½ÃÀ庸°í¼­
»óǰÄÚµå
1803627

µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ·Îº¿ À¯Çü, ÄÄÆ÷³ÍÆ®, ÆäÀ̷εå, ¿ëµµ, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° - ¼¼°è ¿¹Ãø(2025-2030³â)

Desktop Robots Market by Robot Type, Component, Payload, Application, End-Use Industry - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 199 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

µ¥½ºÅ©Åé ·Îº¿ ½ÃÀåÀº 2024³â¿¡´Â 4¾ï 6,432¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 5¾ï 1,952¸¸ ´Þ·¯, CAGR 12.18%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 9¾ï 2,551¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 4¾ï 6,432¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 5¾ï 1,952¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 9¾ï 2,551¸¸ ´Þ·¯
CAGR(%) 12.18%

Çö´ë »ê¾÷ÀÇ ±Þ¼ÓÇÑ ±â¼ú ¹ßÀü°ú »õ·Î¿î ÀÚµ¿È­ ¼ö¿ä ¼Ó¿¡¼­ µ¥½ºÅ©Åé ·Îº¿ ¼Ö·ç¼ÇÀÇ ÁøÈ­¸¦ »ìÆìº¾´Ï´Ù.

µ¥½ºÅ©Åé ·Îº¿ ¼Ö·ç¼ÇÀº ½ÇÇè½Ç ȯ°æ, ¿¬±¸ ½Ã¼³, °æ°ø¾÷ ¶óÀο¡¼­ Á¤È®¼º, À¯¿¬¼º, È¿À²¼ºÀ» ³ôÀÌ´Â ¸Å¿ì Áß¿äÇÑ Àåºñ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÃÖ±Ù ¸î ³â°£ÀÇ ±â¼ú ¹ßÀüÀ¸·Î ·Îº¿ ÆÈÀÇ ¼ÒÇüÈ­¿Í Á÷°üÀûÀÎ ÇÁ·Î±×·¡¹Ö ÀÎÅÍÆäÀ̽ºÀÇ ÅëÇÕÀÌ ¿ëÀÌÇØÁü¿¡ µû¶ó ÀÚµ¿È­¸¦ äÅÃÇÏ´Â Á¶Á÷ÀÇ ÆøÀÌ ³Ð¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ¹Ýº¹ ÀÛ¾÷À» È¿À²È­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó Å×½ºÆ® ½Ã³ª¸®¿ÀÀÇ ÀçÇö¼ºÀ» ³ô¿© Çмú ¿¬±¸ ¹× Á¦Ç° °³¹ß ¿öÅ©Ç÷ο쿡 ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù.

¿¬°á¼º °­È­¿Í ½º¸¶Æ® ÀÚµ¿È­¸¦ ÅëÇØ µ¥½ºÅ©Åé ·Îº¿ÀÇ »óȲÀ» Çü¼ºÇϴ ȹ±âÀûÀÎ ±â¼úÀû, ½ÃÀåÀû º¯È­¸¦ ¹àÈü´Ï´Ù.

¿§Áö ÄÄÇ»ÆÃ, Ŭ¶ó¿ìµå ±â¹Ý ¿ÀÄɽºÆ®·¹À̼Ç, ¿ÀÇ ¼Ò½º Á¦¾î ÇÁ·¹ÀÓ¿öÅ©ÀÇ º¸±ÞÀ¸·Î µ¥½ºÅ©Åé ·Îº¿ÀÇ »óȲÀº Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. µðÁöÅÐ Æ®À©ÀÇ ÅëÇÕÀº ½Ã½ºÅÛ °ËÁõ°ú µµÀÔÀ» °¡¼ÓÈ­ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¿¹Áöº¸Àü ´É·ÂÀ» °­È­ÇÕ´Ï´Ù. ±× °á°ú, °³¹ß ±â°£ÀÌ ´ÜÃàµÇ°í ½Ã½ºÅÛ ¾ÈÁ¤¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù.

