시장보고서
상품코드
1803445

AI 에이전트 시장 : 에이전트 시스템, 유형, 인터랙션 모드, 기술, 전개 방식, 기업 규모, 산업별 - 세계 예측(2025-2030년)

AI Agents Market by Agent System, Type, Interaction Mode, Technology, Deployment Type, Enterprise Size, Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

AI 에이전트 시장은 2024년에는 57억 7,000만 달러로 평가되었으며, 2025년에는 71억 2,000만 달러, CAGR 24.14%로 성장하여 2030년에는 211억 4,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 57억 7,000만 달러
추정 연도 2025년 71억 2,000만 달러
예측 연도 2030년 211억 4,000만 달러
CAGR(%) 24.14%

자율 및 반자율 AI 에이전트가 산업 전반에 걸쳐 기업의 운영, 거버넌스, 제품 로드맵을 재구성하는 방법에 대한 간결한 전략 프레임워크

자율 및 반자율 AI 에이전트의 출현은 학문적 호기심에서 여러 산업 분야의 핵심 운영 역량으로 빠르게 전환되고 있습니다. 이 주요 요약은 시장 역학, 기술 변곡점, 규제 고려 사항, 기업 채택 패턴을 통합하여 고위 경영진에게 간결하고 종합적인 관점을 제공합니다. 이 분석은 에이전트의 아키텍처, 상호작용 모드, 도입 형태가 기업의 거버넌스, 데이터 전략, 고객 경험의 필수 요건과 어떻게 상호 작용하는지를 강조합니다.

경쟁 환경, 관찰 가능성, 거버넌스 주도형 조달이 AI 에이전트의 경쟁 우위를 재정의하는 방법

최근 AI 에이전트의 경쟁 환경을 재편하는 혁신적인 변화가 잇따르고 있습니다. 아키텍처적으로는 고립된 실험적 프로토타입에서 모듈화된 서비스, 표준화된 인터페이스, 관찰 가능한 도구를 지원하는 컴포저블 에이전트 에코시스템으로 이동하고 있습니다. 이러한 전환은 통합의 마찰을 줄이고, 사내 사용 사례 및 고객 제품 가치 실현 시간을 단축할 수 있습니다. 동시에 모델 오케스트레이션, 지연을 고려한 추론, 모델에 구애받지 않는 오케스트레이션 레이어의 발전으로 데이터 로컬리티와 컴플라이언스 요구사항에 맞는 하이브리드 배포가 가능해졌습니다.

2025년 관세 조정 및 무역 조치로 인해 AI 에이전트의 전체 가치사슬에서 하드웨어 조달, 배포 전략, 조달 리스크 관리가 어떻게 변화했는가?

2025년에 도입되거나 조정된 무역 정책 개발 및 관세 조치는 AI 에이전트의 밸류체인에 다각적인 영향을 미쳤습니다. 하드웨어에 의존하는 부문, 특히 고성능 가속기 및 특수 실리콘은 관세가 국경 간 부품 흐름에 영향을 미치면서 공급망에 대한 조사와 비용 압박이 증가했습니다. 이에 따라 다국적 벤더들은 조달 전략을 재검토하고, 조달 경로를 다양화하며, 경제적으로 가능한 경우 제조의 현지화를 가속화하게 되었습니다. 그 결과, 솔루션 설계자와 조달팀은 조달 리드타임과 비상 대응 계획에 더 큰 공급 변동성을 반영해야 했습니다.

계층 구조의 세분화 프레임워크를 통해 시스템, 전개 모델, 산업, 기업 프로파일별, 채용 경로와 기술 우선순위가 다르다는 것을 확인했습니다.

