½ÃÀ庸°í¼­
»óǰÄÚµå
1808589

¼¼°èÀÇ ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°, ÆäÀÌ·Îµå ¿ë·®º°, ³×ºñ°ÔÀÌ¼Ç ±â¼úº°, ¹èÅ͸® À¯Çüº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº° ¿¹Ãø(2025-2030³â)

Autonomous Mobile Robots Market by Component, Payload Capacity, Navigation Technology, Battery Type, Application, End User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 189 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀåÀº 2024³â¿¡ 23¾ï 8,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2025³â¿¡´Â 27¾ï 8,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 17.64%·Î ¼ºÀåÇÒ Àü¸ÁÀ̰í, 2030³â¿¡´Â 63¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ(2024³â) 23¾ï 8,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ(2025³â) 27¾ï 8,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ(2030³â) 63¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 17.64%

ÀÚÀ² À̵¿ ·Îº¿ÀÇ ÃâÇö°ú ¼¼°èÀÇ Çö´ë »ê¾÷¿¡ Çõ¸íÀ» °¡Á®¿À´Â ±× Áß¿äÇÑ ¿ªÇÒÀ» ¹àÇô³À´Ï´Ù.

ÀÚÀ² À̵¿ ·Îº¿Àº Çö´ëÀÇ »ê¾÷ ¹× »ó¾÷ Ȱµ¿¿¡ À־ ¸Å¿ì Áß¿äÇÑ Á¸Àç·Î¼­ ±Þ¼ÓÈ÷ ´ëµÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö´ÉÇü Ç÷§ÆûÀº ÀΰøÁö´É, ¼¾¼­ Ç»Àü ¹× ±â°è ¼³°èÀÇ Áøº¸¸¦ Ȱ¿ëÇÏ¿© Àΰ£ÀÇ °³ÀÔÀ» ÃÖ¼ÒÈ­Çϸ鼭 º¹ÀâÇÑ È¯°æÀ» Ž»öÇÕ´Ï´Ù. ±â¾÷ÀÌ »ý»ê¼º°ú ¿î¿µÀÇ Åº·Â¼ºÀ» °­È­Çϱâ À§ÇØ ³ë·ÂÇϸ鼭 â°í¿¡¼­ Àç·á Ãë±Þ¿¡¼­ À§ÇèÇÑ È¯°æ¿¡¼­ ¸ð´ÏÅ͸µ ¹× °Ë»ç¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ÀÛ¾÷À» ¼öÇàÇϱâ À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ Á¡Á¡ Ä¿Áö°í ÀÖ½À´Ï´Ù.

´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ÀÚÀ² À̵¿ ·Îº¿ÀÇ »óȲÀ» Çü¼ºÇÏ´Â Áß¿äÇÑ ±â¼úÀû ¹× ¿î¿µÀû º¯È­¸¦ ޱ¸

ÃÖ±Ù, ÀÚÀ² À̵¿ ·Îº¿Àº ¼¾¼­ ±â¼ú ¹× ¸Ó½Å·¯´×ÀÇ Çõ½Å¿¡ ÈûÀÔ¾î Å« º¯È­¸¦ °æÇèÇϰí ÀÖ½À´Ï´Ù. °íÇØ»óµµ Ä«¸Þ¶ó, Àû¿Ü¼± ½Ã½ºÅÛ ¹× ¶óÀÌ´õ ¾î·¹ÀÌÀÇ ÅëÇÕÀº ½Ç½Ã°£ ȯ°æ ¸ÅÇÎ ¹× ¹°Ã¼ ÀνÄÀ» °¡´ÉÇÏ°Ô ÇÏ¿© Àü·Ê ¾ø´Â ¼öÁØÀÇ ³×ºñ°ÔÀÌ¼Ç Á¤È®µµ¸¦ ÃßÁøÇÕ´Ï´Ù. µ¿½Ã¿¡ ½Ã¹Ä·¹ÀÌ¼Ç ¹× ³×ºñ°ÔÀÌ¼Ç ¾Ë°í¸®ÁòÀÇ ¼ÒÇÁÆ®¿þ¾î Áøº¸´Â ¹èÆ÷ Àü º¹ÀâÇÑ ½Ã³ª¸®¿ÀÀÇ °¡»ó Å×½ºÆ®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ½ÃÀå Ãâ½Ã ½Ã°£À» Å©°Ô ´ÜÃàÇÏ°í ¿î¿µ À§ÇèÀ» ¿ÏÈ­ÇÕ´Ï´Ù.

