시장보고서
상품코드
1803681

군용 서멀 이미징 장비 시장 : 제품 유형, 기술 유형, 플랫폼, 파장, 시스템 유형, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Military Thermal Imaging Equipment Market by Product, Technology Type, Platform, Wavelength, System Type, Application, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

군용 서멀 이미징 장비 시장은 2024년에 42억 6,000만 달러로 평가되며, 2025년에는 CAGR 6.72%로 45억 4,000만 달러로 성장하며, 2030년에는 63억 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 42억 6,000만 달러
추정연도 2025 45억 4,000만 달러
예측연도 2030 63억 달러
CAGR(%) 6.72%

현대의 국방 환경에서 열화상 기술이 차지하는 중요한 역할과 군 작전의 효율성에 미치는 큰 영향에 대해 알아봅니다.

군용 열화상 기술은 지난 수십년간 눈부신 발전을 거듭하며 현대 방어 능력의 핵심으로 부상하고 있습니다. 처음에는 야간 작전을 강화하기 위해 고안되었지만, 현재는 모든 영역의 상황 인식에 필수적인 툴로 진화하고 있습니다. 초창기 단일 센서 장치부터 오늘날의 정교한 멀티 스펙트럼 시스템에 이르기까지 감도, 해상도, 신뢰성을 향상시키기 위한 끊임없는 노력은 복잡한 작전 영역에서의 전술적 의사결정을 재정의하고 있습니다.

첨단 멀티센서 아키텍처와 통합 패러다임의 출현으로 전 세계 군용 열화상 촬영 능력이 재편되고 있습니다.

센서 통합, 처리 알고리즘, 시스템 아키텍처의 발전으로 군용 열화상 이미징의 환경은 크게 변화하고 있습니다. 보다 종합적인 상황 인식이 요구되는 가운데, 멀티센서를 통한 전기광학 및 적외선 융합 솔루션은 보다 종합적인 작전 영상을 제공함으로써 각광받고 있습니다. 또한 인공지능과 머신러닝의 등장으로 실시간 목표 인식과 위협 자동 분류가 가능해지면서 열 데이터를 해석하고 대처하는 방식이 근본적으로 변화하고 있습니다.

2025년 미국의 새로운 관세 부과가 국방 조달 전략공급망과 열화상 장비의 가용성에 미치는 영향을 분석

미국이 2025년 수입 열화상 부품 및 완제품 시스템에 관세를 도입하면서 국방 조달 전략과 세계 공급망에 파문이 일고 있습니다. 수입 비용 상승에 따라 국방 기관은 플랫폼 업그레이드 일정을 재검토하고 국산 또는 동맹국 조달 장비에 대한 지출 우선순위를 변경하고 있습니다. 또한 거래처 상표 제품 제조업체는 공급업체와의 계약을 재협상하여 공급업체 기반을 다변화하고 향후 관세 인상 위험을 줄이기 위해 노력하고 있습니다.

제품 플랫폼 기술 파장 시스템 유형 및 시장 궤도에 영향을 미치는 최종사용자에 초점을 맞추고,미묘한 세분화 인사이트를 밝힙니다.

제품 카테고리라는 렌즈를 통해 시장을 살펴보면, 멀티 센서 전기 광학 및 적외선 시스템, 독립형 열화상, 고글, 무기 조준기는 각각 다른 성능 요구 사항과 통합 과제를 제시합니다. 예를 들어 멀티센서 시스템은 첨단 데이터 융합 및 보정 프로세스를 요구하지만, 헬멧 착용형 고글은 인체공학, 전력 효율성, 신속한 현장 배치를 우선시합니다. 마찬가지로 열화상 무기 조준경은 고해상도 이미징과 탄도 계산 통합 및 원활한 무기 플랫폼 인터페이스의 균형을 유지해야 합니다.

열화상 이미징 도입 패턴의 차이를 만들어내는 효과적인 전략을 가진 기업(북미, 남미, 중동 및 아프리카, 아시아태평양)을 파악

아메리카 지역은 막대한 국방 예산과 국경 보안 및 병력 현대화 프로그램에 중점을 두고 있으므로 조달량과 기술 혁신에서 계속 선두를 달리고 있습니다. 특히 미국은 항공기 플랫폼과 국경 감시를 위한 차세대 열화상 감시에 많은 투자를 하고 있습니다. 한편, 캐나다와 중남미 일부 국가에서는 해안 경비 및 중요 인프라 보호를 위해 비용 효율적인 비냉각식 센서를 도입하는 것을 고려하고 있으며, 반구 전체에서 다양한 작전 우선순위가 있음을 알 수 있습니다.

