½ÃÀ庸°í¼­
»óǰÄÚµå
1803681

±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : Á¦Ç° À¯Çü, ±â¼ú À¯Çü, Ç÷§Æû, ÆÄÀå, ½Ã½ºÅÛ À¯Çü, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Military Thermal Imaging Equipment Market by Product, Technology Type, Platform, Wavelength, System Type, Application, End-User - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 195 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀåÀº 2024³â¿¡ 42¾ï 6,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, 2025³â¿¡´Â CAGR 6.72%·Î 45¾ï 4,000¸¸ ´Þ·¯·Î ¼ºÀåÇϸç, 2030³â¿¡´Â 63¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 42¾ï 6,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 45¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 63¾ï ´Þ·¯
CAGR(%) 6.72%

Çö´ëÀÇ ±¹¹æ ȯ°æ¿¡¼­ ¿­È­»ó ±â¼úÀÌ Â÷ÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒ°ú ±º ÀÛÀüÀÇ È¿À²¼º¿¡ ¹ÌÄ¡´Â Å« ¿µÇâ¿¡ ´ëÇØ ¾Ë¾Æº¾´Ï´Ù.

±º¿ë ¿­È­»ó ±â¼úÀº Áö³­ ¼ö½Ê³â°£ ´«ºÎ½Å ¹ßÀüÀ» °ÅµìÇϸç Çö´ë ¹æ¾î ´É·ÂÀÇ ÇÙ½ÉÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. óÀ½¿¡´Â ¾ß°£ ÀÛÀüÀ» °­È­Çϱâ À§ÇØ °í¾ÈµÇ¾úÁö¸¸, ÇöÀç´Â ¸ðµç ¿µ¿ªÀÇ »óȲ ÀνĿ¡ ÇʼöÀûÀÎ Åø·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ÃÊâ±â ´ÜÀÏ ¼¾¼­ ÀåÄ¡ºÎÅÍ ¿À´Ã³¯ÀÇ Á¤±³ÇÑ ¸ÖƼ ½ºÆåÆ®·³ ½Ã½ºÅÛ¿¡ À̸£±â±îÁö °¨µµ, ÇØ»óµµ, ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ ²÷ÀÓ¾ø´Â ³ë·ÂÀº º¹ÀâÇÑ ÀÛÀü ¿µ¿ª¿¡¼­ÀÇ Àü¼úÀû ÀÇ»ç°áÁ¤À» ÀçÁ¤ÀÇÇϰí ÀÖ½À´Ï´Ù.

÷´Ü ¸ÖƼ¼¾¼­ ¾ÆÅ°ÅØÃ³¿Í ÅëÇÕ ÆÐ·¯´ÙÀÓÀÇ ÃâÇöÀ¸·Î Àü ¼¼°è ±º¿ë ¿­È­»ó ÃÔ¿µ ´É·ÂÀÌ ÀçÆíµÇ°í ÀÖ½À´Ï´Ù.

¼¾¼­ ÅëÇÕ, ó¸® ¾Ë°í¸®Áò, ½Ã½ºÅÛ ¾ÆÅ°ÅØÃ³ÀÇ ¹ßÀüÀ¸·Î ±º¿ë ¿­È­»ó À̹Ì¡ÀÇ È¯°æÀº Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. º¸´Ù Á¾ÇÕÀûÀÎ »óȲ ÀνÄÀÌ ¿ä±¸µÇ´Â °¡¿îµ¥, ¸ÖƼ¼¾¼­¸¦ ÅëÇÑ Àü±â±¤ÇÐ ¹× Àû¿Ü¼± À¶ÇÕ ¼Ö·ç¼ÇÀº º¸´Ù Á¾ÇÕÀûÀÎ ÀÛÀü ¿µ»óÀ» Á¦°øÇÔÀ¸·Î½á °¢±¤¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÀΰøÁö´É°ú ¸Ó½Å·¯´×ÀÇ µîÀåÀ¸·Î ½Ç½Ã°£ ¸ñÇ¥ Àνİú À§Çù ÀÚµ¿ ºÐ·ù°¡ °¡´ÉÇØÁö¸é¼­ ¿­ µ¥ÀÌÅ͸¦ ÇØ¼®ÇÏ°í ´ëóÇÏ´Â ¹æ½ÄÀÌ ±Ùº»ÀûÀ¸·Î º¯È­Çϰí ÀÖ½À´Ï´Ù.