2025³â ¹Ì±¹ °ü¼¼°¡ °ø±Þ¸Á¿¡ ¹ÌÄ¡´Â ¿ø´ëÇÑ ¿µÇ⠺м® ÀÚÀ²Çü ·Îº¿ÀÇ »ý»ê ºñ¿ë ¹× Àü°³ Àü·«

2025³â ¹Ì±¹ÀÇ ½Å°ü¼¼ µµÀÔÀ¸·Î ÀÚÀ²À̵¿ ·Îº¿¿¡ ÇʼöÀûÀÎ ÁÖ¿ä ÀüÀÚºÎǰ ¹× Á¤¹Ð±â°è¿¡ Ãß°¡ °ü¼¼°¡ ºÎ°úµÇ°Ô µÇ¾ú½À´Ï´Ù. °á°úÀûÀ¸·Î Á¦Á¶¾÷ü´Â ¾×Ãß¿¡ÀÌÅÍ, ÄÁÆ®·Ñ·¯ ¹× °í±Þ ¼¾¼­ÀÇ Á¦Á¶ ºñ¿ë »ó½ÂÀ» ÇØ°áÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Á¶Á¤À» ÅëÇØ ±â¾÷Àº °ø±Þ¸Á Àü·«À» Àç°ËÅäÇϰí ÀÖÀ¸¸ç ´ëü °ø±ÞÀÚ¸¦ ã°í ±¹°æÀ» ³Ñ´Â °ü¼¼ÀÇ ¿µÇâÀ» ÁÙÀ̱â À§ÇØ ´Ï¾î ¼î¾î¸µÀ» ¼öÇàÇϰí ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ½ÃÀå ¼¼ºÐÈ­ °üÁ¡¿¡¼­ ÄÄÆ÷³ÍÆ®ÀÇ ÆäÀÌ·Îµå ¿ë·® ³×ºñ°ÔÀÌ¼Ç ±â¼ú ¹× ¿ëµµÀÇ º¯ÇüÀ» º¸¿©ÁÝ´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­¸¦ ´Ù¸éÀûÀ¸·Î °ËÁõÇÔÀ¸·Î½á ä¿ëÀ» Çü¼ºÇÏ´Â ÃËÁø¿äÀΰú Á¦¾à¿¡ ´ëÇÑ Áß¿äÇÑ ÀλçÀÌÆ®°¡ µå·¯³³´Ï´Ù. ÄÄÆ÷³ÍÆ® ºÐ¾ß¿¡¼­´Â ¾×Ãß¿¡ÀÌÅÍ ¹× ÄÁÆ®·Ñ·¯¿Í °°Àº Çϵå¿þ¾î ¿ä¼Ò ¿Ü¿¡µµ Ä«¸Þ¶ó, Àû¿Ü¼± ½Ã½ºÅÛ, ȯ°æ ÀνÄÀ» °­È­ÇÏ´Â ¶óÀÌ´õ À¯´Ö µîÀÇ °í±Þ ¼¾¼­ Ä«Å×°í¸®°¡ ÀÖ½À´Ï´Ù. ¼­ºñ½º ³»¿ëÀº Àü·«Àû ÄÁ¼³ÆÃ¿¡¼­ ÅÏŰ ¹èÆ÷, Áö¼ÓÀûÀÎ À¯Áö º¸¼ö¿¡ À̸£±â±îÁö ¼ÒÇÁÆ®¿þ¾î Ç÷§ÆûÀº ÅëÇÕ ¹× ¿î¿µ ¸ð´ÏÅ͸µÀ» °£¼ÒÈ­ÇÏ´Â ÇÔ´ë °ü¸®, ³×ºñ°ÔÀ̼Ç, °¡»ó ½Ã¹Ä·¹ÀÌ¼Ç Åø¿¡ À̸£°í ÀÖ½À´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀåÀÇ Áö¿ª ¿ªÇÐ ¹× ¼ºÀå ÃËÁø¿äÀÎÀÇ ÇÏÀ̶óÀÌÆ®

Áö¿ª ¿ªÇÐ ºÐ¼®À» ÅëÇØ ¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿, ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå Æ¯Â¡ÀûÀÎ ¼ºÀå ÃËÁø¿äÀÎ ¹× Àü°³ ÆÐÅÏÀÌ ºÎ°¢µÇ¾ú½À´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â °ßÁ¶ÇÑ ÀüÀÚ»ó°Å·¡ È®´ë¿Í ¹°·ù ÀÎÇÁ¶ó ±Ù´ëÈ­¸¦ ¸ñÀûÀ¸·Î ÇÏ´Â Á¤ºÎÀÇ ¿ì´ëÁ¶Ä¡¿¡ ÈûÀÔ¾î ÀÚµ¿ â°í¿Í ¶ó½ºÆ®¸¶ÀÏ ¹è¼Û ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ°¡ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì Á¦Á¶¾÷ü´Â ¿©·¯ ½Ã¼³¿¡ °ÉÃÄ È®ÀåÇÒ ¼ö ÀÖ´Â ¸ðµâ½Ä ÀÚÀ² Ç÷§Æû¿¡ ƯÈ÷ ÁÖ·ÂÇϰí ÀÖÀ¸¸ç, Áß³²¹Ì ½ÃÀå¿¡¼­´Â ³ó¾÷°ú ÀÚ¿ø ä±¼ ºÎ¹®¿¡¼­ Á¶±â µµÀÔÀ» º¼ ¼ö ÀÖ½À´Ï´Ù.