2025³â ÀÌÈıîÁö ¹Ì±¹ ¹«¿ª °ü¼¼°¡ µ¥½ºÅ©Åé ·Îº¿ °ø±Þ¸Á ¹× ºÎǰ °¡¿ë¼º¿¡ ¹ÌÄ¡´Â º¹ÇÕÀûÀÎ ¿µÇâ Æò°¡

2025³â±îÁö ¹Ì±¹ÀÌ ½ÃÇàÇÑ ¹«¿ª Á¤Ã¥ ¹× °ü¼¼ ÀÏÁ¤¿¡ ´ëÇÑ ´©Àû Á¶Á¤Àº µ¥½ºÅ©Åé ·Îº¿ Á¦Á¶¾÷üÀÇ Á¶´Þ Àü·«¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Á¤¹Ð ¼¾¼­, ¸¶ÀÌÅ©·ÎÄÁÆ®·Ñ·¯, ¸ðÅÍ µå¶óÀ̺ê¿Í °°Àº ºÎǰÀº ºñ¿ë »ó½ÂÀ¸·Î ÀÎÇØ °ø±Þ¾÷üµéÀº ¼¼°è Á¶´Þ ³×Æ®¿öÅ©¸¦ Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ÀÌ¿¡ ´ëÀÀÇϱâ À§ÇØ ÀϺΠ±â¾÷µéÀº ÁÖ¿ä ¼­ºê ¾î¼Àºí¸®¸¦ ºÎºÐÀûÀ¸·Î ÇöÁöÈ­ÇÏ¿© ³ëÃâÀ» ÁÙÀÌ°í ¸¶ÁøÀ» È®º¸Çϰí ÀÖ½À´Ï´Ù.

µ¥½ºÅ©Åé ·Îº¿ÀÇ À¯Çüº°, ÆäÀÌ·Îµå ¿ëµµº°, ÃÖÁ¾ »ç¿ë »ê¾÷º° ¼¼ºÐÈ­¸¦ ÅëÇØ Á¾ÇÕÀûÀÎ ÀλçÀÌÆ®¸¦ È®º¸Çϰí Àü·«Àû ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù.

µ¥½ºÅ©Åé ·Îº¿ ½ÃÀåÀº ´Ù°üÀý ÆÈÀÌ ´ÙÃà ¼ÕÀçÁÖ¸¦ Á¦°øÇÏ´Â ´Ù°üÀý ·Îº¿, Á÷±³Çü ±¸¼ºÀÌ Á÷¼±Àû ´Ü¼ø¼ºÀ» Á¦°øÇÏ´Â Á÷±³Çü ·Îº¿, Çù¾÷ ·Îº¿(ÄÚº¿)ÀÌ ¾ÈÀüÀåÄ¡°¡ ³»ÀåµÈ Àΰ£°ú ·Îº¿ÀÇ °øÀ¯ ÀÛ¾÷°ø°£À» °¡´ÉÇÏ°Ô ÇÏ´Â Çù¾÷ ·Îº¿ µî À¯Çüº°·Î ´Ù¾çÇÕ´Ï´Ù. °¢ ÆûÆÑÅÍ´Â Á¤¹ÐÇÑ ¸¶ÀÌÅ©·Î ¾î¼Àºí¸® ÀÛ¾÷¿¡¼­ À¯¿¬ÇÑ ¿¬±¸ ½ÇÇè¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¾ÖÇø®ÄÉÀÌ¼Ç ¿ä±¸ »çÇ×À» ÃæÁ·ÇÕ´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾ç, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥½ºÅ©Åé ·Îº¿ º¸±Þ ¹× ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áö¿ª ¿ªÇÐ ºÐ¼®, ½ÃÀå ÃËÁø¿äÀÎ ¹× °úÁ¦¿¡ ÁßÁ¡À» µÒ.