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ ºÎ°ú°¡ ±¹¹æ Á¶´Þ Àü·«°ø±Þ¸Á°ú ¿­È­»ó ÀåºñÀÇ °¡¿ë¼º¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ºÐ¼®

¹Ì±¹ÀÌ 2025³â ¼öÀÔ ¿­È­»ó ºÎǰ ¹× ¿ÏÁ¦Ç° ½Ã½ºÅÛ¿¡ °ü¼¼¸¦ µµÀÔÇϸ鼭 ±¹¹æ Á¶´Þ Àü·«°ú ¼¼°è °ø±Þ¸Á¿¡ ÆÄ¹®ÀÌ Àϰí ÀÖ½À´Ï´Ù. ¼öÀÔ ºñ¿ë »ó½Â¿¡ µû¶ó ±¹¹æ ±â°üÀº Ç÷§Æû ¾÷±×·¹À̵å ÀÏÁ¤À» Àç°ËÅäÇÏ°í ±¹»ê ¶Ç´Â µ¿¸Í±¹ Á¶´Þ Àåºñ¿¡ ´ëÇÑ ÁöÃâ ¿ì¼±¼øÀ§¸¦ º¯°æÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ °Å·¡Ã³ »óÇ¥ Á¦Ç° Á¦Á¶¾÷ü´Â °ø±Þ¾÷ü¿ÍÀÇ °è¾àÀ» ÀçÇù»óÇÏ¿© °ø±Þ¾÷ü ±â¹ÝÀ» ´Ùº¯È­Çϰí ÇâÈÄ °ü¼¼ Àλó À§ÇèÀ» ÁÙÀ̱â À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù.

Á¦Ç° Ç÷§Æû ±â¼ú ÆÄÀå ½Ã½ºÅÛ À¯Çü ¹× ½ÃÀå ±Ëµµ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÃÖÁ¾»ç¿ëÀÚ¿¡ ÃÊÁ¡À» ¸ÂÃß°í,¹Ì¹¦ÇÑ ¼¼ºÐÈ­ ÀλçÀÌÆ®¸¦ ¹àÈü´Ï´Ù.

Á¦Ç° Ä«Å×°í¸®¶ó´Â ·»Á ÅëÇØ ½ÃÀåÀ» »ìÆìº¸¸é, ¸ÖƼ ¼¾¼­ Àü±â ±¤ÇÐ ¹× Àû¿Ü¼± ½Ã½ºÅÛ, µ¶¸³Çü ¿­È­»ó, °í±Û, ¹«±â Á¶Áرâ´Â °¢°¢ ´Ù¸¥ ¼º´É ¿ä±¸ »çÇ×°ú ÅëÇÕ °úÁ¦¸¦ Á¦½ÃÇÕ´Ï´Ù. ¿¹¸¦ µé¾î ¸ÖƼ¼¾¼­ ½Ã½ºÅÛÀº ÷´Ü µ¥ÀÌÅÍ À¶ÇÕ ¹× º¸Á¤ ÇÁ·Î¼¼½º¸¦ ¿ä±¸ÇÏÁö¸¸, Çï¸ä Âø¿ëÇü °í±ÛÀº ÀÎü°øÇÐ, Àü·Â È¿À²¼º, ½Å¼ÓÇÑ ÇöÀå ¹èÄ¡¸¦ ¿ì¼±½ÃÇÕ´Ï´Ù. ¸¶Âù°¡Áö·Î ¿­È­»ó ¹«±â Á¶ÁذæÀº °íÇØ»óµµ À̹Ì¡°ú źµµ °è»ê ÅëÇÕ ¹× ¿øÈ°ÇÑ ¹«±â Ç÷§Æû ÀÎÅÍÆäÀ̽ºÀÇ ±ÕÇüÀ» À¯ÁöÇØ¾ß ÇÕ´Ï´Ù.