ÀÚÀ² À̵¿ ·Îº¿ »ê¾÷ »óȲ¿¡¼­ À¯·ÂÇÑ ±â¾÷ÀÇ Àü·« Çõ½Å ÆÄÆ®³Ê½Ê°ú °æÀï ±¸µµ °ËÁõ

ÁÖ¿ä ±â¾÷Àº ÇÔ´ëÀÇ ¼º´ÉÀ» ÃÖÀûÈ­Çϰí ÅëÇÕ º¹À⼺À» ÁÙÀ̱â À§ÇØ ¼³°èµÈ Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ ÅëÇÕ »ýŰ踦 ÅëÇØ Â÷º°È­¸¦ µµ¸ðÇϰí ÀÖ½À´Ï´Ù. ÀϺΠ±âÁ¸ ±â¾÷Àº Æ´»õ ¼¾¼­ ¹× AI ±â¾÷ÀÇ Àü·«Àû Àμö¸¦ ÅëÇØ Æ÷Æ®Æú¸®¿À¸¦ È®´ëÇÏ¿© ÄÁ¼³ÆÃ, ¹èÆ÷, Áö¼ÓÀûÀÎ Áö¿ø¿¡ °ÉÄ£ ÅÏŰ ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº ¿£µå Åõ ¿£µå ¶óÀÌÇÁ»çÀÌŬ ¼­ºñ½º¿¡ ÁßÁ¡À» µÎ°í ±³À°, À¯Áöº¸¼ö ¹× ¿¹Ãø Áø´ÜÀ» ¹øµéÇÏ¿© °í°´ À¯Áö ¹× Æò»ý °¡Ä¡¸¦ ±Ø´ëÈ­ÇÕ´Ï´Ù.

ÀÚÀ²Çü ·Îº¿ÀÇ ¿î¿µ È¿À²¼ºÀ» ³ôÀ̰í Çõ½ÅÀ» ÃËÁøÇÏ¸ç °æÀï ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇÑ ¾÷°è ¸®´õµé¿¡°Ô Àü·«Àû Á¦¾È

¾÷°è ¸®´õ´Â ÁøÈ­ÇÏ´Â ¿î¿µ ¿ä±¸¸¦ ÃæÁ·½Ã۱â À§ÇØ Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾î ±¸¼ºÀÇ ½Å¼ÓÇÑ »ç¿ëÀÚ Á¤ÀǸ¦ °¡´ÉÇÏ°Ô ÇÏ´Â ¸ðµâ ¼³°è ¿øÄ¢À» ¿ì¼±ÇØ¾ß ÇÕ´Ï´Ù. Ç¥ÁØÈ­µÈ ÀÎÅÍÆäÀ̽º¿Í °³¹æÇü ¾ÆÅ°ÅØÃ³ Ç÷§ÆûÀ» äÅÃÇÔÀ¸·Î½á Á¶Á÷Àº ÅëÇÕ ¿À¹öÇìµå¸¦ ÁÙÀÌ°í °í±Þ Áö°¢ ¸ðµâ ¹× Ŭ¶ó¿ìµå ±â¹Ý ¾Ö³Î¸®Æ½½º¿Í °°Àº »õ·Î¿î ±â´ÉÀ» ¹èÆ÷ÇÒ ¶§ °¡Ä¡ ½ÇÇö±îÁöÀÇ ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÚÀ²Çü ·Îº¿ ½ÃÀå ÀλçÀÌÆ®ÀÇ ±âÃʰ¡ µÇ´Â µ¥ÀÌÅÍ ¼öÁý °ËÁõ ¹× ºÐ¼® ±â¹ýÀ» Æ÷ÇÔÇÑ ¾ö°ÝÇÑ Á¶»ç ±â¹ý¿¡ ´ëÇÑ »ó¼¼

º» Á¶»ç¿¡¼­´Â ¾ö°ÝÇÑ ºÐ¼® ¹× Á¾ÇÕÀûÀÎ Æ÷°ý¼ºÀ» º¸ÀåÇϱâ À§ÇØ 1Â÷ Á¤º¸¿Í 2Â÷ Á¤º¸¸¦ °áÇÕÇÑ ÀÌÁß Á¢±Ù¹ýÀ» äÅÃÇß½À´Ï´Ù. 1Â÷ Á¶»ç¿¡¼­´Â ¹°·ù, Á¦Á¶, ³ó¾÷, ÀÇ·á ºÐ¾ßÀÇ ÁÖ¿ä ÀÓ¿ø, ½Ã½ºÅÛ ÅëÇÕÀÚ, ÃÖÁ¾ »ç¿ëÀÚ ´ã´çÀÚ¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ ÀÎÅͺ並 ½Ç½ÃÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Åä·ÐÀº ½ÃÀå ¿ªÇÐ, ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ, Áö¿ª °³¹ß °úÁ¦¿¡ ´ëÇÑ Á¤¼ºÀûÀÎ ÀλçÀÌÆ®¸¦ ¾ò¾ú½À´Ï´Ù.

