers are deployed. Leading end-user segments include aquaculture, with a focus on fishery monitoring and comprehensive water quality management, environmental applications covering both river monitoring and wastewater treatment; industrial sectors, which extend to the food & beverage and pharmaceutical industries; and municipal usage, addressing the water quality needs of urban communities. These layers of segmentation provide a granular perspective into the market's demand drivers and offer decision-makers vital insights into prioritizing investments and tailoring innovative solutions to meet diverse customer needs.

Based on Component, market is studied across Hardware, Services, and Software Solutions. The Hardware is further studied across Analyzer Units, Flow Meters & Pumps, and Sensors & Probes. The Services is further studied across Calibration Services, Installation Services, and Maintenance Services. The Software Solutions is further studied across Data Analysis Tools and Remote Monitoring.

Based on Installation Type, market is studied across Benchtop, Portable, and Stand-Alone.

Based on Technology, market is studied across Dyes & Reagents, Electrochemical Sensors, and Optical Sensors.

Based on Parameter, market is studied across Biological Parameters, Chemical Parameters, and Physical Parameters. The Biological Parameters is further studied across Algae & Cyanobacteria, Bacteria, Protozoa, and Viruses. The Chemical Parameters is further studied across Dissolved Oxygen, Hardness, Heavy Metals, Nutrients, Organic Pollutants, Pesticides & Herbicides, pH Level, Salinity & Chloride, and Total Organic Carbon. The Physical Parameters is further studied across Color, Conductivity, Taste & Odor, Temperature, Total Suspended Solids, and Turbidity.

Based on Application, market is studied across Pollution Detection, Quality Assurance, and Water Treatment. The Pollution Detection is further studied across Heavy Metal Monitoring, Nitrate Monitoring, and Oil Spill Detection. The Quality Assurance is further studied across Taste & Odor Control and Turbidity Control. The Water Treatment is further studied across Coagulation Control, Disinfection, and pH Adjustment.

Based on End- User, market is studied across Aquaculture, Environmental, Industrial, and Municipal. The Aquaculture is further studied across Fishery Monitoring and Water Quality Management. The Environmental is further studied across River Monitoring and Wastewater Treatment. The Industrial is further studied across Food & Beverage Industry and Pharmaceutical Industry.

Regional Perspectives: Diverse Influences Across Global Markets

Regional dynamics are intrinsic to understanding the evolution and growth potential of water quality online analyzers. In the Americas, we observe robust market dynamics bolstered by significant investments in industrial modernization and stringent environmental regulatory frameworks. North American and South American regions have embraced automated water quality monitoring systems to drive operational efficiencies in both urban water management and industrial process control, thereby laying a robust foundation for future expansion.

Across Europe, the Middle East, and Africa, an intricate blend of established infrastructures, emerging regulatory mandates, and diverse climatic challenges propels the demand for innovative water monitoring solutions. European nations, with their progressive environmental laws, are increasingly relying on continuous monitoring technologies. In contrast, Middle Eastern and African regions are aligning technology advancement with rapid urbanization and industrial growth, harmonizing local water management practices with international standards.

In the Asia-Pacific region, the water quality analyzer market has experienced significant acceleration due to rapid industrialization, urban expansion, and heightened public awareness regarding environmental sustainability. The confluence of government initiatives, private sector investments, and growing demand for superior water quality has spurred substantial growth in this region. These regional insights collectively illustrate that, despite diverse local challenges and operational contexts, a global trend exists towards leveraging real-time, automated water quality monitoring solutions to effectively balance economic growth with sustainable environmental practices.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Corporate Insights: Leading the Charge with Technological Prowess and Innovation

A group of key industry players is driving the global shift toward advanced water quality monitoring solutions, positioning themselves at the forefront of technological innovation and market dominance. Pioneering companies like ABB Ltd. and Aqualabo have been instrumental in setting high engineering standards, while firms such as Badger Meter, Inc. and bNovate Technologies are enhancing the accessibility and operational efficiency of monitoring systems. These organizations have consistently delivered solutions that streamline processes for a range of applications.

Other influential players, including Campbell Scientific, Inc. and Chemtrac LLC, focus on integrating traditional hardware expertise with modern digital interfaces, thereby catering to growing demands for precision and real-time analytics. Companies such as Christian Burkert GmbH & Co. KG, Emerson Electric Co., and Endress+Hauser Group Services AG have shown a deep commitment to research and innovation, constantly pushing the boundaries of what these analyzer systems can deliver. GE Vernova and Hanna Instruments, Inc. have similarly set industry benchmarks for reliability and performance.