µ¥½ºÅ©Åé ·Îº¿ÀÇ Áö¿ªº° ½ÃÀå ¿ªÇÐÀº ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çº°·Î °¢±â ´Ù¸¥ ¼ºÀå Ã˸ÅÁ¦¿Í µµÀÔ À庮ÀÌ ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â ±¹³» »ý»ê ½Ã¼³ÀÇ Çö´ëÈ­ °èȹ°ú Ȱ¹ßÇÑ ´ëÇÐ ¿¬±¸ ÇÁ·Î±×·¥ÀÌ °áÇյǾî À¯¿¬ÇÑ ÀÚµ¿È­ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¾Æ¸Þ¸®Ä« ±â¾÷µéÀº °ø°£ Á¦¾àÀÌ ÀÖ´Â ÀÛ¾÷À» ÃÖÀûÈ­Çϱâ À§ÇØ µ¥½ºÅ©Åé Ç÷§Æû°ú ´ëÇü ·Îº¿ ¶óÀÎÀ» ÅëÇÕÇÑ Çù¾÷ ¼¿¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä µ¥½ºÅ©Åé ·Îº¿ Á¦Á¶¾÷üÀÇ Àü·«°ú Çõ½Å¼º, °æÀïÀû Æ÷Áö¼Å´×°ú Çù¾÷ º¥Ã³ ¹× ±â¼ú ·Îµå¸Ê °­Á¶

ÁÖ¿ä µ¥½ºÅ©Åé ·Îº¿ °ø±Þ¾÷ü¸¦ Á¶»çÇÑ °á°ú, Çϵå¿þ¾î Çõ½Å, ¼ÒÇÁÆ®¿þ¾î »ýŰè, Çù¾÷ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ Àü·«Àû Â÷º°È­¸¦ ²ÒÇϰí ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ¾×Ãß¿¡ÀÌÅÍÀÇ ¼³°è¸¦ °³¼±Çϰí ÷´Ü ¼¾½Ì ±â´ÉÀ» ÅëÇÕÇϱâ À§ÇÑ ¿¬±¸ ³ë·ÂÀ» °­È­ÇÏ¿© Á¤È®µµ¸¦ À¯ÁöÇϸ鼭 ¼³Ä¡ ¸éÀûÀ» ÁÙÀÏ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. Ÿ»ç ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßÀ» ÃËÁøÇÏ°í ±â¾÷ ¼ÒÇÁÆ®¿þ¾î¿ÍÀÇ ÅëÇÕÀ» °¡¼ÓÈ­Çϱâ À§ÇØ ÀϺΠ±â¾÷Àº °³¹æÇü ¾ÆÅ°ÅØÃ³ Á¦¾î ÇÁ·¹ÀÓ¿öÅ©¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù.

ÅõÀÚ Áß½ÉÀÇ ÆÄÆ®³Ê½Ê°ú ÀÎÀç À°¼ºÀ» ÅëÇØ µ¥½ºÅ©Åé ·Îº¿ÀÇ ºñÁî´Ï½º ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇÑ ¾÷°è ¸®´õ¸¦ À§ÇÑ Àü·«Àû ·Îµå¸Ê ¼ö¸³

µ¥½ºÅ©Åé ·Îº¿ Çõ¸íÀ» Ȱ¿ëÇϰíÀÚ ÇÏ´Â ¾÷°è ¸®´õµéÀº AI ±â¹Ý Á¦¾î ¾Ë°í¸®Áò°ú ºñÀü ÅëÇÕ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ¿ì¼±¼øÀ§¿¡ µÎ°í, ¿ªµ¿ÀûÀΠȯ°æ¿¡¼­ ÀûÀÀÇü ¼º´ÉÀ» ±¸ÇöÇÒ ¼ö ÀÖµµ·Ï ÇØ¾ß ÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î °³¹ß Àü¹®°¡¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ±¸ÃàÇÏ¿© ¸ÂÃãÇü ¾ÖÇø®ÄÉÀÌ¼Ç ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí, Ç¥ÁØÈ­ ´Üü¿Í Çù·ÂÇÏ¿© ¼¼°è ½ÃÀå¿¡¼­ÀÇ ÄÄÇöóÀ̾𽺠¹× ¾ÈÀü ÀÎÁõÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