ÀÚÀ² À̵¿ ·Îº¿ »ýŰèÀÇ ÁøÈ­ ±âȸ¸¦ ÅëÇØ ÀÌÇØ°ü°èÀÚ¸¦ ÀεµÇϱâ À§ÇÑ ÁÖ¿ä Á¶»ç°á°ú ¹× ¹Ì·¡ Àü¸ÁÀÇ ÅëÇÕ

ºÐ¼®¿¡ ÀÇÇϸé ÀÚÀ²Çü À̵¿ ·Îº¿Àº ½ÃÇèÀûÀÎ ¹èÄ¡¿¡¼­ ´Ù¾çÇÑ »ê¾÷ÀÇ ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ÀÚ»êÀ¸·Î ÀÌÇàÇϰí ÀÖ´Â °ÍÀ¸·Î ¹àÇôÁ³½À´Ï´Ù. ¼¾½Ì, ³×ºñ°ÔÀ̼Ç, AIÀÇ ±â¼úÀû Áøº¸´Â ÁøÈ­ÇÏ´Â ¼­ºñ½º ¸ðµ¨°ú À¶ÇÕÇÏ¿© ÃøÁ¤ °¡´ÉÇÑ ROI¸¦ Á¦°øÇÏ´Â Á¾ÇÕÀûÀÎ ¼Ö·ç¼ÇÀ» À°¼ºÇϰí ÀÖ½À´Ï´Ù. 2025³â ¹Ì±¹ °ü¼¼¿Í °°Àº ¹«¿ª Á¤Ã¥Àº °ø±Þ¸Á ¹× ºñ¿ë±¸Á¶¿¡ º¹À⼺À» °¡Á®¿À´Â ¹Ý¸é ź·Â¼ºÀ» ³ôÀÌ´Â Àü·«Àû ÆÄÆ®³Ê½Ê°ú ±¹³» Á¦Á¶ ÀÌ´Ï¼ÅÆ¼ºê¸¦ Ã˸ÅÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

  • â°í 󸮷® ÃÖÀûÈ­¸¦ À§ÇØ AMR¿¡ AI ±¸µ¿Çü µ¿Àû °æ·Î °èȹ ÅëÇÕ
  • °íµµÀÇ °¨°¢ ÀνÄÀ» Ȱ¿ëÇÑ ÇùÁ¶Çü AMR·Î ¾ÈÀüÇÑ Àΰ£°ú ·Îº¿ÀÇ ÀÎÅÍ·¢¼Ç ½ÇÇö
  • ¿øÈ°ÇÑ ½Ç½Ã°£ Á¶Á¤À» ½ÇÇöÇÏ´Â 5G ´ëÀÀ ÀÚÀ² À̵¿ ·Îº¿ µµÀÔ
  • ÀúÁö¿¬ ÀÚÀ²Àû ÀÇ»ç°áÁ¤À» À§ÇÑ AMR¿¡ ¿§Áö ÄÄÇ»ÆÃ ¾ÆÅ°ÅØÃ³ ÅëÇÕ
  • º¹ÀâÇÑ ½Ç³»¿Ü ¹°·ù °æ·Î¸¦ ³×ºñ°ÔÀÌÆ®ÇÒ ¼ö ÀÖ´Â ¸ÖƼ ¸ð´Þ AMR ¼³°è
  • ¹èÅ͸® ±â¼ú ¹× ¹«¼± ÃæÀü ½Ã½ºÅÛÀÇ Áøº¸¿¡ ÀÇÇØ AMRÀÇ °¡µ¿ ½Ã°£ ¿¬Àå
  • »ó¾÷ÀûÀÎ AMR µµÀÔÀ» À§ÇÑ ÅëÀÏµÈ ¾ÈÀü ±âÁذú ±ÔÁ¦ ƲÀÇ ÃâÇö

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ(2025³â)

Á¦8Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • ¾×Ãß¿¡ÀÌÅÍ
    • ÄÁÆ®·Ñ·¯
    • ¼¾¼­
      • Ä«¸Þ¶ó
      • Àû¿Ü¼±
      • LIDAR
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ ¼­ºñ½º
    • Àü°³ ¹× ÅëÇÕ
    • À¯Áöº¸¼ö ¹× Áö¿ø
  • ¼ÒÇÁÆ®¿þ¾î
    • Çø´ °ü¸® ¼ÒÇÁÆ®¿þ¾î
    • ³×ºñ°ÔÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î
    • ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ÀûÀç·®º°