¿­È­»ó À̹Ì¡ µµÀÔ ÆÐÅÏÀÇ Â÷À̸¦ ¸¸µé¾î³»´Â È¿°úÀûÀÎ Àü·«À» °¡Áø ±â¾÷(ºÏ¹Ì, ³²¹Ì, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾ç)À» ÆÄ¾Ç

¾Æ¸Þ¸®Ä« Áö¿ªÀº ¸·´ëÇÑ ±¹¹æ ¿¹»ê°ú ±¹°æ º¸¾È ¹× º´·Â Çö´ëÈ­ ÇÁ·Î±×·¥¿¡ ÁßÁ¡À» µÎ°í ÀÖÀ¸¹Ç·Î Á¶´Þ·®°ú ±â¼ú Çõ½Å¿¡¼­ °è¼Ó ¼±µÎ¸¦ ´Þ¸®°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹Àº Ç×°ø±â Ç÷§Æû°ú ±¹°æ °¨½Ã¸¦ À§ÇÑ Â÷¼¼´ë ¿­È­»ó °¨½Ã¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ij³ª´Ù¿Í Áß³²¹Ì ÀϺΠ±¹°¡¿¡¼­´Â ÇØ¾È °æºñ ¹× Áß¿ä ÀÎÇÁ¶ó º¸È£¸¦ À§ÇØ ºñ¿ë È¿À²ÀûÀÎ ºñ³Ã°¢½Ä ¼¾¼­¸¦ µµÀÔÇÏ´Â °ÍÀ» °í·ÁÇϰí ÀÖÀ¸¸ç, ¹Ý±¸ Àüü¿¡¼­ ´Ù¾çÇÑ ÀÛÀü ¿ì¼±¼øÀ§°¡ ÀÖÀ½À» ¾Ë ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå °æÀïÀÇ ÁÖ¿ä ÇÏÀ̶óÀÌÆ®: ¿­È­»ó À̹Ì¡ÀÇ °æÀï·Â °­È­¸¦ À§ÇÑ Çõ½ÅÀûÀÎ ÆÄÆ®³Ê½Ê°ú »ç¾÷ È®ÀåÀ» À§ÇÑ ÁÖ¿ä ±â¾÷°ú ±×µéÀÇ Àü·«Àû ±¸»ó

ÁÖ¿ä ¹æ»ê ±â¼ú ±â¾÷Àº ÷´Ü °ËÃâ±â Àç·á, ¼ÒÇüÈ­ ÀüÀÚÁ¦Ç°, AI ±â¹Ý ºÐ¼® ¸ðµâÀ» µµÀÔÇϱâ À§ÇÑ ¿¬±¸°³¹ß ÅõÀÚ¸¦ Ȱ¿ëÇÏ¿© ´Ù°¢µµ·Î °æÀïÇϰí ÀÖ½À´Ï´Ù. ¾÷°è¸¦ ¼±µµÇÏ´Â ±â¾÷ Áß ÀϺδ ¹ÝµµÃ¼ ȸ»ç¿Í Àü·«Àû ÆÄÆ®³Ê½ÊÀ» ¸Î¾î ÃÖ÷´Ü ÃÊÁ¡¸é ¾î·¹ÀÌ¿¡ ¿ì¼±ÀûÀ¸·Î Á¢±ÙÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ È®º¸Çϴ°¡ Çϸé, Àü¹® ±¤ÇÐ ±â±â Á¦Á¶¾÷ü¸¦ ÀμöÇÏ¿© ³»ºÎ ¿ª·®À» °­È­ÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä Çмú±â°ü ¹× Á¤ºÎ ¿¬±¸¼Ò¿ÍÀÇ Çù·Â °ü°è´Â Â÷¼¼´ë ¼¾¼­ ¾ÆÅ°ÅØÃ³¸¦ Á¶±â¿¡ Á¢ÇÒ ¼ö ÀÖ´Â Çõ½Å ÆÄÀÌÇÁ¶óÀÎÀÇ ÇÙ½ÉÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¹æ»ê¾÷°è ¸®´õµéÀÌ ½Å±â¼úÀ» Ȱ¿ëÇϰí, Á¶´Þ ÇÁ·¹ÀÓ¿öÅ©¸¦ ÃÖÀûÈ­Çϸç, ÀÛÀü Áغñż¼¸¦ °­È­Çϱâ À§ÇÑ ½ÇÇà °¡´ÉÇÑ Á¦¾ÈÀ» Á¦½Ã