시장 경쟁의 주요 하이라이트: 열화상 이미징의 경쟁력 강화를 위한 혁신적인 파트너십과 사업 확장을 위한 주요 기업과 그들의 전략적 구상

주요 방산 기술 기업은 첨단 검출기 재료, 소형화 전자제품, AI 기반 분석 모듈을 도입하기 위한 연구개발 투자를 활용하여 다각도로 경쟁하고 있습니다. 업계를 선도하는 기업 중 일부는 반도체 회사와 전략적 파트너십을 맺어 최첨단 초점면 어레이에 우선적으로 접근할 수 있는 기회를 확보하는가 하면, 전문 광학 기기 제조업체를 인수하여 내부 역량을 강화하는 기업도 있습니다. 또한 주요 학술기관 및 정부 연구소와의 협력 관계는 차세대 센서 아키텍처를 조기에 접할 수 있는 혁신 파이프라인의 핵심이 되고 있습니다.

방산업계 리더들이 신기술을 활용하고, 조달 프레임워크를 최적화하며, 작전 준비태세를 강화하기 위한 실행 가능한 제안을 제시

새로운 기회를 활용하기 위해 방위 조직은 냉각식 감지기의 장거리 정확도와 비냉각식 어레이의 민첩성 및 비용 효율성을 결합한 듀얼 트랙 센서 개발 전략을 우선순위에 두어야 합니다. 하이브리드 솔루션을 추구함으로써 프로그램 관리자는 다양한 미션 세트에서 성능과 가격을 모두 최적화할 수 있습니다. 또한 공급업체 다변화를 통해 공급망의 탄력성을 높이고, 관세 관련 리스크를 줄이며, 변동하는 규제 환경에서도 중요한 부품에 대한 접근성을 확보할 수 있습니다.

종합적인 시장 인사이트를 위해 1차 전문가 인터뷰, 고급 데이터 분석, 다중 소스 검증을 통합한 엄격한 조사 방법론이 적용되었습니다.

이 분석은 신뢰할 수 있는 종합적인 시장 인사이트를 제공하기 위해 설계된 강력한 다단계 조사 방법을 기반으로 합니다. 먼저, 국방 조달 담당자, 프로그램 관리자, 시스템 통합자, 기술 개발자와의 심층 인터뷰를 통해 1차 데이터를 수집했습니다. 이러한 전문가들의 관점은 운영 요구사항, 조달 과제, 진화하는 역량 격차에 대한 미묘한 이해를 제공했습니다.

얻은 지식을 통합하여 군 열화상 기술의 발전에 필요한 전략적 필수 사항, 미래 동향 및 장기적 의미를 명확히

종합적인 조사 결과는 군용 열화상 기술이 센서 융합, 인공지능, 모듈식 아키텍처의 진화가 융합되어 임무 능력을 재정의하는 변곡점에 도달했음을 강조합니다. 새로운 파장대역과 하이브리드 비냉각 구성으로 전례 없는 유연성을 제공하는 한편, 지역적 조달 전환과 관세 정책으로 인해 공급망 재편과 현지 생산에 대한 노력이 가속화되고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 군용 서멀 이미징 장비 시장 : 제품별

  • 멀티 센서 EO/IR 시스템
  • 서멀 이미징 카메라
  • 서멀 이미징 고글
  • 열탐지 조준기

제9장 군용 서멀 이미징 장비 시장 : 기술 유형별

  • 냉각 서멀 이미징
  • 비냉각 서멀 이미징

제10장 군용 서멀 이미징 장비 시장 : 플랫폼별

  • 공중 플랫폼
  • 지상 플랫폼
  • 해군 플랫폼

제11장 군용 서멀 이미징 장비 시장 : 파장별

  • 장파 적외선(8-14μm)
  • 중파 적외선(3-5μm)
  • 단파 적외선(0.9-2μm)

제12장 군용 서멀 이미징 장비 시장 시스템 유형별

  • 핸드헬드 시스템
    • 쌍안경
    • 단안경
    • 포켓 스코프
  • 마운트 시스템
    • 헬멧 마운트
    • 차량 탑재형
    • 무기 탑재형

제13장 군용 서멀 이미징 장비 시장 : 용도별

  • 사격 관제
    • 조준 보조
    • 탄도 계산
  • 내비게이션
    • 나이트 비전
    • 장애물 회피
  • 감시
    • 지속적
    • 단거리
  • 타겟 획득
    • 거리 측정
    • 무기 유도