  • 100kg-500kg
  • 100kg ¹Ì¸¸
  • 500kg ÀÌ»ó

Á¦10Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ³»ºñ°ÔÀÌ¼Ç ±â¼úº°

  • GPS
  • ·¹ÀÌÀú ¹× ±¤ °ËÃâ ¹× Ãø°Å(LiDAR)
  • ºñÀü Áöħ

Á¦11Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ¹èÅ͸® À¯Çüº°

  • ³³ ÀüÁö
  • ¸®Æ¬ À̿ ¹èÅ͸®
  • ´ÏÄÌ º£À̽º ¹èÅ͸®

Á¦12Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ¿ëµµº°

  • °í°´ ¼­ºñ½º
  • °Ë»ç ¹× °¨½Ã
  • ÀÚÀç °ü¸®
  • ¾ÈÀü°ú º¸¾È

Á¦13Àå ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ³ó¾÷
    • ÀÛ¹° ¸ð´ÏÅ͸µ
    • Ãà»ê°ü¸®
  • ÀÚµ¿Â÷
  • °ø»ç
  • ÀüÀÚ»ó°Å·¡ ¹× ¼Ò¸Å
    • Á¡Æ÷³» ¹°·ù
    • ½´ÆÛ¸¶ÄÏ ÀÚµ¿È­
  • À½½Ä
    • ÆÐŰÁö
    • »ý»ê ¶óÀÎ ÀÚµ¿È­
  • ÇコÄɾî
    • ¹è´Þ
    • ¼Òµ¶
  • Á¢°´ ¹× °ü±¤
    • °Ô½ºÆ® ¾È³»
    • ·ë¼­ºñ½º
  • ¹°·ù ¹× â°í °ü¸®
    • Àç°í °ü¸®
    • ÆÈ·¹Å¸ÀÌ¡
    • ÇȾØÇ÷¹À̽º

Á¦14Àå ¾Æ¸Þ¸®Ä«ÀÇ ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦15Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦16Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚÀ² À̵¿ ·Îº¿ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦17Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2024³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2024³â)
  • °æÀï ºÐ¼®
    • 6 River Systems by Ocado Group PLC
    • ABB Ltd.
    • Aeolus Robotics Corporation
    • AGILOX
    • Amazon.com, Inc.
    • BALYO SA
    • Continental AG
    • Conveyco Technologies
    • Doosan Corporation
    • Geekplus Technology Co., Ltd.
    • Grey Orange Pte. Ltd.
    • HANGZHOU HIKROBOT CO.,LTD.
    • Harvest Automation
    • Hyundai Motor Company
    • Intel Corporation
    • inVia Robotics, Inc.
    • Knightscope, Inc.
    • Locus Robotics Corporation
    • Magazino GmbH
    • Midea Group Co., Ltd.
    • Omron Corporation
    • Onward Robotics
    • Relay Robotics, Inc.
    • Rockwell Automation, Inc.
    • Seegrid Corporation
    • Shanghai Seer Intelligent Technology Corporation
    • Shanghai SLAMTEC Co., Ltd.
    • Singapore Technologies Engineering Ltd
    • SMP Robotics Corporation
    • Teradyne, Inc.
    • Vecna Robotics, Inc.
    • Zapi SpA
    • Zebra Technologies Corporation

Á¦18Àå ¸®¼­Ä¡ AI

Á¦19Àå ¸®¼­Ä¡ Åë°è

Á¦20Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦21Àå ¸®¼­Ä¡ ±â»ç

Á¦22Àå ºÎ·Ï

AJY

The Autonomous Mobile Robots Market was valued at USD 2.38 billion in 2024 and is projected to grow to USD 2.78 billion in 2025, with a CAGR of 17.64%, reaching USD 6.32 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.38 billion
Estimated Year [2025] USD 2.78 billion
Forecast Year [2030] USD 6.32 billion
CAGR (%) 17.64%

Unveiling the Emergence of Autonomous Mobile Robots and Their Critical Role in Revolutionizing Modern Industries Worldwide

Autonomous mobile robots are rapidly emerging as a pivotal force in modern industrial and commercial operations. These intelligent platforms navigate complex environments with minimal human intervention, leveraging advances in artificial intelligence, sensor fusion, and mechanical design. As organizations strive to enhance productivity and operational resilience, they are increasingly relying on these systems to execute tasks ranging from material handling in warehouses to surveillance and inspection in hazardous settings.

The intersection of cloud connectivity, edge computing, and advanced algorithms has unlocked new potentials for fleet coordination, dynamic path planning, and predictive maintenance. This confluence of technologies is accelerating adoption across logistics, manufacturing, healthcare, and hospitality sectors, as decision-makers seek solutions that reduce labor costs and improve safety metrics. Furthermore, evolving regulatory frameworks and the pursuit of sustainability goals are prompting enterprises to evaluate how autonomous robotics can contribute to greener operations and higher throughput.

This executive summary presents a structured overview of transformative trends, trade policy impacts, segmentation dynamics, regional variations, leading industry participants, actionable recommendations, research methodology, and a concise conclusion. It is designed to equip executives, investors, and innovators with the insights necessary to navigate the rapidly evolving autonomous mobile robotics market and to make informed strategic decisions.

Exploring Pivotal Technological and Operational Shifts Reshaping the Autonomous Mobile Robotics Landscape Across Diverse Sectors

In recent years, autonomous mobile robotics has experienced a seismic shift propelled by innovations in sensor technologies and machine learning. The integration of high-resolution cameras, infrared systems, and lidar arrays enables real-time environmental mapping and object recognition, driving unprecedented levels of navigational precision. Simultaneously, software advancements in simulation and navigation algorithms allow virtual testing of complex scenarios before deployment, considerably reducing time to market and mitigating operational risks.

On the operational front, the move toward service-oriented models has redefined value propositions for end users. Consultation services now encompass strategic workflow analysis, while deployment and integration offerings ensure seamless interoperability with existing enterprise resource planning systems. Maintenance and support services have evolved to include predictive diagnostics and remote update capabilities, minimizing downtime and optimizing total cost of ownership.

