시장보고서
상품코드
1803571

첨단 전기 산화 시스템 시장 : 유형별, 모듈 유형별, 시스템 용량별, 프로세스 유형별, 최종사용자별, 용도별 - 세계 예측(2025-2030년)

Advanced Electro Oxidation System Market by Type, Module Type, System Capacity, Process Type, End User, Application - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

첨단 전기 산화 시스템 시장은 2024년에 15억 3,000만 달러로 평가되었습니다. 2025년에는 16억 3,000만 달러에 이르고, CAGR 6.49%로 성장하여 2030년에는 22억 4,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 15억 3,000만 달러
추정 연도 : 2025년 16억 3,000만 달러
예측 연도 : 2030년 22억 4,000만 달러
CAGR(%) 6.49%

최첨단 전기 산화 혁신으로 산업 치료에 혁명을 일으키고 복잡한 오염 물질 정화의 지속가능성과 효율성을 촉진합니다.

첨단 전기 산화 시스템은 점점 더 엄격해지는 환경 기준과 복잡한 오염 물질 프로파일을 다루는 산업에서 매우 중요한 솔루션으로 등장했습니다. 전극 표면의 전기화학 반응을 이용하여 난분해성 유기 화합물, 중금속 및 PFAS와 같은 신종 오염물질의 고효율 분해를 실현하는 시스템입니다. 이 혁신적인 접근 방식은 화학물질 사용량을 최소화할 뿐만 아니라 슬러지 발생량도 줄여 기존의 산화 및 생물학적 처리 공정에 대한 지속 가능한 대안을 제시합니다.

다양한 산업별 전기 산화 시스템 채택을 재정의하는 새로운 기술 발전과 규제 역량 강화

전기 산화의 전망은 전극 배합과 반응기 구조의 획기적인 발전으로 인해 큰 변화를 겪고 있습니다. 예를 들어, 최첨단 붕소 도핑 다이아몬드 전극은 우수한 산화 전위와 긴 수명을 제공하여 가장 까다로운 유기 오염 물질을 처리할 수 있습니다. 동시에 판형, 나선형, 관형에 대응하는 모듈식 반응기 설계를 통해 운전자는 설치 공간, 유체역학, 유지보수 요구사항을 현장의 제약 조건에 맞게 조정할 수 있습니다.

2025년 미국 관세 조정이 전 세계 전기 산화 시스템 공급망과 비용에 미치는 영향에 대한 평가

미국이 2025년에 시행한 관세 조정은 전기 산화 시스템 부품의 세계 공급망에 새로운 복잡성을 가져왔습니다. 수입되는 전극 재료, 전력전자, 맞춤형 원자로 모듈은 관세 부담 증가에 직면하여 많은 제조업체들이 조달 전략을 재검토해야 합니다. 이에 대응하기 위해 일부 공급업체는 중요한 생산 단계를 최종 사용 시장 근처로 옮기고 다른 공급업체는 국내 제조업체와 파트너십을 맺어 비용 압력과 물류의 불확실성을 줄였습니다.

업계 요구에 맞는 전해 산화 솔루션을 촉진하는 시스템 유형 용량과 용도를 강조하는 주요 세분화 프레임워크 공개, 산업 요구에 맞는 전해 산화 솔루션 추진

미묘한 세분화 프레임워크는 전해 산화 기술의 다면적인 가능성을 보여줍니다. 시스템 유형별로 살펴보면, 배치 유닛은 파일럿 테스트 및 간헐적 작동을 위한 유연성을 제공하고, 플로우 스루 구성은 연속적이고 대량의 치료 수요를 지원합니다. 모듈 유형에 따라 선택 기준은 더욱 세분화되며, 판형 리액터는 유지보수가 용이하고, 나선형 설계는 컴팩트한 설치 공간에서 접촉 효율을 최적화하며, 관형 어셈블리는 리액터 길이에 걸쳐 균일한 전류 분포를 제공합니다.

북미, 남미, 중동 및 아프리카, 중동 및 아프리카, 아시아태평양의 전해 산화 시스템 개발을 형성하는 지역 역학 및 성장 요인 분석

전기 산화 기술의 보급에는 지역 역학이 결정적인 역할을 하고 있습니다. 북미와 남미에서는 연방 및 주정부 차원의 강력한 환경 규제로 인해 산업계가 기존의 치료 인프라를 업그레이드해야 하는 상황에 직면해 있습니다. 중남미 국가들은 규제의 성숙도는 빠르지만, 광업 및 금속 가공 분야에서 실행 가능성을 입증하는 파일럿 프로젝트를 진행하고 있습니다.

