시장보고서
상품코드
1803442

역률 개선 시스템 시장 : 구성요소 유형, 시스템 유형, 설치 유형, 정격 전력, 용도, 최종 이용 산업별 - 세계 예측(2025-2030년)

Power Factor Correction System Market by Component Type, System Type, Installation Type, Power Rating, Application, End User Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

역률 개선 시스템 시장의 2024년 시장 규모는 26억 7,000만 달러로 평가되었으며, 2025년에는 CAGR 4.19%로 27억 6,000만 달러로 성장하여 2030년에는 34억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 26억 7,000만 달러
추정 연도 2025년 27억 6,000만 달러
예측 연도 2030년 34억 1,000만 달러
CAGR(%) 4.19%

기술적 진보, 규제 압력, 새로운 효율화 요구 속에서 역률 보정 시스템의 복잡한 역학을 조작하는 것

역률 보정은 다양한 산업 분야에서 운영 효율과 지속가능성을 실현하는 중요한 수단으로 발전해 왔습니다. 현대의 시설들은 에너지 비용 상승, 규제 강화, 탄소발자국 감소의 필요성에 직면하고 있으며, 최적의 에너지 사용을 보장하는 메커니즘이 그 어느 때보다 중요해지고 있습니다. 이 소개에서는 역률 보정 시스템이 주변적인 지원 기능에서 인프라 관리의 중심축으로 전환하여 비용 절감과 송전망 안정성 향상을 모두 촉진하는 방법을 소개합니다.

탈탄소화 및 디지털화가 진행되는 가운데, 에너지 시장 전반에 걸쳐 역률 개선 혁신을 추진하는 변화의 물결을 이해합니다.

역률 보정을 둘러싼 환경은 벤더의 제품, 최종사용자의 기대, 규제 상황을 재정의하는 여러 가지 변화의 시기를 맞이하고 있습니다. 새로운 디지털화 추세는 실시간 분석과 적응형 튜닝이 가능한 지능형 컨트롤러의 개발을 촉진하여 전례 없는 수준의 효율성과 신뢰성을 가능하게 하고 있습니다. 이러한 디지털 주입을 통해 레거시 커패시터와 리액터는 데이터 기반의 통합된 생태계의 구성요소로 탈바꿈할 수 있습니다.

무역정책과 공급망 재편이 변화하는 가운데, 미국의 2025년 관세가 역률 개선 생태계에 미치는 복합적 영향 평가

미국 당국의 2025년 신관세 도입은 세계 역률 보정 생태계에 매우 중요한 국면을 맞이했습니다. 제조업체와 공급업체는 커패시터, 컨트롤러 및 기타 중요한 하드웨어의 비용 구조에 영향을 미치는 복잡한 관세망을 통과해야 합니다. 이러한 조치는 국내 생산을 강화하는 것을 목표로 하고 있지만, 동시에 국제적인 기업들에게 조달 전략과 공급망 구성을 재검토하도록 강요하고 있습니다.

구성요소, 시스템 구성, 설치 방법, 정격 범위, 애플리케이션 카테고리, 최종사용자 산업별 주요 부문을 파악하고 전략적 포지셔닝을 제시합니다.

역률 개선 시장을 포괄적으로 살펴보면, 전략적 의사결정을 지원하는 6가지 중요한 세분화 차원이 드러납니다. 첫 번째 차원에서는 하드웨어와 서비스를 구분합니다. 하드웨어 중 커패시터, 컨트롤러, 필터, 리액터 등의 구성요소는 각각 무효 부하와 고조파 왜곡을 줄이는 데 전문적인 역할을 합니다. 반대로 서비스에는 컨설팅, 설치, 시운전, 유지보수, 수리가 포함되며, 각각은 시스템의 수명과 성능을 보장하는 데 필수적입니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 역내 역학을 탐구하여 역률 개선 도입의 기회와 도전과제를 파악합니다.