제14장 군용 서멀 이미징 장비 시장 : 최종사용자별

  • 공군
  • 육군
  • 국경 경비 기관
  • 해군
  • 특수부대

제15장 아메리카의 군용 서멀 이미징 장비 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 군용 서멀 이미징 장비 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 군용 서멀 이미징 장비 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Teledyne Technologies Incorporated
    • L3Harris Technologies, Inc.
    • Axis Communications AB by Canon Inc
    • BAE Systems plc
    • Elbit Systems Ltd.
    • Hensoldt AG
    • HGH Systemes Infrarouges SAS
    • Infiniti Electro-Optics by Ascendent Technology Group
    • Leonardo S.p.A.
    • Opgal Ltd by Rafael Advanced Defense Systems Ltd
    • Raytheon Technologies Corporation
    • Revlight Security
    • Rheinmetall AG
    • RTX Corporation
    • Safran Group
    • Shoghi Communications Ltd.
    • Testo SE & Co. KGaA
    • Thales S.A.
    • Thermoteknix Systems Ltd.

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택

제22장 리서치 기사

제23장 부록

KSA 25.09.11

The Military Thermal Imaging Equipment Market was valued at USD 4.26 billion in 2024 and is projected to grow to USD 4.54 billion in 2025, with a CAGR of 6.72%, reaching USD 6.30 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.26 billion
Estimated Year [2025] USD 4.54 billion
Forecast Year [2030] USD 6.30 billion
CAGR (%) 6.72%

Unveiling the critical role of thermal imaging in modern defense environments and its transformative impact on military operational effectiveness

Military thermal imaging technology has undergone a remarkable transformation over recent decades, emerging as a cornerstone of modern defense capabilities. Initially conceived to enhance night operations, it has now evolved into an indispensable tool for situational awareness across all domains. From early single-sensor devices to today's sophisticated multi-spectral systems, the continuous drive for enhanced sensitivity, resolution, and reliability has redefined tactical decision-making in complex operational theaters.

Moreover, the blend of advanced detector materials, miniaturized electronics, and ruggedized design has extended the operational envelope of thermal imaging equipment. Consequently, military forces can operate with greater confidence in adverse weather, dense foliage, and low-visibility environments. This evolution has not only bolstered mission success rates but also improved force protection through earlier threat detection and more precise threat classification.

In light of these developments, this executive summary provides an authoritative overview of the current market dynamics, strategic shifts, and critical insights that defense planners, procurement authorities, and technology developers must understand. As a foundational section, it sets the stage for a detailed exploration of transformative trends, regulatory impacts, segmentation analysis, regional considerations, competitive landscapes, and strategic recommendations tailored to the future of military thermal imaging.

Exploring the emergence of advanced multi-sensor architectures and integration paradigms that are reshaping military thermal imaging capabilities worldwide

The military thermal imaging landscape is undergoing transformative shifts driven by advances in sensor integration, processing algorithms, and system architectures. As forces demand more comprehensive situational awareness, multi-sensor electro-optical and infrared fusion solutions have gained prominence by delivering a more holistic operational picture. Furthermore, the advent of artificial intelligence and machine learning has enabled real-time target recognition and automated threat classification, fundamentally altering how thermal data is interpreted and acted upon.

Additionally, the distinction between cooled and uncooled sensor technologies is becoming increasingly nuanced. While cooled systems continue to offer superior sensitivity and long-range detection capabilities, uncooled arrays have made significant strides in cost efficiency, size, weight, and power consumption. As a result, uncooled devices are now viable for a broader range of missions, particularly in lightweight airborne, ground, and man-portable applications.

In parallel, new platforms such as unmanned aerial systems, autonomous ground vehicles, and networked naval sensor suites are further reshaping deployment paradigms. Integration with secure data links and cloud-based analytics has established a persistent, multi-domain awareness framework that extends from tactical edge nodes to strategic command centers. Consequently, these converging trends are setting the stage for the next generation of thermal imaging capabilities worldwide.

Analyzing the repercussions of newly imposed US tariffs in 2025 on defense procurement strategies supply chains and thermal imaging equipment accessibility

The introduction of United States tariffs on imported thermal imaging components and finished systems in 2025 has created a ripple effect across defense procurement strategies and global supply chains. In response to increased import costs, defense agencies are reevaluating platform upgrade schedules and reprioritizing expenditures toward domestically manufactured or allied-sourced equipment. Moreover, original equipment manufacturers are renegotiating vendor agreements, seeking to diversify their supplier base and mitigate the risk of future tariff escalations.