혁신을 주도하는 업계 선도 기업 프로파일링 전해 산화 기술 환경에서의 전략적 파트너십과 경쟁 환경에서의 차별화를 위한 전략적 파트너십 프로파일링

경쟁 구도에는 기존 물 기술 제공업체와 민첩한 전문 혁신가들이 혼재되어 있습니다. 주요 기업들은 전극 재료 및 반응기 효율 최적화를 위한 전략적 파트너십, 인수, 내부 R&D 투자를 통해 포트폴리오를 확장해 왔습니다. 장비 공급업체와 엔지니어링 서비스 기업 간의 협력적 제휴를 통해 조달, 설치, 라이프사이클 지원을 간소화하는 통합 솔루션이 탄생하고 있습니다.

전해산화 시장의 기술 동향 및 규제 변화에 대응하기 위한 업계 리더를 위한 실행 가능한 전략적 제안

진화하는 전기 산화 생태계를 탐색하기 위해 업계 리더는 차세대 전극 화학 물질의 개발을 가속화하기 위해 재료 과학 기관과의 전략적 R&D 협력을 우선시해야합니다. 파일럿 규모의 실증 테스트에 공동 투자함으로써 실제 환경에서의 성능을 검증하고 규제 당국의 승인을 신속하게 받을 수 있습니다. 동시에 현지 제조 파트너와 협력함으로써 관세 변동에 따른 공급망 혼란을 완화할 수 있으며, 현지 요구사항에 맞는 시스템 모듈의 커스터마이징을 지원할 수 있습니다.

1차 조사와 2차 데이터 검증, 엄격한 분석 프레임워크를 통합한 종합적인 조사 방법을 통해 확실한 인사이트를 얻을 수 있습니다.

본 조사에서는 전기산화에 대한 전체적인 그림을 파악하기 위해 정성적 방법과 정량적 방법을 통합하고 있습니다. 주요 산업 분야의 기술 책임자, 환경 엔지니어, 규제 당국, 최종 사용자 시설 관리자와의 심층 인터뷰를 통해 얻은 1차적 통찰력을 바탕으로 합니다. 이러한 직접적인 관점은 성능 요구 사항, 채택 장벽, 혁신의 궤적에 대한 중요한 이해를 돕습니다.

진화하는 전해질 산화 생태계에서 이해관계자를 이끄는 전략적 중요성을 밝히기 위한 주요 연구 결과의 통합.

전기 산화 시스템은 더 이상 틈새 장비가 아니라 고급 수처리 전략의 기본 구성 요소입니다. 정교한 전극 재료부터 지능형 제어 시스템까지, 기술 혁신은 오염물질 제거의 경계를 넓히고, 운영 비용을 최적화하면서 가장 엄격한 배출 기준을 준수할 수 있게 해줍니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 첨단 전기 산화 시스템 시장 : 유형별

  • Batch
  • Flow Through

제9장 첨단 전기 산화 시스템 시장 : 모듈 유형별

  • Plate
  • Spiral
  • Tubular

제10장 첨단 전기 산화 시스템 시장 : 시스템 용량별

  • 50 To 200 Cubic Meters Per Day
  • Above 200 Cubic Meters Per Day
  • Below 50 Cubic Meters Per Day

제11장 첨단 전기 산화 시스템 시장 : 프로세스 유형별

  • 직접 산화
  • Electro Fenton
  • 간접 산화

제12장 첨단 전기 산화 시스템 시장 : 최종사용자별

  • 화학제품 및 석유화학제품
  • 광업 및 금속
  • 석유 및 가스
  • 의약품 및 헬스케어
  • 펄프 및 종이
  • 반도체 및 일렉트로닉스

제13장 첨단 전기 산화 시스템 시장 : 용도별

  • 전기도금 및 금속 회수
  • 식품 및 음료 폐수
  • 산업 폐수 처리
  • 매립지 침출 수처리
  • 시영 수도 정수
  • PFAS 및 신흥 오염물질 파괴