지역 역학은 역률 보정 솔루션의 채택, 배포 및 진화에 큰 영향을 미칩니다. 아메리카에서는 성숙한 규제 환경과 미래지향적인 인센티브 프로그램이 노후화된 인프라의 현대화를 촉진하고 있습니다. 여기서 이해관계자들은 측정 가능한 에너지 절감과 신뢰성 향상을 실현하면서 기존 전력망에 원활하게 통합될 수 있는 시스템을 우선순위에 두고 있습니다.

역률 개선 시장을 형성하는 업계 주요 기업의 전략적 동향기술적 차별화 요소파트너십과 경쟁 상황파트너십과 경쟁 상황

업계의 주요 참여자들은 연구개발, 전략적 파트너십, 서비스 포트폴리오 확장에 대한 집중적인 투자를 통해 경쟁 우위를 확보하고 있습니다. 주요 기술 제공업체들은 머신러닝 알고리즘과 클라우드 기반 분석을 통합하여 제어 시스템의 인텔리전스를 강화하고 성능 저하를 방지하는 예지보전 기능을 제공하고 있습니다.

기술 통합 컴플라이언스 조정 및 시장 성장 전략을 통해 업계 리더를 선도하고, 영향력 있고 실행 가능한 권고안을 수립합니다.

역동적인 역률 개선 환경에서 성공하기 위해 기업은 기술 혁신, 규제 준수, 고객 중심 서비스 모델의 융합을 우선시해야 합니다. 먼저, 고급 분석 기능을 갖춘 모듈식 확장형 하드웨어 플랫폼에 투자하여 애프터마켓 서비스 및 구독 모델을 통해 새로운 수익원을 확보할 수 있습니다. 이러한 플랫폼은 능동적 보정 시나리오와 정적 보정 시나리오 모두에 대응할 수 있도록 설계되어야 하며, 신규 설치 및 리노베이션 프로젝트에도 원활하게 적응할 수 있어야 합니다.

신뢰할 수 있는 역률 보정 인사이트를 위한 정성적 평가 1차 상호 작용과 2차 데이터 검증을 통합한 종합적인 연구 방법론에 대해 자세히 알아보기

이 분석은 정성적 및 정량적 방법을 조합한 엄격한 다방법론적 조사 프레임워크에 기반하고 있습니다. 경영진, 현장 기술자 및 최종사용자와의 1차적인 대화를 통해 배포 과제, 진화하는 성능에 대한 기대치 및 지역적 뉘앙스에 대한 직접적인 견해를 얻을 수 있었습니다. 이러한 대화와 더불어 업계에 영향을 미치는 최신 규제 동향과 관세에 대한 최신 정보를 파악하기 위해 법률 및 정책 전문가와 직접 협의하는 시간을 가졌습니다.

역률 보정에 대한 핵심 인사이트와 미래 궤적을 통합하여 이해관계자들에게 효율성과 컴플라이언스 향상을 위한 명확한 로드맵을 제공합니다.

역률 보정의 역학을 탐구하는 과정에서 디지털 기술과 전통적인 하드웨어 부품의 융합, 진화하는 무역 정책이 공급망에 미치는 영향, 수요에 맞는 세분화 전략의 중요성 등 중요한 주제가 등장했습니다. 관세가 비용 구조를 재편하고 지역 규제가 엇갈리는 가운데, 기업은 민첩한 운영 모델과 협력적 파트너십을 통해 복잡성을 극복해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 역률 개선 시스템 시장 : 구성요소 유형별

  • 하드웨어
    • 커패시터
    • 컨트롤러
    • 필터
    • 원자로
  • 서비스
    • 상담
    • 설치와 시운전
    • 유지보수와 수리