1Â÷ Á¶»ç¿Í Àü¹®°¡ °ËÁõ, 2Â÷ Á¤º¸¸¦ °áÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ÇÁ·¹ÀÓ¿öÅ©¸¦ ÅëÇØ Á¤È®ÇÏ°í ½Ç¿ëÀûÀÎ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

ÀÌ·¯ÇÑ ÀλçÀÌÆ®¸¦ µÞ¹ÞħÇÏ´Â Á¶»ç ¹æ¹ýÀº ¾÷°è °£Ç๰, ƯÇã Ãâ¿ø, ±â¼ú ¹é¼­¸¦ ±¤¹üÀ§ÇÏ°Ô °ËÅäÇÏ´Â µî ´Ù´Ü°è Á¢±Ù ¹æ½ÄÀ» ÅëÇÕÇÑ °ÍÀÔ´Ï´Ù. ÀÌ 2Â÷ Á¶»ç¿Í ´õºÒ¾î Á¦Ç° °ü¸®ÀÚ, ½Ã½ºÅÛ ÅëÇÕÀÚ, ÃÖÁ¾»ç¿ëÀÚ, Çаè Àü¹®°¡¸¦ ´ë»óÀ¸·Î ÇÑ 1Â÷ ÀÎÅͺ並 ÅëÇØ ±â¼ú µµÀÔ°ú ¿î¿µ»óÀÇ ¹®Á¦¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù.

µ¥½ºÅ©Åé ·Îº¿ Çõ½Å¿¡ ´ëÇÑ ÃÖÁ¾ ÀλçÀÌÆ® ÀÚµ¿È­ ÀÌ´Ï¼ÅÆ¼ºê¸¦ È®½ÇÇÏ°Ô ÃßÁøÇϱâ À§ÇÑ ÁÖ¿ä ¹ß°ß°ú »õ·Î¿î ÁÖÁ¦ÀÇ ÅëÇÕ.

ÁÖ¿ä ÁÖÁ¦¸¦ Á¾ÇÕÇØ º¸¸é, µ¥½ºÅ©Åé ·Îº¿Àº Æ´»õ ½ÇÇè½Ç µµ±¸¿¡¼­ º¸´Ù ±¤¹üÀ§ÇÑ ÀÚµ¿È­ Àü·«¿¡ ÇʼöÀûÀÎ ±¸¼º¿ä¼Ò·Î ÀüȯµÇ°í ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù. AI, Ä¿³ØÆ¼ºñƼ, ¾ÈÀüÀÇ ±â¼ú ¹ßÀüÀº Àΰ£°ú ±â°èÀÇ Çù¾÷¿¡ »õ·Î¿î ÆÐ·¯´ÙÀÓÀ» ¸¸µé¾î³»°í ÀÖÀ¸¸ç, ÁøÈ­ÇÏ´Â ¹«¿ª Á¤Ã¥°ú Áö¿ªÀû Àμ¾Æ¼ºê´Â ¼¼°è °ø±Þ¸ÁÀÇ À±°ûÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ·Îº¿ À¯Çüº°

  • ´Ù°üÀý ·Îº¿
  • Á÷±³ ·Îº¿
  • Çùµ¿ µ¥½ºÅ©Åé ·Îº¿(ÄÚº¿)