제14장 아메리카의 첨단 전기 산화 시스템 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 첨단 전기 산화 시스템 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 첨단 전기 산화 시스템 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AES Arabia Ltd.
    • AquaCare GmbH & Co. KG
    • Bionics Advanced Filtration Systems Pvt. Ltd.
    • Condorchem Envitech S.L.
    • Electrochem Technologies & Materials Inc.
    • Eloxite Corporation
    • EnviroChemie GmbH
    • Evoqua Water Technologies Corp.
    • Industrie De Nora S.p.A.
    • Lenntech B.V.
    • Magneto Special Anodes B.V.
    • Peroxid-Chemie GmbH & Co. KG
    • PURACO Environmental Solutions Co., Ltd.
    • Puralytics Inc.
    • Sangjudan Environmental Technology Co., Ltd.
    • Scinor Water Technology Co., Ltd.
    • Suez SA
    • Tianjin Motimo Membrane Technology Co., Ltd.
    • Trovant Technology Ltd.
    • Veolia Environnement SA
    • W2O Engineering Pty Ltd.
    • Water Online LLC
    • WaterStep Inc.
    • Xylem Inc.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

LSH 25.09.11

The Advanced Electro Oxidation System Market was valued at USD 1.53 billion in 2024 and is projected to grow to USD 1.63 billion in 2025, with a CAGR of 6.49%, reaching USD 2.24 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.53 billion
Estimated Year [2025] USD 1.63 billion
Forecast Year [2030] USD 2.24 billion
CAGR (%) 6.49%

Revolutionizing Industrial Treatment with Cutting-Edge Electro Oxidation Innovations Driving Sustainability and Efficiency in Complex Contaminant Remediation

Advanced electro oxidation systems have emerged as pivotal solutions for industries grappling with increasingly stringent environmental standards and complex contaminant profiles. By harnessing electrochemical reactions at electrode surfaces, these systems achieve high-efficiency degradation of recalcitrant organic compounds, heavy metals, and emerging contaminants such as PFAS. This transformative approach not only minimizes chemical usage but also reduces sludge generation, presenting a sustainable alternative to traditional oxidation and biological treatment processes.

Moreover, recent advancements in electrode materials, reactor design, and energy recovery mechanisms have significantly improved operational reliability and cost-effectiveness. When integrated with smart monitoring platforms and adaptive control strategies, electro oxidation units can dynamically respond to fluctuating influent characteristics, optimizing performance while conserving energy. Consequently, these systems are gaining traction across sectors including petrochemicals, pharmaceuticals, and semiconductors, where wastewater streams demand robust and consistent treatment solutions.

As regulatory bodies worldwide tighten discharge limits and mandate advanced treatment for persistent contaminants, the strategic deployment of electro oxidation technology becomes a critical differentiator. Organizations investing in these systems not only ensure compliance but also demonstrate leadership in environmental stewardship and operational excellence. The convergence of technological innovation and regulatory impetus sets the stage for accelerated adoption and maturation of electro oxidation platforms on a global scale.

Emerging Technological Advancements and Regulatory Forces Redefining Electro Oxidation System Adoption Across Diverse Industry Verticals

The electro oxidation landscape is experiencing profound transformation driven by breakthroughs in electrode formulations and reactor architectures. State-of-the-art boron-doped diamond electrodes, for instance, deliver superior oxidative potential and extended service life, enabling treatment of the most stubborn organic pollutants. Simultaneously, modular reactor designs that accommodate plate, spiral, and tubular configurations allow operators to align footprint, flow dynamics, and maintenance requirements with site-specific constraints.

In parallel, digitalization is reshaping operational paradigms. Real-time data analytics and machine learning-enabled control systems now predict contaminant loading shifts and adjust power inputs to maintain optimal oxidation rates. As a result, system downtime is minimized and energy consumption is closely managed, reinforcing the technology's economic viability. Furthermore, the integration of hybrid treatment trains-combining electro oxidation with membrane filtration, adsorption, or biological polishing-has demonstrated enhanced treatment efficacy while mitigating by-product formation.

Regulatory frameworks are also evolving to acknowledge these technological strides. Permitting authorities increasingly emphasize performance-based standards, incentivizing the adoption of advanced oxidation to meet emerging contaminant thresholds. Consequently, electro oxidation is transitioning from a niche solution to a mainstream requirement for industries seeking resilient and future-proof wastewater strategies.