제9장 역률 개선 시스템 시장 : 시스템 유형별

  • 액티브 역률 개선
  • 정적 역률 개선

제10장 역률 개선 시스템 시장 : 설치 유형별

  • 신규 인스톨
  • 개조

제11장 역률 개선 시스템 시장 : 정격 전력별

  • 100-500Kva
  • 500Kva 이상
  • 최대 100Kva

제12장 역률 개선 시스템 시장 : 용도별

  • 데이터센터와 IT
  • 조명 시스템
  • 모터 구동 시스템
  • 전력 분배

제13장 역률 개선 시스템 시장 : 최종 이용 산업별

  • 제조업
  • 광업·금속
  • 석유 및 가스
  • 유틸리티

제14장 아메리카의 역률 개선 시스템 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 역률 개선 시스템 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 역률 개선 시스템 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • ABB Ltd.
    • Crompton Greaves Consumer Electricals Limited
    • Eaton Corporation
    • Electrotecnica Arteche Hermanos, S.A.
    • Emerson Electric Co.
    • General Electric Company
    • Havells India Ltd.
    • Hitachi Energy Ltd.
    • Legrand SA
    • Mitsubishi Electric Corporation
    • NHP Electrical Engineering Products Pty Ltd.
    • Schaffner Holding AG by TE Connectivity Ltd.
    • Schneider Electric
    • Siemens AG
    • SOCOMEC SAS
    • TDK Corporation
    • Vishay Intertechnology, Inc.
    • Weg Electric Corp.
    • Yokogawa Electric Corporation
    • ZEZ SILKO Ltd.
    • Ortea SpA
    • Sas Powertech Pvt. Ltd
    • CIRCUTOR
    • Fuseco by IMARK Group

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM 25.09.16

The Power Factor Correction System Market was valued at USD 2.67 billion in 2024 and is projected to grow to USD 2.76 billion in 2025, with a CAGR of 4.19%, reaching USD 3.41 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.67 billion
Estimated Year [2025] USD 2.76 billion
Forecast Year [2030] USD 3.41 billion
CAGR (%) 4.19%

Navigating the Complex Dynamics of Power Factor Correction Systems Amidst Technological Advances, Regulatory Pressures, and Emerging Efficiency Imperatives

Power factor correction has evolved into a critical enabler for operational efficiency and sustainability in diverse industrial contexts. As modern facilities grapple with rising energy costs, stricter regulatory regimes, and the imperative to reduce carbon footprints, the mechanisms that ensure optimal energy utilization have never been more important. This introduction sets the stage by exploring how power factor correction systems have transitioned from peripheral support functions to central pillars of infrastructure management, driving both cost savings and enhanced grid stability.

In recent years, accelerating trends in automation, digital monitoring, and data analytics have reshaped expectations of what power factor correction solutions should deliver. Stakeholders now demand not only reactive correction but also predictive insights that anticipate fluctuations in load profiles and harmonics. Consequently, hardware and services offerings have had to adapt, integrating advanced control algorithms, power electronics, and remote diagnostic capabilities. This shift underscores the growing convergence between traditional electrical engineering disciplines and the digital technologies that power the Fourth Industrial Revolution.

By grounding this discussion in the broader imperatives of energy efficiency and regulatory compliance, we provide a lens through which to view subsequent sections. It becomes clear that organizations seeking to maintain competitive advantage must prioritize investments in adaptable systems, responsive service models, and robust integration strategies.

Understanding the Transformational Waves Driving Power Factor Correction Innovations Across Energy Markets Amid Intensifying Decarbonization and Digitalization Mandates

The landscape of power factor correction is undergoing multiple transformative shifts that are redefining vendor offerings, end user expectations, and regulatory landscapes. Emerging digitalization trends have fostered the development of intelligent controllers capable of real-time analysis and adaptive tuning, enabling unprecedented levels of efficiency and reliability. This digital infusion transforms legacy capacitors and reactors into components of a cohesive, data-driven ecosystem.

Concurrently, growing emphasis on decarbonization has spurred the integration of sustainable materials and low-loss cores in hardware design, reducing the ecological footprint of power factor correction deployments. As renewable generation portfolios expand, payback on systems that minimize reactive power consumption has become more compelling, prompting a reevaluation of system architectures and service models. The proliferation of decentralized energy resources further elevates the need for dynamic correction capabilities that can accommodate bidirectional power flows.