세분화 분석을 통해 여러 축에 걸친 역량 수요와 상업화 경로에 대한 명확한 패턴이 드러났습니다. 에이전트 시스템을 기반으로 협업 에이전트가 분산된 기능 간의 복잡한 워크플로우를 조정하는 멀티 에이전트 시스템 아키텍처를 우선시하는 조직이 있는가 하면, 협소하게 정의된 자동화 작업을 대상으로 하는 단일 에이전트 시스템 구축에 중점을 두는 조직도 있습니다. 유형에 따라 기술팀은 맞춤형 동작과 세부적인 커스터마이징이 가능한 Build-Your-Own Agent와 사전 설정된 워크플로우와 관리형 업데이트를 통해 가치 실현 시간을 단축하는 Ready-to-Deploy Agent 중 하나를 선택해야 합니다. 선택해야 합니다. 인터랙션 모드에서는 자율적이고 비동기적인 작업을 수행하는 백그라운드 에이전트와 사용자와의 지속적인 상호작용을 유지하며 보다 엄격한 대기시간과 대화 제어가 필요한 표면 에이전트가 분리되어 있습니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양에서의 전개 모델, 컴플라이언스 우선순위, 공급망 전략을 형성하는 지역적 수요와 규제 대비

지역적 역동성은 수요 구조와 규제적 제약을 모두 형성하고, 명확한 전략적 압력과 기회를 창출합니다. 아메리카에서는 확장 가능한 클라우드 인프라에 대한 투자, 강력한 개발자 생태계, 대기업의 수요가 금융 서비스, 헬스케어, 소매업 등 다양한 산업에서 초기 상업적 채택을 촉진하고 있습니다. 이 지역의 기업 조달의 성숙도와 탄탄한 벤처 생태계는 혁신을 계속 가속화하고 있지만, 공공 정책 논의와 공급망 검토는 현지화 노력과 공급업체 선정에 영향을 미치고 있습니다.

기반 플랫폼, 수직적 통합업체, 부품 공급업체, 혁신적 전문업체에 걸친 벤더의 역할과 파트너십 역학 관계 매핑

경쟁 역학은 기본 플랫폼 제공업체, 전문 수직 통합 기업, 부품 공급업체, 틈새 기능에 특화된 스타트업의 생태계를 반영하고 있습니다. 기반 플랫폼 벤더는 확장 가능한 컴퓨팅, 모델 호스팅, 개발자 도구에 집중하여 고급 에이전트를 배포하는 기업 팀의 마찰을 줄이고 있습니다. 전문 통합업체와 시스템 하우스는 도메인 특화 커넥터, 워크플로우 오케스트레이션, 컴플라이언스 컨트롤을 제공함으로써 부가가치를 높이고, 원시적 역량을 운영 성과로 전환합니다. 부품 공급업체, 특히 추론 가속기, 센서 모듈, 소프트웨어 라이브러리를 제공하는 부품 공급업체는 성능 중심의 사용 사례에서 계속 중요할 것입니다.

AI 에이전트의 도입과 통합을 가속화하면서 이식성, 신뢰성, 운영 탄력성을 보장하기 위해 경영진이 취해야 할 실질적인 전략적 조치

AI 에이전트로부터 가치를 창출하는 동시에 운영 및 규제 리스크를 관리하기 위해 리더는 전략적 우선순위와 구현 현실을 일치시켜야 합니다. 첫째, 모듈식 아키텍처와 벤더 중립적인 오케스트레이션에 투자하여 이식성을 유지하고, 정책 및 공급 체계의 변화에 대응할 수 있도록 미래에도 확장할 수 있도록 합니다. 둘째, 관찰가능성, 계통추적, 설명가능성을 후장품이 아닌 필수적인 제품 기능으로서 우선순위를 둡니다. 이러한 기능을 개발 및 운영 파이프라인에 통합함으로써 내부 이해관계자 및 규제 당국과의 신뢰 관계를 강화할 수 있습니다.

전문가 1차 인터뷰, 기술 문헌 통합, 시나리오 검증을 결합한 엄격한 혼합 방법론 접근 방식을 통해 확실하고 실용적인 인사이트를 확보합니다.