Additional leaders such as Honeywell International Inc. and HORIBA, Ltd. have been pivotal in merging advanced sensor technology with robust data analysis capabilities. The influence of global corporations extends further with players like Krohne Group, LaMotte Company, Metrohm AG, and Mettler-Toledo International Inc. continuing to develop integrated solutions that target the modern challenges of water quality management. The expertise of companies including Pentair PLC, Process Insights, Inc., Shanghai BOQU Instrument Co., Ltd., and Shenzhen Lianhua Technology Co., Ltd. has enriched the landscape, making high-precision water monitoring accessible to a diverse client base. Notably, industry giants like Shimadzu Corporation, Siemens AG, SWAN Analytical Instruments AG, and Teledyne Technologies Incorporated have made commendable strides towards integrating digital technologies with traditional methodologies. Leading research organizations such as Thermo Fisher Scientific Inc., Tintometer GmbH, Veolia Water Technologies & Solutions, Veralto Corporation, Xylem Inc., and Yokogawa Electric Corporation further highlight the concerted effort across the board to innovate and elevate water quality online measurement standards. The collective behind these companies rests on a foundation of robust research, diversified technology adoption, and a forward-thinking culture that is influencing the market trajectory globally.

The report delves into recent significant developments in the Water Quality Online Analyzer Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Aqualabo, Badger Meter, Inc., bNovate Technologies, Campbell Scientific, Inc., Chemtrac LLC, Christian Burkert GmbH & Co. KG, Emerson Electric Co., Endress+Hauser Group Services AG, GE Vernova, Hanna Instruments, Inc., Honeywell International Inc., HORIBA, Ltd., Krohne Group, LaMotte Company, Metrohm AG, Mettler-Toledo International Inc., Pentair PLC, Process Insights, Inc., Shanghai BOQU Instrument Co., Ltd, Shenzhen Lianhua Technology Co., Ltd., Shimadzu Corporation, Siemens AG, SWAN Analytical Instruments AG, Teledyne Technologies Incorporated, Thermo Fisher Scientific Inc., Tintometer GmbH, Veolia Water Technologies & Solutions, Veralto Corporation, Xylem Inc., and Yokogawa Electric Corporation. Strategic Recommendations: Empowering Industry Leaders for Future Success

Industry leaders looking to excel in the dynamic world of water quality online analysis must consider a strategic transformation to align with emerging market realities. Foremost, integrating cutting-edge technologies into existing monitoring frameworks is essential. Companies should invest in an expanded array of sensor technologies, including electrochemical and optical sensors, to enhance the precision and reliability of water quality data across various parameters. Alongside this technological upgrade, there is a pronounced need to bolster calibration, installation, and maintenance service capabilities to ensure that monitoring systems deliver consistent performance throughout their lifecycle.

A proactive strategy should also focus on enhancing digital interfaces and deploying advanced data analysis tools. By rolling out comprehensive remote monitoring platforms, organizations can facilitate real-time reporting and quicker decision-making processes, which are paramount in today's fast-paced environment. Expanding the work on developing portable and stand-alone analyzer solutions will increase adaptability, ensuring that water quality monitoring systems can be employed in diverse settings-from fixed laboratories to remote field installations. Moreover, fostering collaborative research efforts and technology partnerships can accelerate the development of innovative solutions and integrate best practices developed across different geographical regions.

Another key recommendation is to diversify product offerings to cater to varied applications. For instance, tailored solutions that address specific industry needs, whether for pollution detection, quality assurance, or water treatment, can be game changers. Customizing offerings to meet the detailed criteria of different end-users, such as aquaculture, environmental monitoring, industrial applications, and municipal water management, can drive wider market adoption. Finally, it is vital to allocate resources toward robust training programs that empower technical staff to operate and maintain these modern systems, ensuring long-term success, enhanced operational efficiency, and sustainable growth in the competitive marketplace.

Conclusion: Charting the Future of Water Quality Online Analysis

The evolution of water quality online analyzers represents more than just a technological update-it signifies a fundamental shift in how organizations approach water management. Modern solutions now combine advanced sensor technologies, powerful data analytics, and comprehensive support services to offer a unified and real-time view into water quality management. Such integrative solutions empower industries, municipalities, and environmental agencies to quickly detect anomalies, respond to regulatory challenges, and ultimately foster a more sustainable future.

Through robust segmentation analysis, we have examined the diverse components that drive the market-from hardware innovations that include flow meters, pumps, and sensors to the crucial roles played by calibration and remote monitoring services. Detailed insights into installation types, various sensor technologies, diverse water quality parameters, and an array of applications highlight that the industry is witnessing expansive growth. Furthermore, understanding the key roles played by different end-user segments like aquaculture, industrial processes, environmental monitoring, and municipal services provides a clear roadmap for targeting future investments and development efforts.