Á¦9Àå µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • ÄÁÆ®·Ñ·¯
    • ¿£µå ÀÌÆåÅÍ
    • ¸Å´Ïǽ·¹ÀÌÅÍ
    • Àü·Â ½Ã½ºÅÛ
    • ¼¾¼­
  • ¼­ºñ½º
    • ÅëÇÕ
    • À¯Áöº¸¼ö
    • Æ®·¹ÀÌ´×
  • ¼ÒÇÁÆ®¿þ¾î
    • Á¦¾î ¼ÒÇÁÆ®¿þ¾î
    • ÇÁ·Î±×·¡¹Ö ÀÎÅÍÆäÀ̽º
    • ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î

Á¦10Àå µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ÆäÀ̷ε庰

  • 5-10ų·Î
  • 10kg ÀÌ»ó
  • 5kg ÀÌÇÏ

Á¦11Àå µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ¿ëµµº°

  • ¾î¼Àºí¸®
  • µð½ºÆæ½Ì
  • ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • °Ë»ç
  • ÀÚÀç°ü¸®
  • ÆÐŰÁö
  • ¿¬±¸¿Í ±³À°
  • ¼Ö´õ¸µ°ú ¿ëÁ¢

Á¦12Àå µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • Çмú¿¬±¸±â°ü
  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • ÀÚµ¿Â÷
  • ¼ÒºñÀç
  • ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼
  • ½Äǰ ¹× À½·á
  • ÀǾàǰ¡¤ÇコÄɾî

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥½ºÅ©Åé ·Îº¿ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Hugging Face, Inc.
    • LivingAI
    • AB Controls, Inc
    • Adtech(Shenzhen) Technology Co., Ltd.
    • Bless This Stuff
    • Digital Dream Labs, INC
    • Dobot
    • Elephant Robotics
    • Energize Lab
    • Fancort Industries, Inc
    • IADIY Technology
    • Iwashita Engineering, Inc.
    • Izumi International, Inc.
    • JANOME Corporation
    • JBC Soldering S.L.
    • KEYI TECHNOLOGY INC
    • MangDang
    • Miko Mini
    • Orbital Mekatronik Systems Pvt. Ltd.
    • Pinnacle Automations
    • Rotrics
    • TM Robotics
    • Toyo Robotics
    • Zhejiang Neoden Technology Co.,Ltd

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM

The Desktop Robots Market was valued at USD 464.32 million in 2024 and is projected to grow to USD 519.52 million in 2025, with a CAGR of 12.18%, reaching USD 925.51 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 464.32 million
Estimated Year [2025] USD 519.52 million
Forecast Year [2030] USD 925.51 million
CAGR (%) 12.18%

Exploring the Evolution of Desktop Robotic Solutions Amidst Rapid Technological Advancements and Emerging Automation Demands in Modern Industries

Desktop robotic solutions have emerged as pivotal instruments in driving precision, flexibility, and efficiency across laboratory environments, research facilities, and light manufacturing lines. Recent technological advances have facilitated the miniaturization of robotic arms and the integration of intuitive programming interfaces, empowering a wider array of organizations to adopt automation. In addition to streamlining repetitive tasks, these systems offer enhanced reproducibility in testing scenarios, making them indispensable in academic research and product development workflows.

Moreover, the confluence of artificial intelligence and vision-based guidance has significantly lowered the barrier to entry, enabling operators without extensive programming backgrounds to configure tasks and iterate processes rapidly. As industries seek to accelerate innovation cycles, demand for modular, collaborative desktop robots continues to ascend. Consequently, strategic stakeholders are positioned to gain early mover advantages by embracing these compact automation platforms, which deliver cost savings and scalable performance.

Uncovering the Breakthrough Technological and Market Shifts Reshaping the Desktop Robotics Landscape Through Enhanced Connectivity and Smart Automation

The landscape of desktop robotics is undergoing transformative shifts fueled by the proliferation of edge computing, cloud-based orchestration, and open-source control frameworks. Integration of digital twins not only accelerates system validation and deployment but also enhances predictive maintenance capabilities. As a result, organizations are witnessing shorter development timelines and greater system reliability.