Assessing the Far-Reaching Consequences of United States Tariff Adjustments in 2025 on Global Electro Oxidation System Supply Chains and Costs

The tariff adjustments enacted by the United States in 2025 have introduced new complexities into the global supply chain for electro oxidation system components. Imported electrode materials, power electronics, and custom reactor modules now face elevated duty burdens, prompting many manufacturers to reassess sourcing strategies. In response, some suppliers have relocated critical production stages closer to end-use markets, while others are forging partnerships with domestic fabricators to mitigate cost pressures and logistical uncertainties.

These shifts have also influenced project timelines and capital expenditure profiles. Procurement teams are navigating longer lead times as manufacturers recalibrate inventory holdings and realign distribution networks for tariff-compliant flows. At the same time, end-users are evaluating total cost of ownership through a more granular lens, balancing initial equipment investments against potential savings in energy consumption and maintenance overhead.

Despite these challenges, the impact extends beyond budgets. Heightened domestic manufacturing activity is fostering innovation in electrode and reactor design, as well as spurring collaborations with academic institutions to develop next-generation materials. The evolving tariff landscape thus serves as both a constraint and a catalyst, driving supply-chain resilience while accelerating the maturation of indigenous electro oxidation capabilities.

Unveiling Key Segmentation Frameworks Highlighting System Types Capacities and Applications Driving Tailored Electro Oxidation Solutions for Industry Needs

A nuanced segmentation framework reveals the multifaceted potential of electro oxidation technology. When systems are examined by type, batch units offer flexibility for pilot studies and intermittent operation while flow-through configurations support continuous, high-volume treatment demands. Module type further refines selection criteria, with plate reactors providing straightforward maintenance, spiral designs optimizing contact efficiency in compact footprints, and tubular assemblies delivering uniform current distribution across longer reactor lengths.

System capacity classifications delineate solutions tailored to specific facility scales, from modest installations treating below 50 cubic meters per day to mid-range operations handling 50 to 200 cubic meters daily, and large-scale plants exceeding 200 cubic meters daily. Process type segmentation distinguishes between direct oxidation, where hydroxyl radical generation occurs at the anode surface, electro Fenton leveraging in situ hydrogen peroxide production for targeted contaminant breakdown, and indirect oxidation pathways that utilize mediator compounds to propagate oxidative reactions.

End-user segmentation highlights industry drivers, encompassing chemicals and petrochemicals seeking robust effluent polishing, mining and metals operations addressing complex metal co-contaminants, oil and gas sectors mitigating produced water challenges, pharmaceutical and healthcare facilities managing stringent discharge parameters, pulp and paper mills targeting color and organic load removal, and semiconductor and electronics manufacturers combating ultrapure water requirements. Application insights illustrate the versatility of electro oxidation in electroplating and metal recovery, food and beverage wastewater treatment, industrial effluent remediation, landfill leachate management, municipal water purification, and destruction of PFAS and emerging contaminants, underscoring its broad relevance.

Analyzing Regional Dynamics and Growth Drivers Shaping Electro Oxidation System Deployment Across Americas Europe Middle East Africa and Asia Pacific

Regional dynamics play a decisive role in the diffusion of electro oxidation technology. In the Americas, robust environmental regulations at federal and state levels are compelling industries to upgrade legacy treatment infrastructures. Latin American countries, while at earlier stages of regulatory maturity, are undertaking pilot projects to demonstrate viability in mining and metal processing contexts.

Across Europe, the Middle East, and Africa, stringent discharge standards for emerging contaminants are driving demand for advanced oxidation processes. Western European nations exhibit high adoption rates, leveraging strong research networks and government incentives. In the Middle East, water-scarce nations are integrating electro oxidation with desalination and municipal reuse schemes to maximize resource recovery. Sub-Saharan markets, though nascent, show growing interest tied to industrial expansion and sustainability commitments.

The Asia-Pacific region represents a diverse tapestry of drivers and challenges. China's ongoing industrial upgrading initiatives are stimulating demand for high-capacity systems, while Japan's focus on resource-efficient designs is accelerating innovations in energy recovery. Southeast Asian economies are deploying modular units to address fragmented wastewater infrastructure, and Australia is pioneering hybrid treatment models for mine site rehabilitation and agriculture-related effluent management.