Collectively, the analysis underscores that continuous improvement is essential. Industry players must focus on enhancing technological capabilities while tailoring their product portfolios to meet specific regional and application-based needs. Such a holistic approach not only improves operational efficiencies but also aligns with the overarching need for sustainability in water management practices. By embracing these technological and strategic shifts, the market is poised for a transformative leap into a future where water quality is monitored more accurately and managed more efficiently than ever before.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Growing global awareness and concern about the impacts of water pollution on human health and ecosystems
      • 5.1.1.2. Increasing industrialization and urbanization leading to heightened demand for efficient water management systems
      • 5.1.1.3. Growing demand from aquaculture and agriculture industries to ensure optimum water conditions for productivity
    • 5.1.2. Restraints
      • 5.1.2.1. High initial investment costs involved in the adoption and implementation of water quality online analyzers
    • 5.1.3. Opportunities
      • 5.1.3.1. Technological advancements in sensor technology enhancing the efficiency of water quality online analyzers
      • 5.1.3.2. Developing portable analyzers for on-the-go water testing for industries and environmental agencies
    • 5.1.4. Challenges
      • 5.1.4.1. Data privacy and security concerns associated with the use of online water quality analyzers
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Component: Increasing preference for software solutions owing to real-time data processing and remote accessibility
    • 5.2.2. Installation Type: Growing preference for portable analyzers for on-the-go water testing owing to their swift and reliable readings
    • 5.2.3. Technology: Increasing adoption of electrochemical sensors owing to their robustness and ability to provide real-time monitoring
    • 5.2.4. Parameter: Growing significance of chemical parameters owing to the necessity for comprehensive chemical profiling of water essential for industrial usage and public health assurance
    • 5.2.5. Application: Expanding applications of water quality online analyzer in pollution detection to monitor specific pollutants in water bodies
    • 5.2.6. End- User: Increasing adoption of water quality online analyzer in the environmental sector owing to escalating global emphasis on environmental sustainability
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Water Quality Online Analyzer Market, by Component

  • 6.1. Introduction
  • 6.2. Hardware
    • 6.2.1. Analyzer Units
    • 6.2.2. Flow Meters & Pumps
    • 6.2.3. Sensors & Probes
  • 6.3. Services
    • 6.3.1. Calibration Services
    • 6.3.2. Installation Services
    • 6.3.3. Maintenance Services
  • 6.4. Software Solutions
    • 6.4.1. Data Analysis Tools
    • 6.4.2. Remote Monitoring

7. Water Quality Online Analyzer Market, by Installation Type

  • 7.1. Introduction
  • 7.2. Benchtop
  • 7.3. Portable
  • 7.4. Stand-Alone

8. Water Quality Online Analyzer Market, by Technology

  • 8.1. Introduction
  • 8.2. Dyes & Reagents
  • 8.3. Electrochemical Sensors
  • 8.4. Optical Sensors

9. Water Quality Online Analyzer Market, by Parameter

  • 9.1. Introduction
  • 9.2. Biological Parameters
    • 9.2.1. Algae & Cyanobacteria
    • 9.2.2. Bacteria
    • 9.2.3. Protozoa
    • 9.2.4. Viruses
  • 9.3. Chemical Parameters
    • 9.3.1. Dissolved Oxygen
    • 9.3.2. Hardness
    • 9.3.3. Heavy Metals
    • 9.3.4. Nutrients
    • 9.3.5. Organic Pollutants
    • 9.3.6. Pesticides & Herbicides
    • 9.3.7. pH Level
    • 9.3.8. Salinity & Chloride
    • 9.3.9. Total Organic Carbon
  • 9.4. Physical Parameters
    • 9.4.1. Color
    • 9.4.2. Conductivity
    • 9.4.3. Taste & Odor
    • 9.4.4. Temperature
    • 9.4.5. Total Suspended Solids
    • 9.4.6. Turbidity

10. Water Quality Online Analyzer Market, by Application

  • 10.1. Introduction
  • 10.2. Pollution Detection
    • 10.2.1. Heavy Metal Monitoring
    • 10.2.2. Nitrate Monitoring
    • 10.2.3. Oil Spill Detection
  • 10.3. Quality Assurance
    • 10.3.1. Taste & Odor Control
    • 10.3.2. Turbidity Control
  • 10.4. Water Treatment
    • 10.4.1. Coagulation Control
    • 10.4.2. Disinfection
    • 10.4.3. pH Adjustment