Furthermore, developments in sensor fusion and collaborative safety standards have redefined human-machine interaction, enabling closer proximity operations and dynamic task handoffs. In tandem, the rise of low-code and no-code environments simplifies deployment across cross-functional teams. Consequently, these innovations are democratizing automation and reinforcing the strategic imperative for ecosystem partnerships, as hardware specialists, software developers, and end users coalesce to drive unified solutions.

Assessing the Compounded Effects of United States Trade Tariffs on Desktop Robotics Supply Chains and Component Accessibility Through 2025 and Beyond

By 2025, cumulative adjustments to trade policies and tariff schedules enacted by the United States have substantially influenced the sourcing strategies for desktop robotics manufacturers. Components such as precision sensors, microcontrollers, and motor drives have experienced cost increases, prompting suppliers to reconsider global procurement networks. In response, some organizations have pursued partial localization of key subassemblies to mitigate exposure and preserve margins.

Transitioning supply chains closer to end markets has yielded additional benefits, including shorter lead times and greater responsiveness to evolving compliance requirements. Moreover, strategic investments in domestic partnerships for integration and maintenance services are emerging as effective hedges against geopolitical volatility. As the automation sector adapts to these fiscal shifts, a holistic evaluation of component origin, inventory buffers, and contractual structures will be instrumental in safeguarding operational continuity.

Deriving Comprehensive Insights from Desktop Robot Segmentation by Type Component Payload Application and End-Use Industry to Guide Strategic Decisions

The desktop robotics market exhibits rich heterogeneity when examined through the lens of type, with articulated arms delivering multi-axis dexterity, Cartesian configurations offering linear simplicity, and collaborative robots (cobots) enabling shared human-robot workspaces with embedded safety measures. Each form factor addresses distinct application requirements, from precise micro-assembly tasks to flexible research experiments.

A parallel exploration of component ecosystems reveals that hardware elements such as controllers, manipulators, end effectors, power systems, and sensors constitute the foundational building blocks of system performance, while specialized services encompassing system integration, routine maintenance, and operator training ensure peak operational uptime. Equally critical, software platforms in the realms of control sequences, programming interfaces, and simulation environments define the user experience and accelerate deployment cycles.

Payload capacity further differentiates desktop robots into compact units managing sub-5-kilogram tasks, midrange models suited for 5-10-kilogram operations, and heavy-duty variants exceeding 10 kilograms. This stratification guides feature prioritization, with lighter systems favoring speed and compactness, and higher-capacity solutions emphasizing torque and structural rigidity.

When viewed through application domains, the spectrum spans precision assembly, fluid dispensing, interactive entertainment, detailed inspection routines, material handling, high-speed packaging, academic research, and specialized soldering and welding processes. The breadth of functions underscores the adaptability of these platforms to address diverse operational scenarios.

Finally, end-use industries including academic and research institutions, aerospace and defense manufacturers, automotive assembly lines, consumer goods producers, electronics and semiconductor fabricators, food and beverage processors, and pharmaceutical and healthcare providers each leverage desktop robots to fulfill unique production, testing, and compliance objectives. This layered segmentation framework offers decision-makers a structured approach to evaluate solutions aligned with technical specifications, industry standards, and total cost of ownership outcomes.

Analyzing Regional Dynamics Impacting Desktop Robotics Adoption and Growth Across the Americas EMEA and Asia Pacific with Emphasis on Market Drivers and Challenges

Regional market dynamics for desktop robots reveal differentiated growth catalysts and adoption barriers across the Americas, Europe Middle East Africa, and Asia-Pacific geographies. In the Americas, initiatives to modernize domestic production facilities combined with robust university research programs are driving demand for flexible automation solutions. Companies in North and South America are investing in collaborative cells that integrate desktop platforms with larger robotic lines to optimize space-constrained operations.