Together, these technological and operational transformations are catalyzing a shift from point solutions toward fully orchestrated, fleet-wide autonomy. As organizations experiment with collaborative multi-robot systems and task prioritization driven by artificial intelligence, the line between human oversight and machine autonomy continues to blur. This section unpacks how these pivotal shifts are reshaping the autonomous robotics landscape and unlocking new avenues for innovation and efficiency across diverse sectors.

Analyzing the Far-Reaching Effects of 2025 United States Tariffs on Supply Chains Production Costs and Deployment Strategies for Autonomous Robots

The introduction of new United States tariffs in 2025 has imposed additional duties on key electronic components and precision machinery integral to autonomous mobile robots. As a result, manufacturers are navigating increased production costs for actuators, controllers, and advanced sensors. These adjustments have prompted companies to reassess their supply chain strategies, with several seeking alternative suppliers or engaging in nearshoring to mitigate the impact of cross-border duties.

Rising component prices have also reverberated downstream, influencing maintenance and support contracts as operators factor in higher replacement costs. In response, service providers are expanding predictive maintenance offerings to extend component lifecycles and reduce unplanned downtime. Moreover, the potential for tariff escalations has accelerated investments in domestic manufacturing capabilities, thereby reshaping regional production footprints and altering trade flows within North America.

Simultaneously, strategic alliances between robotics vendors and local manufacturing partners are emerging to offset tariff burdens. Collaborative approaches to modular design and standardized platforms are facilitating component interoperability, enabling end users to adapt quickly to evolving trade policies. This analysis elucidates the cumulative effects of the 2025 US tariffs on cost structures, supply chain resilience, and deployment strategies for autonomous mobile robotics.

Uncovering Comprehensive Market Segmentation Perspectives to Illuminate Component Payload Capacity Navigation Technology and Application Variations

A multifaceted examination of market segmentation reveals critical insights into the drivers and constraints shaping adoption. Within the component landscape, hardware elements such as actuators and controllers are complemented by advanced sensor categories including cameras, infrared systems, and lidar units that enhance environmental perception. Service offerings extend from strategic consultation to turnkey deployment and ongoing maintenance, while software platforms span fleet management, navigation, and virtual simulation tools that streamline integration and operational oversight.

When dissecting payload capacity segments, solutions handling loads less than one hundred kilograms cater to precision tasks in laboratories and healthcare settings, mid-range platforms supporting one hundred to five hundred kilograms fulfill general logistics and material handling applications, and heavy-duty systems above five hundred kilograms address industrial manufacturing and bulk material transport needs. Navigation technology preferences differentiate systems utilizing global positioning systems for outdoor operations from those favoring laser-based lidar for high-resolution indoor mapping or vision guidance for dynamic obstacle avoidance in unstructured environments.

Battery chemistry constitutes another axis of differentiation, with lead batteries offering cost-effective solutions, lithium-ion packs providing higher energy densities and extended runtimes, and nickel-based variants balancing performance and safety. Application areas span customer service interactions, surveillance and inspection tasks, material handling functions, and safety or security operations. Finally, end-user industries extend from agriculture with crop monitoring and livestock management, to eCommerce and retail logistics including in-store and supermarket automation, as well as sectors such as food and beverage production, healthcare delivery and disinfection, hospitality guest guidance and room service, and logistics and warehouse management covering inventory control, palletizing, and pick and place operations.

By understanding these segmentation layers, stakeholders can align product development and go-to-market strategies to meet specific operational requirements and performance criteria in diverse deployment contexts.

Highlighting Regional Dynamics and Growth Drivers in the Americas Europe Middle East Africa and Asia-Pacific Autonomous Mobile Robot Markets

Analysis of regional dynamics underscores distinctive growth drivers and deployment patterns across the Americas, EMEA, and Asia-Pacific markets. In the Americas, investment in automated warehousing and last-mile delivery solutions is accelerating, supported by robust eCommerce expansion and government incentives aimed at modernizing logistics infrastructure. North American manufacturers are particularly focused on modular autonomous platforms that can scale across multiple facilities, while Latin American markets are witnessing early adoption in agriculture and resource extraction sectors.

Within Europe, Middle East, and Africa, regulatory harmonization efforts and sustainability mandates are steering demand toward energy-efficient robotic fleets. European Union directives on emissions and workplace safety have catalyzed pilot programs in automotive assembly lines and airport logistics hubs. Meanwhile, Middle Eastern nations are investing in smart city initiatives, deploying autonomous robots for inspection and surveillance in urban environments, and Africa is exploring robotics as a solution for precision agriculture and humanitarian logistics, leveraging partnerships with international technology providers.

In Asia-Pacific, rapid industrialization and urbanization are fueling a surge in demand for autonomous mobile robots across manufacturing, eCommerce, and healthcare sectors. China and Japan remain at the forefront of research and development, pioneering collaborative robot fleets and advanced AI-driven navigation systems. Southeast Asian nations are embracing these technologies to enhance warehouse automation and streamline port operations. Across all regions, localized customization of hardware, software, and service models is proving essential to address unique regulatory landscapes, infrastructure maturity levels, and end-user expectations.