Consequently, prime contractors and subsystem integrators have accelerated efforts to localize production of critical infrared detector elements and custom optics. This shift has spurred targeted investments in regional manufacturing hubs and joint ventures with North American and European partners. As a result, some defense organizations are experiencing longer lead times for advanced thermal modules, while others are capitalizing on newly established domestic capacity to shorten delivery cycles and enhance supply chain transparency.

Looking ahead, the tariff landscape is prompting governments and defense firms to adopt a dual-track strategy: maintaining existing contracts with established suppliers under new cost structures while simultaneously nurturing second-source capabilities. This balanced approach ensures that operational readiness and capability upgrades remain on track, even as the global regulatory environment continues to evolve.

Delineating nuanced segmentation insights highlighting product platforms technologies wavelengths system types and end users influencing market trajectories

When examining the market through the lens of product categories, multi-sensor electro-optical and infrared systems, standalone thermal imaging cameras, goggles, and weapon sights each exhibit distinct performance requirements and integration challenges. For instance, multi-sensor arrangements demand sophisticated data fusion and calibration processes, whereas helmet-mounted goggles prioritize ergonomics, power efficiency, and rapid field deployment. Similarly, thermal weapon sights must balance high-resolution imaging with ballistic calculation integration and seamless weapon platform interfaces.

In terms of underlying technology, the choice between cooled and uncooled sensors shapes system capabilities across range, sensitivity, and operational tempo. Cooled detectors excel in long-range detection missions and precision targeting, while uncooled arrays deliver lower size, weight, and power footprints suitable for handheld and small unmanned platforms. This distinction directly influences platform selection-whether airborne, ground-based, or naval-each of which imposes unique environmental and integration requirements on thermal systems.

Further granularity emerges through wavelength classifications, spanning long-wave infrared for broad-area surveillance, mid-wave infrared for optimized target discrimination under varied conditions, and short-wave infrared for specialized applications such as obscurant penetration and covert night operations. System typology also differentiates handheld binoculars, monoculars, and pocket scopes from mounted helmet, vehicle, or weapon-integrated configurations, each tailored to specific mission profiles.

Finally, application-centric segmentation underscores fire control functions-comprising aiming assistance and ballistic calculations-navigation uses like night vision and obstacle avoidance, persistent or short-range surveillance scenarios, and precision-focused target acquisition tasks such as range finding and weapon guidance. End users range from air forces and armies to border security agencies, navies, and special forces, reflecting a broad spectrum of operational demands and procurement priorities.

Identifying critical regional dynamics across the Americas Europe Middle East Africa and Asia Pacific that are driving differential thermal imaging adoption patterns

The Americas region continues to lead in procurement volume and technological innovation, driven by substantial defense budgets and a strong emphasis on border security and force modernization programs. The United States, in particular, has invested heavily in next-generation thermal imaging solutions for airborne platforms and border surveillance. Meanwhile, Canada and select Latin American nations are exploring cost-effective uncooled sensor deployments for coastal security and critical infrastructure protection, demonstrating a diverse set of operational priorities across the hemisphere.

Europe, the Middle East, and Africa present a complex mosaic of demand drivers and procurement models. Western European NATO members focus on interoperability with allied systems and push for standardized modular sensor suites. Concurrently, Gulf states and other Middle Eastern nations are pursuing high-end thermal imaging for missile defense and border fortification, often sourcing systems through offset agreements and defense cooperation pacts. In Africa, resource constraints steer governments toward ruggedized, low-power uncooled solutions that can withstand harsh climatic conditions and deliver persistent surveillance over vast territories.

In the Asia-Pacific region, rapid military modernization programs in China, India, Japan, and Australia are fueling robust demand for a full spectrum of thermal imaging capabilities. Coastal defense, naval patrols, and mountainous border surveillance operations necessitate a blend of cooled long-range sensors and uncooled portable devices. Additionally, emerging geopolitical tensions in Southeast Asia have catalyzed regional collaboration on sensor development, joint training exercises, and co-production initiatives, further accelerating technology adoption across the Pacific Rim.