본 조사 방법은 견고성, 재현성, 실용적 타당성을 보장하기 위해 설계된 혼합 방법론에서 도출된 정성적 및 정량적 증거를 통합한 것입니다. 1차 조사에서는 여러 산업 분야의 고위 기술자, 제품 리더, 조달 전문가, 규제 전문가를 대상으로 구조화된 인터뷰를 통해 에이전트 도입, 벤더 선정 기준, 운영상의 제약에 대한 실제 경험을 파악했습니다. 이러한 대화를 통해 주제별 코딩과 교차 검증을 통해 기업 도입에 있어 중요한 이슈, 성공요인, 벤더의 역량을 파악했습니다.

성공적인 AI 에이전트 도입을 위한 핵심 조사 결과 통합, 모듈형 아키텍처, 거버넌스, 공급망 강건성을 강조하는 핵심 조사 결과 발표

요약하면, AI 에이전트의 상황은 기술적 역량, 거버넌스 성숙도, 공급망 견고성, 지역 규제가 상업적 성과를 공동으로 결정하는 복잡한 생태계로 성숙해 가고 있습니다. 모듈화되고 관찰 가능한 아키텍처를 채택하고, 맞춤형과 기성품의 균형을 맞추는 조직은 장기적인 위험을 관리하면서 단기적인 효율성 향상을 활용할 수 있는 유리한 입장에 서게 될 것입니다. 2025년 규제와 무역의 발전은 공급망 투명성, 유연한 전개 모델, 지역적 컴플라이언스 전략의 중요성을 부각시키고, 조달 우선순위와 파트너십의 형성을 재구성하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 AI 에이전트 시장 : 에이전트 시스템별

  • 멀티 에이전트 시스템
  • 싱글 에이전트 시스템

제9장 AI 에이전트 시장 : 유형별

  • 독자적인 에이전트 구축
  • 즉시 배포 가능한 에이전트

제10장 AI 에이전트 시장 : 인터랙션 모드별

  • 배경 에이전트
  • 표면 에이전트

제11장 AI 에이전트 시장 : 기술별

  • 컴퓨터 비전
  • 딥러닝
  • 머신러닝
  • 자연어 처리(NLP)

제12장 AI 에이전트 시장 : 전개 방식별

  • 클라우드
  • 온프레미스

제13장 AI 에이전트 시장 : 기업 규모별

  • 대기업
  • 중소기업

제14장 AI 에이전트 시장 : 산업별

  • 자동차
  • 은행, 금융 서비스, 보험
  • 헬스케어와 생명과학
    • 병원과 진료소
    • 의약품 및 Drug Discovery
    • 원격의료
  • IT·통신
  • 미디어 및 엔터테인먼트
    • 영화와 TV
    • 게임과 e-Sports
    • 음악과 스트리밍 서비스
  • 소매·E-Commerce

제15장 아메리카의 AI 에이전트 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 AI 에이전트 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 AI 에이전트 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Cognizant Technology Solutions Corporation
    • Amazon.com, Inc.
    • Engageware
    • Alibaba Group Holding Limited
    • Amelia US LLC
    • Apple Inc.
    • AVA Labs, Inc.
    • Baidu, Inc.
    • Clinc, Inc.
    • Google LLC by Alphabet Inc.
    • Haptik Infotech Pvt. Ltd. by Reliance Industries Limited
    • IBM Corporation
    • Inbenta Technologies Inc.
    • Interactions LLC
    • Kasisto, Inc.
    • Kore.ai, Inc.
    • LINE Corporation
    • LivePerson, Inc.
    • Meta Platforms, Inc.
    • Microsoft Corporation
    • Nuance Communications, Inc.
    • OpenAI Inc.
    • Oracle Corporation
    • Pega Systems Inc.
    • Rasa Technologies GmbH
    • Samsung Electronics Co., Ltd.
    • SAP SE
    • SK Telecom Co., Ltd.
    • SoundHound, Inc.
    • Uber Technologies, Inc.
    • Verint Systems Inc.