Moreover, heightened collaboration between utilities, regulators, and technology providers is fostering standardized performance metrics and grid-friendly specifications. This alignment supports interoperability across active and static correction platforms while ensuring that evolving compliance requirements are seamlessly incorporated into solution roadmaps. Through these converging forces, power factor correction is transitioning from a standalone utility function into an integrated pillar of modern energy management frameworks.

Assessing the Compounding Effects of United States 2025 Tariffs on Power Factor Correction Ecosystems Amid Shifting Trade Policies and Supply Chain Realignments

The introduction of new tariffs by United States authorities in 2025 has introduced a pivotal moment for the global power factor correction ecosystem. Manufacturers and suppliers are navigating a complex web of duties that affect the cost structure of capacitors, controllers, and other critical hardware. Although these measures aim to bolster domestic production, they simultaneously compel international players to reassess their sourcing strategies and supply chain configurations.

This shifting trade environment encourages the reshoring of certain fabrication processes, leading providers to invest in localized assembly facilities or strategic partnerships with domestic component producers. While this approach can mitigate the immediate impact of tariffs, it also necessitates a reevaluation of inventory buffers and logistics networks to preserve delivery timelines. In parallel, service providers offering consultation, installation, commissioning, and maintenance solutions are adapting pricing models and contract terms to reflect these added cost pressures.

Furthermore, the ripple effects of tariff adjustments extend beyond direct hardware expenditure. End users are increasingly scrutinizing total cost of ownership, incorporating lifecycle service agreements and long-term maintenance provisions into procurement decisions. As a result, the interplay between fiscal policy and operational planning is intensifying, ultimately redefining the criteria by which power factor correction investments are evaluated.

Unveiling Key Segmentation Dimensions by Component, System Configuration, Installation Approach, Rating Band, Application Category, and End User Industry to Inform Strategic Positioning

A comprehensive view of the power factor correction market reveals six critical segmentation dimensions that underpin strategic decision making. The first dimension distinguishes between hardware and services. Within hardware, components such as capacitors, controllers, filters, and reactors each play a specialized role in mitigating reactive loads and harmonic distortion. Conversely, the services dimension encompasses consultation, installation and commissioning, as well as maintenance and repair, each of which is integral to ensuring system longevity and performance.

A second segmentation axis focuses on system type, differentiating active power factor correction, which leverages real-time electronic regulation, from static correction, which employs fixed capacitor banks. Installation type, the third dimension, contrasts new builds-where integration can be architected from the ground up-with retrofit applications, which demand careful compatibility analysis and phased deployment strategies.

Power rating forms the fourth segmentation criterion, capturing solutions ranging from smaller configurations up to 100 Kva through mid-range bands of 100 to 500 Kva and larger installations above 500 Kva. Application categories constitute the fifth dimension, spanning data centers and IT infrastructures, lighting systems, motor driven operations, and power distribution networks. Finally, end user industries such as manufacturing, mining and metals, oil and gas, and utilities illustrate how sector-specific operational profiles and compliance standards shape solution requirements. Together, these segmentation insights provide a nuanced framework for tailoring offerings to distinct market needs.

Exploring Regional Dynamics Across Americas Europe Middle East Africa and Asia Pacific to Illuminate Distinct Opportunities and Challenges in Power Factor Correction Deployment

Regional dynamics exert a profound influence on the adoption, deployment, and evolution of power factor correction solutions. In the Americas, a mature regulatory environment coupled with forward-looking incentive programs drives modernization of aging infrastructure. Here, stakeholders prioritize systems that can seamlessly integrate into legacy grids while delivering measurable energy savings and reliability gains.

In Europe, the Middle East, and Africa, the landscape is multifaceted. Established advanced economies in Western Europe emphasize carbon reduction and digitalization, whereas emerging markets within the region often focus on enhancing grid stability and addressing load imbalances. Regulatory frameworks vary widely, compelling vendors to develop configurable solutions that can be adapted to local grid codes and voltage standards without extensive redesign.