Examining Leading Players Strategies Innovations Partnerships and Competitive Positioning in the Autonomous Mobile Robot Industry Landscape

Leading companies are differentiating themselves through integrated hardware and software ecosystems designed to optimize fleet performance and reduce integration complexity. Some incumbents have expanded their portfolios via strategic acquisitions of niche sensor and AI firms, enabling them to deliver turnkey solutions that span consultation, deployment, and ongoing support. These firms often emphasize end-to-end lifecycle services, bundling training, maintenance, and predictive diagnostics to maximize customer retention and lifetime value.

Emerging startups are carving out niches by focusing on specialized applications such as autonomous inspection drones or robotic guides for customer-facing environments. They leverage agile development cycles and open-architecture software frameworks to co-innovate with early adopters, rapidly iterating on feedback to refine functionality. Partnerships between these innovators and established industrial automation providers are creating hybrid offerings that combine established reputations for reliability with cutting-edge autonomy capabilities.

Competitive positioning is increasingly influenced by global reach and localized support networks. Several multinational players maintain regional research and development centers to tailor products to local regulatory requirements and infrastructure constraints. In contrast, smaller firms differentiate through flexible pricing models and white-label opportunities that allow systems integrators to brand robotic solutions as their own. Across the board, collaboration with academic institutions and participation in industry consortia are reinforcing thought leadership and accelerating the maturation of interoperability standards.

Strategic Recommendations for Industry Leaders to Enhance Operational Efficiency Foster Innovation and Sustain Competitive Edge in Autonomous Robotics

Industry leaders should prioritize modular design principles that allow for swift customization of hardware and software configurations to meet evolving operational needs. By adopting standardized interfaces and open-architecture platforms, organizations can reduce integration overhead and accelerate time to value when deploying new capabilities such as advanced perception modules or cloud-based analytics.

Investment in artificial intelligence research and experimentation with edge computing architectures will yield more robust and adaptive navigation solutions. Combining on-board processing with cloud-based machine learning models enables continuous performance refinement through real-world data feedback loops. To safeguard against supply chain disruptions and trade policy volatility, diversification of component sourcing-coupled with strategic nearshoring initiatives-will improve resilience and shorten lead times.

Engagement with regulatory bodies and participation in standards development forums can help organizations shape emerging safety and interoperability guidelines. Proactive collaboration with end users to provide comprehensive training programs ensures operators maximize system capabilities and adhere to best practices for maintenance and safety. Finally, forging alliances between robotics vendors, system integrators, and technology partners fosters ecosystem development, accelerating innovation cycles and driving broader market adoption.

Detailing Rigorous Research Methodology Including Data Collection Validation and Analytical Techniques Underpinning Autonomous Robotics Market Insights

This research adopted a dual approach combining primary and secondary data sources to ensure rigorous analysis and comprehensive coverage. Primary research included in-depth interviews with key executives, system integrators, and end-user representatives across logistics, manufacturing, agriculture, and healthcare sectors. These discussions provided qualitative insights into market dynamics, adoption drivers, and regional deployment challenges.

Secondary research encompassed an extensive review of technical white papers, trade publications, regulatory filings, and patent databases. Proprietary databases were leveraged to track company announcements, funding rounds, partnership agreements, and product launches. Data triangulation techniques were applied, cross-validating findings from multiple sources to enhance accuracy and reliability.

Quantitative analyses involved segmenting market data by component, payload capacity, navigation technology, battery type, application, and end user. Regional breakdowns were performed for the Americas, Europe Middle East Africa, and Asia-Pacific to highlight growth differentials and regulatory impacts. A structured framework was employed to assess competitive positioning, covering technology stacks, service portfolios, and go-to-market strategies. This methodological approach underpins the insights and recommendations presented throughout the report.

Synthesis of Key Findings and Future Outlook to Guide Stakeholders Through Evolving Opportunities in the Autonomous Mobile Robotics Ecosystem

The analysis reveals that autonomous mobile robots are transitioning from pilot deployments to mission-critical assets in diverse industries. Technological advancements in sensing, navigation, and AI are converging with evolving service models, fostering holistic solutions that deliver measurable ROI. While trade policies such as 2025 US tariffs introduce complexity to supply chains and cost structures, they are also catalyzing strategic partnerships and domestic manufacturing initiatives that enhance resilience.

Segment-level insights demonstrate that application-specific customization-from lightweight platforms for precision tasks to heavy-duty systems for bulk handling-remains a key differentiator. Regional variations highlight the importance of localized strategies to navigate regulatory frameworks, infrastructure conditions, and end-user expectations. Competitive landscapes are shaped by a mix of established players extending ecosystems through acquisitions and agile startups co-innovating with early adopters.