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택트

제22장 리서치 기사

제23장 부록

KSM 25.09.16

The AI Agents Market was valued at USD 5.77 billion in 2024 and is projected to grow to USD 7.12 billion in 2025, with a CAGR of 24.14%, reaching USD 21.14 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 5.77 billion
Estimated Year [2025] USD 7.12 billion
Forecast Year [2030] USD 21.14 billion
CAGR (%) 24.14%

A concise strategic framing of how autonomous and semi-autonomous AI agents reshape enterprise operations, governance, and product roadmaps across industries

The emergence of autonomous and semi-autonomous AI agents has rapidly shifted from academic curiosity to core operational capability across multiple industries. This executive summary synthesizes market dynamics, technology inflection points, regulatory considerations, and enterprise adoption patterns to equip senior leaders with a concise yet comprehensive vantage point. The analysis emphasizes how agent architectures, interaction modes, and deployment modalities interact with enterprise governance, data strategy, and customer experience imperatives.

Throughout the document, attention centers on the interplay between technical maturation and commercial viability. The narrative highlights practical implications for product roadmaps, procurement cycles, and partner ecosystems while underscoring interoperability, observability, and risk management as critical enablers. By distilling complex technological pathways into strategic takeaways, this introduction sets the stage for deeper insights on transformational shifts, tariff impacts, segmentation nuances, regional dynamics, company behavior, and recommended actions that follow.

How composable ecosystems, observability, and governance-driven procurement are redefining competitive advantage in the AI agents landscape

Recent years have seen a cluster of transformative shifts that together reconfigure the competitive terrain for AI agents. Architecturally, there is a movement from isolated experimental prototypes toward composable agent ecosystems that favor modular services, standardized interfaces, and observability tooling. This transition reduces integration friction and shortens time-to-value for internal use cases and customer-facing products. At the same time, advances in model orchestration, latency-aware inference, and model-agnostic orchestration layers enable hybrid deployments that better align with data locality and compliance requirements.

On the demand side, organizations increasingly prioritize use cases that balance productivity gains with governance and auditability. Enterprises are adopting more rigorous evaluation metrics that extend beyond raw accuracy to include safety, explainability, and economic impact. Regulatory momentum and supply chain resilience concerns have combined to alter procurement patterns, prompting vendor consolidation in some layers and a flourishing of specialized providers in others. As a result, firms that can demonstrate transparent model lineage, proven integration pathways, and clear operational controls capture disproportionate attention from enterprise buyers.

How 2025 tariff adjustments and trade measures reshaped hardware sourcing, deployment strategies, and procurement risk management across the AI agents value chain

Trade policy developments and tariff measures introduced or adjusted in 2025 have produced multifaceted effects on the AI agents value chain. Hardware-dependent segments, particularly high-performance accelerators and specialized silicon, experienced elevated supply chain scrutiny and cost pressure as tariffs influenced cross-border component flows. This has prompted multinational vendors to reassess sourcing strategies, diversify procurement corridors, and accelerate localization of manufacturing where economically viable. Consequently, solution architects and procurement teams must now factor greater supply variance into procurement lead times and contingency planning.

Beyond hardware, tariffs and related trade restrictions have influenced commercial considerations for software and services in ways that matter operationally. Cloud providers and system integrators adjusted contractual terms and regional capacity planning to mitigate risk exposure tied to import costs and export controls. For enterprises, the net effect is a higher emphasis on flexible deployment models that enable workload portability across geographic domains and between cloud and on-premise environments. In response, organizations are prioritizing containerized inference, modular model packaging, and vendor-neutral orchestration to preserve mobility and manage total cost of ownership under evolving trade regimes.

Moreover, the policy environment accelerated interest in sovereign data strategies and local vendor development. Public sector clients and regulated industries have increased scrutiny of supply chain provenance, which in turn influences vendor selection and partnership strategies. As a result, firms with transparent supply chains, verified component sourcing, and resilient logistics models are positioned to win more competitive procurement processes during periods of tariff-driven uncertainty.

A layered segmentation framework revealing divergent adoption paths and technical priorities across systems, deployment models, industries, and enterprise profiles

Segmentation analysis reveals distinct patterns of capability demand and commercialization pathways across multiple axes. Based on the agent system, some organizations prioritize Multi Agent System architectures where collaborative agents coordinate complex workflows across distributed functions, while others focus on Single Agent System deployments that target narrowly defined automation tasks. Based on type, technical teams must choose between Build-Your-Own Agents that enable bespoke behavior and deep customization, and Ready-to-Deploy Agents that accelerate time-to-value with preconfigured workflows and managed updates. Interaction mode separates Background Agents that perform autonomous, asynchronous tasks from Surface Agents that maintain continuous user-facing interactions and require tighter latency and conversational controls.