»õ·Î¿î ±âȸ¸¦ Ȱ¿ëÇϱâ À§ÇØ ¹æÀ§ Á¶Á÷Àº ³Ã°¢½Ä °¨Áö±âÀÇ Àå°Å¸® Á¤È®µµ¿Í ºñ³Ã°¢½Ä ¾î·¹ÀÌÀÇ ¹Îø¼º ¹× ºñ¿ë È¿À²¼ºÀ» °áÇÕÇÑ µà¾ó Æ®·¢ ¼¾¼­ °³¹ß Àü·«À» ¿ì¼±¼øÀ§¿¡ µÎ¾î¾ß ÇÕ´Ï´Ù. ÇÏÀ̺긮µå ¼Ö·ç¼ÇÀ» Ãß±¸ÇÔÀ¸·Î½á ÇÁ·Î±×·¥ °ü¸®ÀÚ´Â ´Ù¾çÇÑ ¹Ì¼Ç ¼¼Æ®¿¡¼­ ¼º´É°ú °¡°ÝÀ» ¸ðµÎ ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °ø±Þ¾÷ü ´Ùº¯È­¸¦ ÅëÇØ °ø±Þ¸ÁÀÇ Åº·Â¼ºÀ» ³ôÀ̰í, °ü¼¼ °ü·Ã ¸®½ºÅ©¸¦ ÁÙÀ̸ç, º¯µ¿ÇÏ´Â ±ÔÁ¦ ȯ°æ¿¡¼­µµ Áß¿äÇÑ ºÎǰ¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

Á¾ÇÕÀûÀÎ ½ÃÀå ÀλçÀÌÆ®¸¦ À§ÇØ 1Â÷ Àü¹®°¡ ÀÎÅͺä, °í±Þ µ¥ÀÌÅÍ ºÐ¼®, ´ÙÁß ¼Ò½º °ËÁõÀ» ÅëÇÕÇÑ ¾ö°ÝÇÑ Á¶»ç ¹æ¹ý·ÐÀÌ Àû¿ëµÇ¾ú½À´Ï´Ù.

ÀÌ ºÐ¼®Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â Á¾ÇÕÀûÀÎ ½ÃÀå ÀλçÀÌÆ®¸¦ Á¦°øÇϱâ À§ÇØ ¼³°èµÈ °­·ÂÇÑ ´Ù´Ü°è Á¶»ç ¹æ¹ýÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. ¸ÕÀú, ±¹¹æ Á¶´Þ ´ã´çÀÚ, ÇÁ·Î±×·¥ °ü¸®ÀÚ, ½Ã½ºÅÛ ÅëÇÕÀÚ, ±â¼ú °³¹ßÀÚ¿ÍÀÇ ½ÉÃþ ÀÎÅͺ並 ÅëÇØ 1Â÷ µ¥ÀÌÅ͸¦ ¼öÁýÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Àü¹®°¡µéÀÇ °üÁ¡Àº ¿î¿µ ¿ä±¸»çÇ×, Á¶´Þ °úÁ¦, ÁøÈ­ÇÏ´Â ¿ª·® °ÝÂ÷¿¡ ´ëÇÑ ¹Ì¹¦ÇÑ ÀÌÇØ¸¦ Á¦°øÇß½À´Ï´Ù.