Looking ahead, the autonomous mobile robotics market is poised for sustained growth as AI-driven autonomy matures and service-oriented business models gain traction. Stakeholders who embrace modular architectures, diversified sourcing strategies, and active engagement in standards development will be best positioned to capture emerging opportunities. This synthesis of key findings provides a roadmap for navigating the dynamic ecosystem and positioning for long-term success.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven dynamic path planning in AMRs for warehouse throughput optimization
  • 5.2. Collaborative AMRs leveraging advanced sensory perception for safe human-robot interaction
  • 5.3. Deployment of 5G-enabled autonomous mobile robots for seamless real-time coordination
  • 5.4. Incorporation of edge computing architectures in AMRs for low-latency autonomous decisions
  • 5.5. Design of multi-modal AMRs capable of navigating complex indoor and outdoor logistics pathways
  • 5.6. Advancements in battery technology and wireless charging systems extending AMR operational uptime
  • 5.7. Emergence of unified safety standards and regulatory frameworks for commercial AMR deployments

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Autonomous Mobile Robots Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Actuators
    • 8.2.2. Controllers
    • 8.2.3. Sensors
      • 8.2.3.1. Cameras
      • 8.2.3.2. Infrared
      • 8.2.3.3. Lidar
  • 8.3. Service
    • 8.3.1. Consultation Services
    • 8.3.2. Deployment & Integration
    • 8.3.3. Maintenance & Support
  • 8.4. Software
    • 8.4.1. Fleet Management Software
    • 8.4.2. Navigation Software
    • 8.4.3. Simulation Software

9. Autonomous Mobile Robots Market, by Payload Capacity

  • 9.1. Introduction
  • 9.2. 100 kg-500 kg
  • 9.3. Less than 100 kg
  • 9.4. More than 500 kg

10. Autonomous Mobile Robots Market, by Navigation Technology

  • 10.1. Introduction
  • 10.2. Global Positioning System
  • 10.3. Laser/Light Detection and Ranging (LiDAR)
  • 10.4. Vision Guidance

11. Autonomous Mobile Robots Market, by Battery Type

  • 11.1. Introduction
  • 11.2. Lead Battery
  • 11.3. Lithium-Ion Battery
  • 11.4. Nickel-based Battery

12. Autonomous Mobile Robots Market, by Application

  • 12.1. Introduction
  • 12.2. Customer Service
  • 12.3. Inspection & Surveillance
  • 12.4. Material Handling
  • 12.5. Safety & Security

13. Autonomous Mobile Robots Market, by End User

  • 13.1. Introduction
  • 13.2. Agriculture
    • 13.2.1. Crop Monitoring
    • 13.2.2. Livestock Management
  • 13.3. Automotive
  • 13.4. Construction
  • 13.5. eCommerce & Retail
    • 13.5.1. In-Store Logistics
    • 13.5.2. Supermarket Automation
  • 13.6. Food & Beverage
    • 13.6.1. Packaging
    • 13.6.2. Production Line Automation
  • 13.7. Healthcare
    • 13.7.1. Delivery
    • 13.7.2. Disinfection
  • 13.8. Hospitality & Tourism
    • 13.8.1. Guest Guidance
    • 13.8.2. Room Service
  • 13.9. Logistics & Warehouse Management
    • 13.9.1. Inventory Management
    • 13.9.2. Palletizing
    • 13.9.3. Pick & Place

14. Americas Autonomous Mobile Robots Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Autonomous Mobile Robots Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Autonomous Mobile Robots Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. 6 River Systems by Ocado Group PLC
    • 17.3.2. ABB Ltd.
    • 17.3.3. Aeolus Robotics Corporation
    • 17.3.4. AGILOX
    • 17.3.5. Amazon.com, Inc.
    • 17.3.6. BALYO SA
    • 17.3.7. Continental AG
    • 17.3.8. Conveyco Technologies
    • 17.3.9. Doosan Corporation
    • 17.3.10. Geekplus Technology Co., Ltd.
    • 17.3.11. Grey Orange Pte. Ltd.
    • 17.3.12. HANGZHOU HIKROBOT CO.,LTD.
    • 17.3.13. Harvest Automation
    • 17.3.14. Hyundai Motor Company
    • 17.3.15. Intel Corporation
    • 17.3.16. inVia Robotics, Inc.
    • 17.3.17. Knightscope, Inc.
    • 17.3.18. Locus Robotics Corporation
    • 17.3.19. Magazino GmbH
    • 17.3.20. Midea Group Co., Ltd.
    • 17.3.21. Omron Corporation
    • 17.3.22. Onward Robotics
    • 17.3.23. Relay Robotics, Inc.
    • 17.3.24. Rockwell Automation, Inc.
    • 17.3.25. Seegrid Corporation
    • 17.3.26. Shanghai Seer Intelligent Technology Corporation
    • 17.3.27. Shanghai SLAMTEC Co., Ltd.
    • 17.3.28. Singapore Technologies Engineering Ltd
    • 17.3.29. SMP Robotics Corporation
    • 17.3.30. Teradyne, Inc.
    • 17.3.31. Vecna Robotics, Inc.
    • 17.3.32. Zapi S.p.A.
    • 17.3.33. Zebra Technologies Corporation

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