Different technology stacks influence both capability and integration effort. Based on technology, solutions leverage Computer Vision for perception-heavy tasks, Deep Learning and Machine Learning for pattern extraction and decisioning, and Natural Language Processing (NLP) to handle unstructured text and conversational interfaces. Deployment considerations matter as well; based on deployment type, organizations choose between Cloud options that offer elastic scale and managed services, and On-Premise choices that address data residency, latency, and compliance needs. Enterprise adoption profiles vary markedly by size; based on enterprise size, Large Enterprises tend to prioritize governance frameworks, integration at scale, and vendor consolidation, whereas Small & Medium Enterprises focus on cost-effective, packaged solutions and rapid ROI realization.

Industry-specific trajectories illustrate differentiated priorities. Based on industry, Automotive applications emphasize perception, real-time control, and production-grade reliability; Banking, Financial Services, & Insurance require stringent audit trails, explainability, and fraud detection capabilities; Healthcare & Lifesciences span Hospitals & Clinics, Pharmaceuticals & Drug Discovery, and Telemedicine with demanding requirements for privacy, clinical validation, and regulatory compliance. IT & Telecommunication providers focus on network-aware agents and orchestration across complex hybrid environments, while Media & Entertainment breaks down into Film & Television, Gaming & eSports, and Music & Streaming Services where content personalization, rights management, and real-time interactivity dominate. Retail & E-Commerce implementations center on inventory optimization, personalized commerce, and conversational shopping assistants. These segmentation layers collectively inform product design, go-to-market prioritization, and partnership strategies.

Regional demand and regulatory contrasts that shape deployment models, compliance priorities, and supply chain strategies across the Americas, Europe Middle East & Africa, and Asia-Pacific

Regional dynamics shape both demand composition and regulatory constraints, producing distinct strategic pressures and opportunities. In the Americas, investment in scalable cloud infrastructure, strong developer ecosystems, and heavy enterprise demand have driven early commercial adoption across financial services, healthcare, and retail verticals. The region's maturity in enterprise procurement and a robust venture ecosystem continue to accelerate innovation, yet public policy debates and supply chain recalibrations influence localization efforts and vendor selection.

Across Europe, Middle East & Africa, regulatory emphasis on data protection and cross-border data flows creates a pronounced focus on privacy-aware deployments and on-premise or hybrid architectures. European markets place a premium on compliance, model explainability, and vendor accountability, which has prompted regional firms and global vendors to offer specialized, compliant offerings. The Middle East emphasizes sovereign capabilities and large-scale public sector initiatives that aggregate demand, while African markets combine leapfrog adoption in digital services with infrastructure and skills development challenges that shape rollout timelines.

Asia-Pacific demonstrates heterogeneity between technology hubs and emerging markets. Advanced economies in the region prioritize edge-enabled agents, localized cloud capacity, and aggressive industrial automation use cases, whereas emerging markets pursue pragmatic deployments that prioritize cost efficiency and mobile-first interactions. Supply chain proximity to semiconductor manufacturing provides an advantage for hardware-heavy initiatives, while national strategies for digital sovereignty and industrial policy influence local partnerships and product roadmaps.

Mapping vendor roles and partnership dynamics across foundational platforms, vertical integrators, component suppliers, and innovative specialist firms

Competitive dynamics reflect an ecosystem of foundational platform providers, specialized vertical integrators, component suppliers, and startups focused on niche capabilities. Foundational platform vendors concentrate on scalable compute, model hosting, and developer tooling that reduce friction for enterprise teams deploying sophisticated agents. Specialized integrators and system houses add value by delivering domain-specific connectors, workflow orchestration, and compliance controls that translate raw capability into operational outcomes. Component suppliers, particularly those providing inference accelerators, sensor modules, and software libraries, remain critical to performance-sensitive use cases.