¾òÀº Áö½ÄÀ» ÅëÇÕÇÏ¿© ±º ¿­È­»ó ±â¼úÀÇ ¹ßÀü¿¡ ÇÊ¿äÇÑ Àü·«Àû Çʼö »çÇ×, ¹Ì·¡ µ¿Çâ ¹× Àå±âÀû Àǹ̸¦ ¸íÈ®È÷

Á¾ÇÕÀûÀÎ Á¶»ç °á°ú´Â ±º¿ë ¿­È­»ó ±â¼úÀÌ ¼¾¼­ À¶ÇÕ, ÀΰøÁö´É, ¸ðµâ½Ä ¾ÆÅ°ÅØÃ³ÀÇ ÁøÈ­°¡ À¶ÇյǾî ÀÓ¹« ´É·ÂÀ» ÀçÁ¤ÀÇÇÏ´Â º¯°îÁ¡¿¡ µµ´ÞÇßÀ½À» °­Á¶ÇÕ´Ï´Ù. »õ·Î¿î ÆÄÀå´ë¿ª°ú ÇÏÀ̺긮µå ºñ³Ã°¢ ±¸¼ºÀ¸·Î Àü·Ê ¾ø´Â À¯¿¬¼ºÀ» Á¦°øÇÏ´Â ÇÑÆí, Áö¿ªÀû Á¶´Þ Àüȯ°ú °ü¼¼ Á¤Ã¥À¸·Î ÀÎÇØ °ø±Þ¸Á ÀçÆí°ú ÇöÁö »ý»ê¿¡ ´ëÇÑ ³ë·ÂÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : Á¦Ç°º°

  • ¸ÖƼ ¼¾¼­ EO/IR ½Ã½ºÅÛ
  • ¼­¸Ö À̹Ì¡ Ä«¸Þ¶ó
  • ¼­¸Ö À̹Ì¡ °í±Û
  • ¿­Å½Áö Á¶Áرâ

Á¦9Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : ±â¼ú À¯Çüº°

  • ³Ã°¢ ¼­¸Ö À̹Ì¡
  • ºñ³Ã°¢ ¼­¸Ö À̹Ì¡

Á¦10Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : Ç÷§Æûº°

  • °øÁß Ç÷§Æû
  • Áö»ó Ç÷§Æû
  • ÇØ±º Ç÷§Æû

Á¦11Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : ÆÄÀ庰

  • ÀåÆÄ Àû¿Ü¼±(8-14¥ìm)
  • Áᒎ Àû¿Ü¼±(3-5¥ìm)
  • ´ÜÆÄ Àû¿Ü¼±(0.9-2¥ìm)

Á¦12Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå ½Ã½ºÅÛ À¯Çüº°

  • ÇÚµåÇïµå ½Ã½ºÅÛ
    • ½Ö¾È°æ
    • ´Ü¾È°æ
    • Æ÷ÄÏ ½ºÄÚÇÁ
  • ¸¶¿îÆ® ½Ã½ºÅÛ
    • Çï¸ä ¸¶¿îÆ®
    • Â÷·® žÀçÇü
    • ¹«±â žÀçÇü

Á¦13Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : ¿ëµµº°

  • »ç°Ý °üÁ¦
    • Á¶ÁØ º¸Á¶
    • źµµ °è»ê
  • ³»ºñ°ÔÀ̼Ç
    • ³ªÀÌÆ® ºñÀü
    • Àå¾Ö¹° ȸÇÇ
  • °¨½Ã
    • Áö¼ÓÀû
    • ´Ü°Å¸®
  • Ÿ°Ù ȹµæ
    • °Å¸® ÃøÁ¤
    • ¹«±â À¯µµ

Á¦14Àå ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • °ø±º
  • À°±º
  • ±¹°æ °æºñ ±â°ü
  • ÇØ±º
  • Ư¼öºÎ´ë

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±º¿ë ¼­¸Ö À̹Ì¡ Àåºñ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Teledyne Technologies Incorporated
    • L3Harris Technologies, Inc.
    • Axis Communications AB by Canon Inc
    • BAE Systems plc
    • Elbit Systems Ltd.
    • Hensoldt AG
    • HGH Systemes Infrarouges SAS
    • Infiniti Electro-Optics by Ascendent Technology Group
    • Leonardo S.p.A.
    • Opgal Ltd by Rafael Advanced Defense Systems Ltd
    • Raytheon Technologies Corporation
    • Revlight Security
    • Rheinmetall AG
    • RTX Corporation
    • Safran Group
    • Shoghi Communications Ltd.
    • Testo SE & Co. KGaA
    • Thales S.A.
    • Thermoteknix Systems Ltd.