11. Water Quality Online Analyzer Market, by End- User

  • 11.1. Introduction
  • 11.2. Aquaculture
    • 11.2.1. Fishery Monitoring
    • 11.2.2. Water Quality Management
  • 11.3. Environmental
    • 11.3.1. River Monitoring
    • 11.3.2. Wastewater Treatment
  • 11.4. Industrial
    • 11.4.1. Food & Beverage Industry
    • 11.4.2. Pharmaceutical Industry
  • 11.5. Municipal

12. Americas Water Quality Online Analyzer Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific Water Quality Online Analyzer Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa Water Quality Online Analyzer Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2023
  • 15.2. FPNV Positioning Matrix, 2023
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Nano Infusion Technologies and AquaRealTime partner to elevate water quality management through advanced monitoring solutions
    • 15.3.2. Xylem's acquisition of Idrica transforms water utilities with integrated intelligent solutions for tackling water scarcity
    • 15.3.3. Veralto Corporation invests USD 15 Million in Axine Water Technologies to foster water quality solutions
    • 15.3.4. Ecolab's acquisition of Barclay Water Management foster North American water safety and digital monitoring solutions
    • 15.3.5. bNovate launches bactoSense portfolio for advanced water quality monitoring
    • 15.3.6. ABB launched UviTec to revolutionize real-time water analysis with rapid measurement
    • 15.3.7. IC Controls launches Cutting-Edge SensorFlex platform for superior water quality monitoring
    • 15.3.8. Metrohm unveils 2060 VA/CVS process analyzer elevating voltammetric analysis
    • 15.3.9. Siemens leverages AI technology in new water quality analyzers for optimized and sustainable water utility management
    • 15.3.10. EOMAP launches eoapp AQUA for advanced environmental solutions revolutionizing water quality monitoring
    • 15.3.11. Onset's launched HOBO MX800 Series revolutionizes water quality monitoring with Bluetooth data loggers
    • 15.3.12. ABB strengthens smart water management portfolio by acquiring Real Tech's innovative optical sensor technology
  • 15.4. Strategy Analysis & Recommendation
    • 15.4.1. LaMotte Company
    • 15.4.2. bNovate Technologies SA
    • 15.4.3. Badger Meter, Inc.
    • 15.4.4. Shanghai BOQU Instrument Co., Ltd.
    • 15.4.5. Process Insights, Inc.
    • 15.4.6. Tintometer GmbH
    • 15.4.7. SWAN Analytical Instruments AG
    • 15.4.8. Metrohm AG
    • 15.4.9. Shenzhen Lianhua Technology Co., Ltd.
    • 15.4.10. HORIBA, Ltd.
    • 15.4.11. Veralto Corporation
    • 15.4.12. GE Vernova
    • 15.4.13. Endress+Hauser Group
    • 15.4.14. Krohne Group
    • 15.4.15. Emerson Electric Co.
    • 15.4.16. Siemens AG
    • 15.4.17. Xylem Inc.
    • 15.4.18. Yokogawa Electric Corporation
    • 15.4.19. Thermo Fisher Scientific Inc.
    • 15.4.20. ABB Ltd.

Companies Mentioned

  • 1. ABB Ltd.
  • 2. Aqualabo
  • 3. Badger Meter, Inc.
  • 4. bNovate Technologies
  • 5. Campbell Scientific, Inc.
  • 6. Chemtrac LLC
  • 7. Christian Burkert GmbH & Co. KG
  • 8. Emerson Electric Co.
  • 9. Endress+Hauser Group Services AG
  • 10. GE Vernova
  • 11. Hanna Instruments, Inc.
  • 12. Honeywell International Inc.
  • 13. HORIBA, Ltd.
  • 14. Krohne Group
  • 15. LaMotte Company
  • 16. Metrohm AG
  • 17. Mettler-Toledo International Inc.
  • 18. Pentair PLC
  • 19. Process Insights, Inc.
  • 20. Shanghai BOQU Instrument Co., Ltd
  • 21. Shenzhen Lianhua Technology Co., Ltd.
  • 22. Shimadzu Corporation
  • 23. Siemens AG
  • 24. SWAN Analytical Instruments AG
  • 25. Teledyne Technologies Incorporated
  • 26. Thermo Fisher Scientific Inc.
  • 27. Tintometer GmbH
  • 28. Veolia Water Technologies & Solutions
  • 29. Veralto Corporation
  • 30. Xylem Inc.
  • 31. Yokogawa Electric Corporation
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