Startups and midsize firms often drive innovation in areas such as agent orchestration, runtime observability, and safety tooling. These firms attract partnerships with larger integrators seeking to incorporate differentiated features into bundled solutions. Meanwhile, enterprise buyers frequently prioritize vendors that can demonstrate operational maturity, robust SLAs, and transparent model governance. As a result, strategic partnerships and go-to-market alliances are increasingly common, with firms combining complementary strengths to address complex, regulated verticals. Price competition, differentiated intellectual property, and vertical domain expertise are key axes of commercial advantage, while established reputation and certified integrations often determine procurement outcomes in high-stakes environments.

Practical strategic actions for executives to secure portability, trust, and operational resilience while accelerating AI agent adoption and integration

Leaders must align strategic priorities with implementation realities to capture value from AI agents while managing operational and regulatory risk. First, invest in modular architectures and vendor-neutral orchestration to preserve portability and future-proof deployments against policy and supply shifts; this reduces lock-in and simplifies migration across cloud and on-premise topologies. Second, prioritize observability, lineage tracking, and explainability as integral product features rather than afterthoughts; embedding these capabilities into development and operations pipelines strengthens trust with internal stakeholders and regulators.

Third, adopt a tiered procurement strategy that balances Build-Your-Own Agents for mission-critical, highly differentiated functions with Ready-to-Deploy Agents for repeatable, cross-cutting tasks that require rapid adoption. Fourth, design pilot programs that mirror production constraints-security, scale, latency, and compliance-so that pilots produce actionable insights and reduce integration risk. Fifth, cultivate partnerships across hardware suppliers, integrators, and domain specialists to combine performance, domain knowledge, and compliance expertise. Finally, put in place governance frameworks that assign clear ownership of model monitoring, incident response, and continuous validation to ensure resilient operations and ethical outcomes.

A rigorous mixed-methods approach combining primary expert interviews, technical literature synthesis, and scenario validation to ensure robust and actionable insights

The research synthesizes qualitative and quantitative evidence drawn from a blended methodology designed to ensure robustness, reproducibility, and practical relevance. Primary research included structured interviews with senior technologists, product leaders, procurement specialists, and regulatory experts across multiple industries to capture lived experience with agent deployments, vendor selection criteria, and operational constraints. These conversations informed thematic coding and cross-validation exercises to identify recurring challenges, success factors, and vendor capabilities that matter to enterprise adoption.

Secondary research comprised technical literature, vendor technical briefs, regulatory guidance, and public procurement documentation to triangulate claims and document observed patterns. Data validation included vendor capability mapping, technology stack assessments, and scenario analysis to test sensitivity to supply chain and policy shocks. Throughout, methodological safeguards such as source triangulation, expert adjudication, and clear documentation of assumptions were applied to maintain analytical integrity. This mixed-methods approach produces insights that are both empirically grounded and actionable for decision-makers seeking to translate research findings into operational strategies.

A synthesis of core findings emphasizing modular architectures, governance, and supply chain resilience as the pillars of successful AI agent adoption

In sum, the AI agents landscape is maturing into a complex ecosystem where technical capability, governance maturity, supply chain resilience, and regional regulation jointly determine commercial outcomes. Organizations that embrace modular, observable architectures and that balance bespoke and off-the-shelf approaches will be better positioned to capitalize on near-term efficiency gains while managing longer-term risk. Regulatory and trade developments in 2025 have underscored the importance of supply chain transparency, flexible deployment models, and local compliance strategies, reshaping procurement priorities and partnership formations.