Highlighting key market players and their strategic initiatives in innovation partnerships and expansion that are defining competitive leadership in thermal imaging

Major defense technology companies are competing on multiple fronts, leveraging R&D investments to introduce advanced detector materials, miniaturized electronics, and AI-driven analytics modules. Some industry leaders have forged strategic partnerships with semiconductor firms to secure priority access to cutting-edge focal plane arrays, while others have pursued acquisitions of specialized optics manufacturers to enhance in-house capabilities. Moreover, collaboration with leading academic and government research labs has become a cornerstone of innovation pipelines, ensuring early exposure to next-generation sensor architectures.

In parallel, several companies have expanded their aftermarket service offerings, incorporating predictive maintenance through embedded health-monitoring systems and remote diagnostics. These post-sale support enhancements not only improve system uptime but also foster long-term client relationships and recurring revenue streams. At the same time, global prime contractors are integrating thermal imaging subsystems into broader mission packages, bundling electro-optical sensors with communications, navigation, and weapons systems to deliver turnkey solutions.

Meanwhile, emerging challengers from non-traditional defense markets are gaining traction by offering agile product cycles and cost-competitive uncooled modules. Their ability to rapidly iterate on user feedback and tailor systems to small-unit requirements is reshaping competitive benchmarks. Consequently, established players are ramping up collaborative ventures and co-development agreements to maintain technological leadership and respond swiftly to evolving threat environments.

Presenting actionable recommendations for defense industry leaders to leverage emerging technologies optimize procurement frameworks and enhance operational readiness

To capitalize on emerging opportunities, defense organizations should prioritize dual-track sensor development strategies that combine the long-range precision of cooled detectors with the agility and cost efficiency of uncooled arrays. By pursuing hybrid solutions, program managers can optimize both performance and affordability across diverse mission sets. Furthermore, proactive engagement with supplier diversification initiatives will enhance supply chain resilience, mitigate tariff-related risks, and secure access to critical components under fluctuating regulatory conditions.

In addition, forging partnerships with artificial intelligence and data analytics firms can unlock real-time threat classification and decision-support capabilities, transforming raw thermal data into actionable intelligence. Collaborative frameworks that integrate sensor manufacturers, system integrators, and end users from project inception will drive faster time to market and ensure that field requirements are accurately reflected in system design. Investing in modular architectures and open-system standards will further future-proof thermal imaging platforms against rapid technological advances and evolving interoperability demands.

Lastly, defense acquisition authorities should consider adaptive procurement models that align contract incentives with performance milestones, lifecycle support metrics, and continuous innovation deliverables. By linking supplier compensation to demonstrable capability enhancements and sustained readiness levels, organizations can foster a competitive environment that rewards excellence and drives ongoing improvements in thermal imaging solutions.

Outlining a rigorous research methodology integrating primary expert interviews advanced data analytics and multi-source validation for comprehensive market insights

This analysis is grounded in a robust, multi-phase research methodology designed to deliver reliable and comprehensive market insights. Initially, primary data were collected through in-depth interviews with defense procurement officials, program managers, system integrators, and technology developers. These expert perspectives provided nuanced understanding of operational requirements, procurement challenges, and evolving capability gaps.

Secondary research complemented these findings by drawing on publicly available technical papers, military white papers, patent filings, and regulatory filings. Trade association reports and defense budget disclosures were analyzed to contextualize regional procurement trends and tariff impacts. Additionally, advanced data analytics techniques, including sentiment analysis and network mapping, were employed to identify collaboration patterns among key industry players and academic institutions.

To ensure accuracy and validity, all insights were triangulated across multiple sources and subjected to peer review by independent defense technology experts. This rigorous validation process confirms that the resulting narrative reflects the latest technological developments, supply chain dynamics, and strategic considerations shaping the future of military thermal imaging.

Synthesizing the executive findings to underscore strategic imperatives future trends and long term implications for military thermal imaging advancement

The collective findings underscore that military thermal imaging is at an inflection point, where advances in sensor fusion, artificial intelligence, and modular architectures are converging to redefine mission capabilities. Emerging wavelength bands and hybrid cooled-uncooled configurations promise unprecedented operational flexibility, while regional procurement shifts and tariff policies are accelerating supply chain realignment and localized production efforts.

Furthermore, the competitive landscape is evolving as defense primes deepen aftermarket support and non-traditional entrants challenge established players with agile development cycles. In this environment, organizations that embrace open-systems standards, diversify their supplier base, and cultivate strategic technology partnerships will secure a decisive advantage.