In Europe, the Middle East, and Africa, stringent regulatory environments for safety and quality assurance have spurred manufacturers to adopt certified robotics that meet rigorous standards. Furthermore, defense-related research grants and EU-funded innovation clusters are promoting the implementation of desktop robots in specialized assembly and testing laboratories. Across these markets, service networks are expanding to address localized integration, maintenance, and training requirements.

Asia-Pacific continues to lead in high-volume electronics and consumer goods manufacturing, with advanced desktop robots increasingly embedded into compact production cells. Government incentives targeting automation adoption in emerging economies have bolstered capital investment, while established hubs in East Asia focus on next-generation simulation and digital twin applications. Regional partnerships between system integrators, component suppliers, and end users further accelerate the diffusion of desktop robotics technologies.

Illuminating the Strategies and Innovations of Leading Desktop Robotics Providers Highlighting Competitive Positioning Collaborative Ventures and Technology Roadmaps

A review of leading desktop robotics providers underscores strategic differentiation across hardware innovation, software ecosystems, and collaborative partnerships. Key firms have intensified research efforts to refine actuator design and embed advanced sensing capabilities, enabling smaller footprints without compromising precision. Some organizations are leveraging open architecture control frameworks to foster third-party application development and accelerate integration with enterprise software.

Strategic alliances between robotics manufacturers and cloud service providers are facilitating seamless data interpretation and predictive maintenance workflows, elevating overall system uptime. In parallel, joint ventures with academic institutions and research consortia are spawning proof-of-concept projects that validate novel use cases in biotechnology, material science, and electronics fabrication.

Mergers and acquisitions activity has also shaped the competitive environment, as established players absorb niche automation specialists to broaden their product portfolios. This consolidation trend is enabling end users to source end-to-end solutions from single vendors, reducing complexity in procurement and support. In this evolving landscape, companies that balance modular hardware platforms with user-friendly software and responsive service models are poised to capture a leadership position in the desktop robotics arena.

Formulating Strategic Roadmaps for Industry Leaders to Capitalize on Desktop Robotics Opportunities Through Investment Focus Partnerships and Workforce Enablement

Industry leaders seeking to capitalize on the desktop robotics revolution should prioritize investments in AI-driven control algorithms and vision integration to deliver adaptive performance in dynamic environments. Establishing partnerships with software development specialists will accelerate the deployment of tailored applications, while engaging with standards organizations ensures compliance and safety certification across global markets.

Moreover, fostering a skilled workforce through comprehensive training programs will amplify the value of automation initiatives and reduce implementation risk. Organizations should also evaluate supply chain resilience by diversifying component sourcing and exploring regional manufacturing partnerships to mitigate geopolitical exposure. In tandem, expanding after-sales service capabilities, including remote diagnostics and predictive maintenance offerings, will differentiate providers and build long-term customer relationships.

Outlining a Rigorous Research Framework Combining Primary Interviews Expert Validations and Secondary Data Sources to Ensure Accuracy and Actionable Insights

The research methodology underpinning these insights integrates a multi-phased approach, beginning with an extensive review of industry publications, patent filings, and technical white papers. This secondary research was complemented by primary interviews with product managers, systems integrators, end users, and academic experts to capture nuanced perspectives on technology adoption and operational challenges.

Data points were triangulated across multiple sources to ensure consistency and reliability, and findings were validated through workshops with cross-disciplinary stakeholders. Rigorous quality checks were applied at each stage, including peer reviews and alignment with regulatory guidelines for safety and performance standards. This comprehensive framework ensures that the analysis is grounded in empirical evidence and delivers actionable intelligence for decision-makers.

Concluding Insights on Desktop Robotics Transformations Synthesizing Key Findings and Emerging Themes to Propel Automation Initiatives Forward with Confidence

In synthesizing the key themes, it becomes evident that desktop robotics are transitioning from niche laboratory tools to integral components of broader automation strategies. Technological advancements in AI, connectivity, and safety have created new paradigms for human-machine collaboration, while evolving trade policies and regional incentives shape the contours of global supply chains.