Profiling Leading Industry Players Driving Innovation Strategic Partnerships and Competitive Differentiation in the Electro Oxidation Technology Landscape

The competitive landscape features a blend of established water technology providers and agile specialized innovators. Leading players have expanded their portfolios through strategic partnerships, acquisitions, and internal R&D investments aimed at optimizing electrode materials and reactor efficiencies. Collaborative alliances between equipment suppliers and engineering service firms are yielding integrated solutions that streamline procurement, installation, and lifecycle support.

Technology vendors are also differentiating through digital service offerings that include remote performance monitoring, predictive maintenance algorithms, and energy management dashboards. These value-added services enhance operational uptime and support continuous performance validation against evolving regulatory benchmarks. Meanwhile, emerging entrants are focused on niche segments such as high-flux PFAS destruction and modular plug-and-play systems tailored to remote or decentralized applications.

As the industry matures, competitive dynamics are shifting from commoditized hardware sales toward comprehensive solution delivery. End-users prioritize providers that can demonstrate measurable reductions in operational expenditures and environmental liabilities, while offering flexible contracting models ranging from capital purchase to performance-based service agreements.

Actionable Strategic Recommendations Empowering Industry Leaders to Capitalize on Technological Trends and Regulatory Shifts in Electro Oxidation Markets

To navigate the evolving electro oxidation ecosystem, industry leaders should prioritize strategic R&D collaborations with material science institutions to accelerate the development of next-generation electrode chemistries. By co-investing in pilot scale demonstrations, organizations can validate performance under real-world conditions and expedite regulatory approvals. Simultaneously, forging alliances with local manufacturing partners can mitigate supply chain disruptions tied to tariff volatility while supporting customization of system modules for regional requirements.

Furthermore, embracing digital transformation initiatives will unlock operational efficiencies and predictive insights. Deploying advanced process control platforms integrated with cloud-based analytics enables adaptive power modulation and fault detection, reducing energy consumption and unplanned downtime. Leaders should also explore hybrid service models that align provider revenue with performance outcomes, fostering deeper partnerships with end-users and reinforcing total cost of ownership advantages.

Finally, proactive engagement with regulatory stakeholders through industry consortia can shape performance-based standards and incentivize advanced oxidation adoption. By contributing empirical data from full-scale installations, companies can influence policy frameworks that recognize the long-term economic and environmental benefits of electro oxidation technology.

Comprehensive Research Methodology Integrating Primary Interviews Secondary Data Validation and Rigorous Analytical Frameworks for Robust Insights

This research integrates qualitative and quantitative methods to deliver a holistic view of the electro oxidation landscape. Primary insights derive from in-depth interviews with technical directors, environmental engineers, regulatory authorities, and end-user facility managers across key industries. These firsthand perspectives inform critical understanding of performance requirements, adoption barriers, and innovation trajectories.

Secondary research encompasses comprehensive analysis of scientific publications, patent filings, industry white papers, and regulatory documents to trace historical development and emerging technologies. Data validation protocols include cross-referencing supplier specifications, pilot project reports, and third-party testing outcomes to ensure accuracy and consistency.

Analytical frameworks applied in this study include SWOT assessments to evaluate stakeholder strengths and vulnerabilities, PESTEL analyses to map macro-environmental drivers, and Porter's Five Forces evaluations to gauge competitive intensity. Scenario modeling explores potential impacts of regulatory shifts, tariff adjustments, and technological breakthroughs on supply chain resilience and adoption rates.

Synthesizing Key Findings to Illuminate the Strategic Imperatives Guiding Stakeholders in the Evolving Electro Oxidation Ecosystem

The findings underscore a clear imperative: electro oxidation systems are no longer niche installations but foundational components of advanced water treatment strategies. Technological innovations-from sophisticated electrode materials to intelligent control systems-are expanding the boundaries of contaminant removal, enabling compliance with the most rigorous discharge standards while optimizing operational expenditures.

Simultaneously, external forces such as rising environmental regulations and tariff realignments are reshaping supply chain configurations and investment priorities. Strategic partnerships, localized manufacturing, and hybrid service models emerge as critical enablers of sustainable growth. Regional variations further highlight the need for adaptable offerings that align with distinct market maturity levels and regulatory landscapes.