Ultimately, the imperative for defense planners and technology leaders is to integrate these insights into coherent acquisition and development roadmaps. By aligning procurement strategies with evolving operational needs and technological trajectories, they can ensure that thermal imaging solutions continue to deliver critical situational awareness, force protection, and precision targeting capabilities in the most demanding environments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of lightweight high resolution uncooled thermal sensors for soldier portable gear
  • 5.2. Rising adoption of multispectral imaging combining thermal and visible sensors in battlefield reconnaissance
  • 5.3. Integration of AI-driven automatic target recognition in next generation thermal imaging systems
  • 5.4. Emerging use of wearable thermal imaging modules for soldier situational awareness and threat detection
  • 5.5. Increasing deployment of compact drone mounted thermal cameras for persistent surveillance missions
  • 5.6. Advancements in quantum detector technology boosting sensitivity and range of military thermal imagers
  • 5.7. Transition from cooled to uncooled thermal detectors for reduced power consumption and maintenance requirements
  • 5.8. Expansion of networked thermal imaging systems enabling real time data sharing across command units
  • 5.9. Growing demand for handheld thermal scopes with augmented reality overlays in infantry operations
  • 5.10. Launch of dual field of view thermal optics for simultaneous wide area monitoring and precision targeting

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Military Thermal Imaging Equipment Market, by Product

  • 8.1. Introduction
  • 8.2. Multi-Sensor EO/IR Systems
  • 8.3. Thermal Imaging Cameras
  • 8.4. Thermal Imaging Goggles
  • 8.5. Thermal Weapon Sights

9. Military Thermal Imaging Equipment Market, by Technology Type

  • 9.1. Introduction
  • 9.2. Cooled Thermal Imaging
  • 9.3. Uncooled Thermal Imaging

10. Military Thermal Imaging Equipment Market, by Platform

  • 10.1. Introduction
  • 10.2. Airborne Platform
  • 10.3. Ground Platform
  • 10.4. Naval Platform

11. Military Thermal Imaging Equipment Market, by Wavelength

  • 11.1. Introduction
  • 11.2. Long Wave Infrared (8-14 μm)
  • 11.3. Mid Wave Infrared (3-5 μm)
  • 11.4. Short Wave Infrared (0.9 to 2 μm)

12. Military Thermal Imaging Equipment Market, by System Type

  • 12.1. Introduction
  • 12.2. Handheld Systems
    • 12.2.1. Binoculars
    • 12.2.2. Monoculars
    • 12.2.3. Pocket Scopes
  • 12.3. Mounted Systems
    • 12.3.1. Helmet-Mounted
    • 12.3.2. Vehicle-Mounted
    • 12.3.3. Weapon-Mounted

13. Military Thermal Imaging Equipment Market, by Application

  • 13.1. Introduction
  • 13.2. Fire Control
    • 13.2.1. Aiming Assistance
    • 13.2.2. Ballistic Calculation
  • 13.3. Navigation
    • 13.3.1. Night Vision
    • 13.3.2. Obstacle Avoidance
  • 13.4. Surveillance
    • 13.4.1. Persistent
    • 13.4.2. Short Range
  • 13.5. Target Acquisition
    • 13.5.1. Range Finding
    • 13.5.2. Weapon Guidance

14. Military Thermal Imaging Equipment Market, by End-User

  • 14.1. Introduction
  • 14.2. Air Force
  • 14.3. Army
  • 14.4. Border Security Agencies
  • 14.5. Navy
  • 14.6. Special Forces

15. Americas Military Thermal Imaging Equipment Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Military Thermal Imaging Equipment Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Military Thermal Imaging Equipment Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Teledyne Technologies Incorporated
    • 18.3.2. L3Harris Technologies, Inc.
    • 18.3.3. Axis Communications AB by Canon Inc
    • 18.3.4. BAE Systems plc
    • 18.3.5. Elbit Systems Ltd.
    • 18.3.6. Hensoldt AG
    • 18.3.7. HGH Systemes Infrarouges SAS
    • 18.3.8. Infiniti Electro-Optics by Ascendent Technology Group
    • 18.3.9. Leonardo S.p.A.
    • 18.3.10. Opgal Ltd by Rafael Advanced Defense Systems Ltd
    • 18.3.11. Raytheon Technologies Corporation
    • 18.3.12. Revlight Security
    • 18.3.13. Rheinmetall AG
    • 18.3.14. RTX Corporation
    • 18.3.15. Safran Group
    • 18.3.16. Shoghi Communications Ltd.
    • 18.3.17. Testo SE & Co. KGaA
    • 18.3.18. Thales S.A.
    • 18.3.19. Thermoteknix Systems Ltd.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제