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

KSA 25.09.11

The Military Thermal Imaging Equipment Market was valued at USD 4.26 billion in 2024 and is projected to grow to USD 4.54 billion in 2025, with a CAGR of 6.72%, reaching USD 6.30 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.26 billion
Estimated Year [2025] USD 4.54 billion
Forecast Year [2030] USD 6.30 billion
CAGR (%) 6.72%

Unveiling the critical role of thermal imaging in modern defense environments and its transformative impact on military operational effectiveness

Military thermal imaging technology has undergone a remarkable transformation over recent decades, emerging as a cornerstone of modern defense capabilities. Initially conceived to enhance night operations, it has now evolved into an indispensable tool for situational awareness across all domains. From early single-sensor devices to today's sophisticated multi-spectral systems, the continuous drive for enhanced sensitivity, resolution, and reliability has redefined tactical decision-making in complex operational theaters.

Moreover, the blend of advanced detector materials, miniaturized electronics, and ruggedized design has extended the operational envelope of thermal imaging equipment. Consequently, military forces can operate with greater confidence in adverse weather, dense foliage, and low-visibility environments. This evolution has not only bolstered mission success rates but also improved force protection through earlier threat detection and more precise threat classification.

In light of these developments, this executive summary provides an authoritative overview of the current market dynamics, strategic shifts, and critical insights that defense planners, procurement authorities, and technology developers must understand. As a foundational section, it sets the stage for a detailed exploration of transformative trends, regulatory impacts, segmentation analysis, regional considerations, competitive landscapes, and strategic recommendations tailored to the future of military thermal imaging.

Exploring the emergence of advanced multi-sensor architectures and integration paradigms that are reshaping military thermal imaging capabilities worldwide

The military thermal imaging landscape is undergoing transformative shifts driven by advances in sensor integration, processing algorithms, and system architectures. As forces demand more comprehensive situational awareness, multi-sensor electro-optical and infrared fusion solutions have gained prominence by delivering a more holistic operational picture. Furthermore, the advent of artificial intelligence and machine learning has enabled real-time target recognition and automated threat classification, fundamentally altering how thermal data is interpreted and acted upon.

Additionally, the distinction between cooled and uncooled sensor technologies is becoming increasingly nuanced. While cooled systems continue to offer superior sensitivity and long-range detection capabilities, uncooled arrays have made significant strides in cost efficiency, size, weight, and power consumption. As a result, uncooled devices are now viable for a broader range of missions, particularly in lightweight airborne, ground, and man-portable applications.

In parallel, new platforms such as unmanned aerial systems, autonomous ground vehicles, and networked naval sensor suites are further reshaping deployment paradigms. Integration with secure data links and cloud-based analytics has established a persistent, multi-domain awareness framework that extends from tactical edge nodes to strategic command centers. Consequently, these converging trends are setting the stage for the next generation of thermal imaging capabilities worldwide.

Analyzing the repercussions of newly imposed US tariffs in 2025 on defense procurement strategies supply chains and thermal imaging equipment accessibility

The introduction of United States tariffs on imported thermal imaging components and finished systems in 2025 has created a ripple effect across defense procurement strategies and global supply chains. In response to increased import costs, defense agencies are reevaluating platform upgrade schedules and reprioritizing expenditures toward domestically manufactured or allied-sourced equipment. Moreover, original equipment manufacturers are renegotiating vendor agreements, seeking to diversify their supplier base and mitigate the risk of future tariff escalations.