Asia-Pacific represents perhaps the most dynamic segment, driven by rapid industrialization, urbanization, and government initiatives targeting industrial energy efficiency. As new power generation capacity comes online, there is a growing emphasis on modular correction systems that can scale in tandem with regional demand. Across all regions, cultural attitudes towards outsourcing versus in-house maintenance also shape service delivery models and partnership strategies.

Highlighting Leading Industry Players Strategic Moves Technological Differentiators Partnerships and Competitive Landscapes Shaping Power Factor Correction Markets

Key industry participants are forging competitive advantages through targeted investments in research and development, strategic partnerships, and expanded service portfolios. Leading technology providers are enhancing the intelligence of their control systems by integrating machine learning algorithms and cloud-enabled analytics, thereby offering predictive maintenance capabilities that preempt performance degradation.

Concurrently, several firms are building out their service ecosystems by establishing local service centers, investing in workforce training, and developing certification programs to assure end-to-end project delivery excellence. Another trend involves collaborative ventures between hardware specialists and software developers to co-create turnkey solutions that bundle correction hardware with subscription-based monitoring and optimization services.

These strategic orientations reflect an industry in transition, where traditional component suppliers are repositioning themselves as comprehensive energy solutions providers. In doing so, they are bridging the gap between point-in-time correction and continuous performance optimization, ensuring that clients can navigate evolving grid requirements with confidence.

Formulating Impactful Actionable Recommendations to Guide Industry Leaders Through Technological Integration Compliance Alignment and Market Growth Strategies

To thrive in a dynamic power factor correction environment, companies should prioritize a blend of technological innovation, regulatory alignment, and customer-centric service models. First, investing in modular, scalable hardware platforms equipped with advanced analytics capabilities can unlock new revenue streams through aftermarket services and subscription models. These platforms should be designed for both active and static correction scenarios, offering seamless adaptability for new installations and retrofit projects alike.

Second, establishing robust compliance frameworks that anticipate evolving tariff structures and regional grid codes will mitigate supply chain disruptions and pricing volatility. Organizations that cultivate close partnerships with local component manufacturers and regulatory bodies can preemptively address cost exposures and ensure uninterrupted project delivery.

Finally, placing clients at the heart of solution design by offering customizable service bundles-from initial consultation to long-term maintenance-will differentiate providers in a crowded market. By adopting a consultative approach, companies can align correction strategies with unique operational profiles, delivering measurable outcomes in energy efficiency, power quality, and total cost of ownership.

Detailing the Comprehensive Research Methodology Integrating Qualitative Assessments Primary Interactions and Secondary Data Validation for Robust Power Factor Correction Insights

This analysis is grounded in a rigorous multi-method research framework that combines qualitative and quantitative techniques. Primary interactions with senior executives, field technicians, and end users provided firsthand perspectives on deployment challenges, evolving performance expectations, and regional nuances. These conversations were supplemented by direct consultations with legal and policy experts to capture the latest regulatory developments and tariff updates impacting the industry.

Secondary research involved an exhaustive review of technical journals, whitepapers, and energy commission publications to validate component performance characteristics, system integration approaches, and emerging digital solutions. Data triangulation across these sources ensured that insights are corroborated and reflect real-world application scenarios. The methodology further incorporated case study analyses of recent project implementations to illustrate best practices, pitfalls, and lessons learned.

By synthesizing these diverse inputs, the research delivers a comprehensive and credible viewpoint on the present and near-term trajectory of power factor correction technologies, segmentation dynamics, regional variations, and competitive landscapes.

Synthesizing Core Insights and Future Trajectories in Power Factor Correction to Equip Stakeholders with a Clear Roadmap for Efficiency and Compliance Advancement

Throughout this exploration of power factor correction dynamics, key themes emerge: the convergence of digital technologies with traditional hardware components, the impact of evolving trade policies on supply chains, and the significance of tailored segmentation strategies. As tariffs reshape cost structures and regional regulations diverge, companies must navigate complexity through agile operational models and collaborative partnerships.