Going forward, success will hinge on the ability to translate pilot achievements into reliable production operations through disciplined governance, rigorous validation, and cross-functional collaboration. The most effective adopters will be those who integrate technical excellence with operational controls and strategic sourcing, thereby converting agent capabilities into sustained business outcomes. This conclusion synthesizes the report's core findings and sets the stage for targeted actions that follow in the full deliverable.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of generative AI agents into marketing platforms to generate hyper personalized campaign content at scale
  • 5.2. Deployment of autonomous AI agents in customer service to provide context aware 24/7 support across digital channels
  • 5.3. Use of federated learning empowered AI agents for data privacy compliant personalization in healthcare applications
  • 5.4. Development of multi agent collaboration frameworks for supply chain orchestration and dynamic inventory management
  • 5.5. Implementation of AI agent driven predictive maintenance systems to reduce downtime in manufacturing operations
  • 5.6. Leveraging AI agents with computer vision for real time quality inspection on production lines in automotive industry
  • 5.7. Integration of conversational AI agents with CRM systems to automate lead qualification and improve sales funnel conversion
  • 5.8. Emergence of specialized AI agents for financial risk assessment using real time market data and adaptive algorithms

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. AI Agents Market, by Agent System

  • 8.1. Introduction
  • 8.2. Multi Agent System
  • 8.3. Single Agent System

9. AI Agents Market, by Type

  • 9.1. Introduction
  • 9.2. Build-Your-Own Agents
  • 9.3. Ready-to-Deploy Agents

10. AI Agents Market, by Interaction Mode

  • 10.1. Introduction
  • 10.2. Background Agents
  • 10.3. Surface Agents

11. AI Agents Market, by Technology

  • 11.1. Introduction
  • 11.2. Computer Vision
  • 11.3. Deep Learning
  • 11.4. Machine Learning
  • 11.5. Natural Language Processing (NLP)

12. AI Agents Market, by Deployment Type

  • 12.1. Introduction
  • 12.2. Cloud
  • 12.3. On-Premise

13. AI Agents Market, by Enterprise Size

  • 13.1. Introduction
  • 13.2. Large Enterprises
  • 13.3. Small & Medium Enterprises

14. AI Agents Market, by Industry

  • 14.1. Introduction
  • 14.2. Automotive
  • 14.3. Banking, Financial Services, & Insurance
  • 14.4. Healthcare & Lifesciences
    • 14.4.1. Hospitals & Clinics
    • 14.4.2. Pharmaceuticals & Drug Discovery
    • 14.4.3. Telemedicine
  • 14.5. IT & Telecommunication
  • 14.6. Media & Entertainment
    • 14.6.1. Film & Television
    • 14.6.2. Gaming & eSports
    • 14.6.3. Music & Streaming Services
  • 14.7. Retail & E-Commerce

15. Americas AI Agents Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa AI Agents Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific AI Agents Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Cognizant Technology Solutions Corporation
    • 18.3.2. Amazon.com, Inc.
    • 18.3.3. Engageware
    • 18.3.4. Alibaba Group Holding Limited
    • 18.3.5. Amelia US LLC
    • 18.3.6. Apple Inc.
    • 18.3.7. AVA Labs, Inc.
    • 18.3.8. Baidu, Inc.
    • 18.3.9. Clinc, Inc.
    • 18.3.10. Google LLC by Alphabet Inc.
    • 18.3.11. Haptik Infotech Pvt. Ltd. by Reliance Industries Limited
    • 18.3.12. IBM Corporation
    • 18.3.13. Inbenta Technologies Inc.
    • 18.3.14. Interactions LLC
    • 18.3.15. Kasisto, Inc.
    • 18.3.16. Kore.ai, Inc.
    • 18.3.17. LINE Corporation
    • 18.3.18. LivePerson, Inc.
    • 18.3.19. Meta Platforms, Inc.
    • 18.3.20. Microsoft Corporation
    • 18.3.21. Nuance Communications, Inc.
    • 18.3.22. OpenAI Inc.
    • 18.3.23. Oracle Corporation
    • 18.3.24. Pega Systems Inc.
    • 18.3.25. Rasa Technologies GmbH
    • 18.3.26. Samsung Electronics Co., Ltd.
    • 18.3.27. SAP SE
    • 18.3.28. SK Telecom Co., Ltd.
    • 18.3.29. SoundHound, Inc.
    • 18.3.30. Uber Technologies, Inc.
    • 18.3.31. Verint Systems Inc.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제