Consequently, prime contractors and subsystem integrators have accelerated efforts to localize production of critical infrared detector elements and custom optics. This shift has spurred targeted investments in regional manufacturing hubs and joint ventures with North American and European partners. As a result, some defense organizations are experiencing longer lead times for advanced thermal modules, while others are capitalizing on newly established domestic capacity to shorten delivery cycles and enhance supply chain transparency.

Looking ahead, the tariff landscape is prompting governments and defense firms to adopt a dual-track strategy: maintaining existing contracts with established suppliers under new cost structures while simultaneously nurturing second-source capabilities. This balanced approach ensures that operational readiness and capability upgrades remain on track, even as the global regulatory environment continues to evolve.

Delineating nuanced segmentation insights highlighting product platforms technologies wavelengths system types and end users influencing market trajectories

When examining the market through the lens of product categories, multi-sensor electro-optical and infrared systems, standalone thermal imaging cameras, goggles, and weapon sights each exhibit distinct performance requirements and integration challenges. For instance, multi-sensor arrangements demand sophisticated data fusion and calibration processes, whereas helmet-mounted goggles prioritize ergonomics, power efficiency, and rapid field deployment. Similarly, thermal weapon sights must balance high-resolution imaging with ballistic calculation integration and seamless weapon platform interfaces.

In terms of underlying technology, the choice between cooled and uncooled sensors shapes system capabilities across range, sensitivity, and operational tempo. Cooled detectors excel in long-range detection missions and precision targeting, while uncooled arrays deliver lower size, weight, and power footprints suitable for handheld and small unmanned platforms. This distinction directly influences platform selection-whether airborne, ground-based, or naval-each of which imposes unique environmental and integration requirements on thermal systems.

Further granularity emerges through wavelength classifications, spanning long-wave infrared for broad-area surveillance, mid-wave infrared for optimized target discrimination under varied conditions, and short-wave infrared for specialized applications such as obscurant penetration and covert night operations. System typology also differentiates handheld binoculars, monoculars, and pocket scopes from mounted helmet, vehicle, or weapon-integrated configurations, each tailored to specific mission profiles.

Finally, application-centric segmentation underscores fire control functions-comprising aiming assistance and ballistic calculations-navigation uses like night vision and obstacle avoidance, persistent or short-range surveillance scenarios, and precision-focused target acquisition tasks such as range finding and weapon guidance. End users range from air forces and armies to border security agencies, navies, and special forces, reflecting a broad spectrum of operational demands and procurement priorities.

Identifying critical regional dynamics across the Americas Europe Middle East Africa and Asia Pacific that are driving differential thermal imaging adoption patterns

The Americas region continues to lead in procurement volume and technological innovation, driven by substantial defense budgets and a strong emphasis on border security and force modernization programs. The United States, in particular, has invested heavily in next-generation thermal imaging solutions for airborne platforms and border surveillance. Meanwhile, Canada and select Latin American nations are exploring cost-effective uncooled sensor deployments for coastal security and critical infrastructure protection, demonstrating a diverse set of operational priorities across the hemisphere.

Europe, the Middle East, and Africa present a complex mosaic of demand drivers and procurement models. Western European NATO members focus on interoperability with allied systems and push for standardized modular sensor suites. Concurrently, Gulf states and other Middle Eastern nations are pursuing high-end thermal imaging for missile defense and border fortification, often sourcing systems through offset agreements and defense cooperation pacts. In Africa, resource constraints steer governments toward ruggedized, low-power uncooled solutions that can withstand harsh climatic conditions and deliver persistent surveillance over vast territories.

In the Asia-Pacific region, rapid military modernization programs in China, India, Japan, and Australia are fueling robust demand for a full spectrum of thermal imaging capabilities. Coastal defense, naval patrols, and mountainous border surveillance operations necessitate a blend of cooled long-range sensors and uncooled portable devices. Additionally, emerging geopolitical tensions in Southeast Asia have catalyzed regional collaboration on sensor development, joint training exercises, and co-production initiatives, further accelerating technology adoption across the Pacific Rim.