Looking ahead, the integration of predictive analytics and cloud-based monitoring will continue to redefine service paradigms, enabling continuous performance optimization and remote diagnostics. Meanwhile, the push for decarbonization and the proliferation of distributed energy resources will amplify demand for systems that can dynamically respond to shifting load patterns and bidirectional power flows.

By synthesizing these trends and insights, stakeholders are equipped with a clear roadmap for aligning technology investments, service capabilities, and market entry strategies. This holistic understanding positions decision makers to effectively harness emerging opportunities, address potential challenges, and secure sustainable competitive advantage in the evolving power factor correction arena.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rising adoption of wide bandgap semiconductors for high efficiency PFC systems in industrial applications
  • 5.2. Integration of advanced IoT monitoring and predictive analytics in PFC modules for real-time power quality management
  • 5.3. Growing demand for modular PFC solutions tailored to fast charging infrastructure for electric vehicles and battery storage
  • 5.4. Regulatory drive for harmonic distortion reduction leading to increased deployment of active PFC in commercial data centers
  • 5.5. Development of compact multifunctional PFC and DC-DC conversion units for telecom and edge computing power supplies
  • 5.6. Emphasis on lifecycle cost optimization and predictive maintenance in PFC systems through digital twin technology

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Power Factor Correction System Market, by Component Type

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Capacitors
    • 8.2.2. Controllers
    • 8.2.3. Filters
    • 8.2.4. Reactors
  • 8.3. Services
    • 8.3.1. Consultation
    • 8.3.2. Installation & Commissioning
    • 8.3.3. Maintenance & Repair

9. Power Factor Correction System Market, by System Type

  • 9.1. Introduction
  • 9.2. Active Power Factor Correction
  • 9.3. Static Power Factor Correction

10. Power Factor Correction System Market, by Installation Type

  • 10.1. Introduction
  • 10.2. New Installation
  • 10.3. Retrofit

11. Power Factor Correction System Market, by Power Rating

  • 11.1. Introduction
  • 11.2. 100 To 500 Kva
  • 11.3. Above 500 Kva
  • 11.4. Up To 100 Kva

12. Power Factor Correction System Market, by Application

  • 12.1. Introduction
  • 12.2. Data Centers & IT
  • 12.3. Lighting Systems
  • 12.4. Motor Driven Systems
  • 12.5. Power Distribution

13. Power Factor Correction System Market, by End User Industry

  • 13.1. Introduction
  • 13.2. Manufacturing
  • 13.3. Mining & Metals
  • 13.4. Oil & Gas
  • 13.5. Utilities

14. Americas Power Factor Correction System Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Power Factor Correction System Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Power Factor Correction System Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. ABB Ltd.
    • 17.3.2. Crompton Greaves Consumer Electricals Limited
    • 17.3.3. Eaton Corporation
    • 17.3.4. Electrotecnica Arteche Hermanos, S.A.
    • 17.3.5. Emerson Electric Co.
    • 17.3.6. General Electric Company
    • 17.3.7. Havells India Ltd.
    • 17.3.8. Hitachi Energy Ltd.
    • 17.3.9. Legrand SA
    • 17.3.10. Mitsubishi Electric Corporation
    • 17.3.11. NHP Electrical Engineering Products Pty Ltd.
    • 17.3.12. Schaffner Holding AG by TE Connectivity Ltd.
    • 17.3.13. Schneider Electric
    • 17.3.14. Siemens AG
    • 17.3.15. SOCOMEC SAS
    • 17.3.16. TDK Corporation
    • 17.3.17. Vishay Intertechnology, Inc.
    • 17.3.18. Weg Electric Corp.
    • 17.3.19. Yokogawa Electric Corporation
    • 17.3.20. ZEZ SILKO Ltd.
    • 17.3.21. Ortea SpA
    • 17.3.22. Sas Powertech Pvt. Ltd
    • 17.3.23. CIRCUTOR
    • 17.3.24. Fuseco by IMARK Group

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제