Collectively, these insights equip stakeholders with the knowledge to make informed decisions on technology selection, project execution, and long-term planning. As the industry advances, maintaining agility and embracing collaborative innovation will be paramount to capturing the full potential of electro oxidation across diverse applications.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of renewable energy sources to power advanced electro-oxidation units for decentralized water treatment
  • 5.2. Development of modular electro-oxidation skid solutions enabling rapid on-site wastewater remediation for industrial clients
  • 5.3. Rising adoption of machine learning-driven process optimization to reduce energy consumption in electro-oxidation systems
  • 5.4. Emergence of nano-structured catalytic electrode coatings for accelerated degradation of persistent organic pollutants
  • 5.5. Growing regulatory pressure for zero liquid discharge driving high-capacity electro-oxidation deployment in manufacturing
  • 5.6. Partnerships between electro-oxidation OEMs and water utilities for real-time contaminant monitoring and adaptive treatment controls
  • 5.7. Innovation in hybrid treatment configurations combining electro-oxidation with membrane filtration for high-strength effluents

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Advanced Electro Oxidation System Market, by Type

  • 8.1. Introduction
  • 8.2. Batch
  • 8.3. Flow Through

9. Advanced Electro Oxidation System Market, by Module Type

  • 9.1. Introduction
  • 9.2. Plate
  • 9.3. Spiral
  • 9.4. Tubular

10. Advanced Electro Oxidation System Market, by System Capacity

  • 10.1. Introduction
  • 10.2. 50 To 200 Cubic Meters Per Day
  • 10.3. Above 200 Cubic Meters Per Day
  • 10.4. Below 50 Cubic Meters Per Day

11. Advanced Electro Oxidation System Market, by Process Type

  • 11.1. Introduction
  • 11.2. Direct Oxidation
  • 11.3. Electro Fenton
  • 11.4. Indirect Oxidation

12. Advanced Electro Oxidation System Market, by End User

  • 12.1. Introduction
  • 12.2. Chemicals & Petrochemicals
  • 12.3. Mining & Metals
  • 12.4. Oil & Gas
  • 12.5. Pharmaceuticals & Healthcare
  • 12.6. Pulp & Paper
  • 12.7. Semiconductors & Electronics

13. Advanced Electro Oxidation System Market, by Application

  • 13.1. Introduction
  • 13.2. Electroplating & Metal Recovery
  • 13.3. Food & Beverage Wastewater
  • 13.4. Industrial Wastewater Treatment
  • 13.5. Landfill Leachate Treatment
  • 13.6. Municipal Water Purification
  • 13.7. PFAS & Emerging Contaminant Destruction

14. Americas Advanced Electro Oxidation System Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Advanced Electro Oxidation System Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Advanced Electro Oxidation System Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. AES Arabia Ltd.
    • 17.3.2. AquaCare GmbH & Co. KG
    • 17.3.3. Bionics Advanced Filtration Systems Pvt. Ltd.
    • 17.3.4. Condorchem Envitech S.L.
    • 17.3.5. Electrochem Technologies & Materials Inc.
    • 17.3.6. Eloxite Corporation
    • 17.3.7. EnviroChemie GmbH
    • 17.3.8. Evoqua Water Technologies Corp.
    • 17.3.9. Industrie De Nora S.p.A.
    • 17.3.10. Lenntech B.V.
    • 17.3.11. Magneto Special Anodes B.V.
    • 17.3.12. Peroxid-Chemie GmbH & Co. KG
    • 17.3.13. PURACO Environmental Solutions Co., Ltd.
    • 17.3.14. Puralytics Inc.
    • 17.3.15. Sangjudan Environmental Technology Co., Ltd.
    • 17.3.16. Scinor Water Technology Co., Ltd.
    • 17.3.17. Suez SA
    • 17.3.18. Tianjin Motimo Membrane Technology Co., Ltd.
    • 17.3.19. Trovant Technology Ltd.
    • 17.3.20. Veolia Environnement SA
    • 17.3.21. W2O Engineering Pty Ltd.
    • 17.3.22. Water Online LLC
    • 17.3.23. WaterStep Inc.
    • 17.3.24. Xylem Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제