Segmentation analysis reveals that success hinges on aligning type, component capabilities, payload requirements, and use case specifications with industry-specific needs. Meanwhile, company strategies that blend hardware innovation, software extensibility, and robust service models are gaining traction. As organizations chart their automation journeys, the combination of strategic foresight, operational agility, and informed investment decisions will determine their competitive edge in an increasingly automated world.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Rise of AI-powered robotic assistants designed for nontechnical home office users
  • 5.2. Integration of IoT connectivity enabling real-time monitoring of desktop robots
  • 5.3. Demand surge for compact modular desktop robotic arms in small manufacturing settings
  • 5.4. Development of voice-activated desktop robots supporting multiple global languages
  • 5.5. Advancements in collaborative safety features for desktop robots in prototyping labs
  • 5.6. Growth of plug-and-play desktop robots leveraging cloud-based software ecosystems
  • 5.7. Emergence of customizable educational desktop robots enhancing STEM learning experiences

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Desktop Robots Market, by Robot Type

  • 8.1. Introduction
  • 8.2. Articulated Robots
  • 8.3. Cartesian Robots
  • 8.4. Collaborative Desktop Robots (Cobots)

9. Desktop Robots Market, by Component

  • 9.1. Introduction
  • 9.2. Hardware
    • 9.2.1. Controllers
    • 9.2.2. End Effectors
    • 9.2.3. Manipulators
    • 9.2.4. Power Systems
    • 9.2.5. Sensors
  • 9.3. Services
    • 9.3.1. Integration
    • 9.3.2. Maintenance
    • 9.3.3. Training
  • 9.4. Software
    • 9.4.1. Control Software
    • 9.4.2. Programming Interfaces
    • 9.4.3. Simulation Software

10. Desktop Robots Market, by Payload

  • 10.1. Introduction
  • 10.2. 5-10 Kg
  • 10.3. Above 10 Kg
  • 10.4. Below 5 Kg

11. Desktop Robots Market, by Application

  • 11.1. Introduction
  • 11.2. Assembly
  • 11.3. Dispensing
  • 11.4. Entertainment
  • 11.5. Inspection
  • 11.6. Material Handling
  • 11.7. Packaging
  • 11.8. Research & Education
  • 11.9. Soldering & Welding

12. Desktop Robots Market, by End-Use Industry

  • 12.1. Introduction
  • 12.2. Academic & Research Institutions
  • 12.3. Aerospace & Defense
  • 12.4. Automotive
  • 12.5. Consumer Goods
  • 12.6. Electronics & Semiconductors
  • 12.7. Food & Beverage
  • 12.8. Pharmaceuticals & Healthcare

13. Americas Desktop Robots Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Desktop Robots Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Desktop Robots Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Hugging Face, Inc.
    • 16.3.2. LivingAI
    • 16.3.3. AB Controls, Inc
    • 16.3.4. Adtech (Shenzhen) Technology Co., Ltd.
    • 16.3.5. Bless This Stuff
    • 16.3.6. Digital Dream Labs, INC
    • 16.3.7. Dobot
    • 16.3.8. Elephant Robotics
    • 16.3.9. Energize Lab
    • 16.3.10. Fancort Industries, Inc
    • 16.3.11. IADIY Technology
    • 16.3.12. Iwashita Engineering, Inc.
    • 16.3.13. Izumi International, Inc.
    • 16.3.14. JANOME Corporation
    • 16.3.15. JBC Soldering S.L.
    • 16.3.16. KEYI TECHNOLOGY INC
    • 16.3.17. MangDang
    • 16.3.18. Miko Mini
    • 16.3.19. Orbital Mekatronik Systems Pvt. Ltd.
    • 16.3.20. Pinnacle Automations
    • 16.3.21. Rotrics
    • 16.3.22. TM Robotics
    • 16.3.23. Toyo Robotics
    • 16.3.24. Zhejiang Neoden Technology Co.,Ltd

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