Highlighting key market players and their strategic initiatives in innovation partnerships and expansion that are defining competitive leadership in thermal imaging

Major defense technology companies are competing on multiple fronts, leveraging R&D investments to introduce advanced detector materials, miniaturized electronics, and AI-driven analytics modules. Some industry leaders have forged strategic partnerships with semiconductor firms to secure priority access to cutting-edge focal plane arrays, while others have pursued acquisitions of specialized optics manufacturers to enhance in-house capabilities. Moreover, collaboration with leading academic and government research labs has become a cornerstone of innovation pipelines, ensuring early exposure to next-generation sensor architectures.

In parallel, several companies have expanded their aftermarket service offerings, incorporating predictive maintenance through embedded health-monitoring systems and remote diagnostics. These post-sale support enhancements not only improve system uptime but also foster long-term client relationships and recurring revenue streams. At the same time, global prime contractors are integrating thermal imaging subsystems into broader mission packages, bundling electro-optical sensors with communications, navigation, and weapons systems to deliver turnkey solutions.

Meanwhile, emerging challengers from non-traditional defense markets are gaining traction by offering agile product cycles and cost-competitive uncooled modules. Their ability to rapidly iterate on user feedback and tailor systems to small-unit requirements is reshaping competitive benchmarks. Consequently, established players are ramping up collaborative ventures and co-development agreements to maintain technological leadership and respond swiftly to evolving threat environments.

Presenting actionable recommendations for defense industry leaders to leverage emerging technologies optimize procurement frameworks and enhance operational readiness

To capitalize on emerging opportunities, defense organizations should prioritize dual-track sensor development strategies that combine the long-range precision of cooled detectors with the agility and cost efficiency of uncooled arrays. By pursuing hybrid solutions, program managers can optimize both performance and affordability across diverse mission sets. Furthermore, proactive engagement with supplier diversification initiatives will enhance supply chain resilience, mitigate tariff-related risks, and secure access to critical components under fluctuating regulatory conditions.

In addition, forging partnerships with artificial intelligence and data analytics firms can unlock real-time threat classification and decision-support capabilities, transforming raw thermal data into actionable intelligence. Collaborative frameworks that integrate sensor manufacturers, system integrators, and end users from project inception will drive faster time to market and ensure that field requirements are accurately reflected in system design. Investing in modular architectures and open-system standards will further future-proof thermal imaging platforms against rapid technological advances and evolving interoperability demands.

Lastly, defense acquisition authorities should consider adaptive procurement models that align contract incentives with performance milestones, lifecycle support metrics, and continuous innovation deliverables. By linking supplier compensation to demonstrable capability enhancements and sustained readiness levels, organizations can foster a competitive environment that rewards excellence and drives ongoing improvements in thermal imaging solutions.

Outlining a rigorous research methodology integrating primary expert interviews advanced data analytics and multi-source validation for comprehensive market insights

This analysis is grounded in a robust, multi-phase research methodology designed to deliver reliable and comprehensive market insights. Initially, primary data were collected through in-depth interviews with defense procurement officials, program managers, system integrators, and technology developers. These expert perspectives provided nuanced understanding of operational requirements, procurement challenges, and evolving capability gaps.

Secondary research complemented these findings by drawing on publicly available technical papers, military white papers, patent filings, and regulatory filings. Trade association reports and defense budget disclosures were analyzed to contextualize regional procurement trends and tariff impacts. Additionally, advanced data analytics techniques, including sentiment analysis and network mapping, were employed to identify collaboration patterns among key industry players and academic institutions.

To ensure accuracy and validity, all insights were triangulated across multiple sources and subjected to peer review by independent defense technology experts. This rigorous validation process confirms that the resulting narrative reflects the latest technological developments, supply chain dynamics, and strategic considerations shaping the future of military thermal imaging.

Synthesizing the executive findings to underscore strategic imperatives future trends and long term implications for military thermal imaging advancement

The collective findings underscore that military thermal imaging is at an inflection point, where advances in sensor fusion, artificial intelligence, and modular architectures are converging to redefine mission capabilities. Emerging wavelength bands and hybrid cooled-uncooled configurations promise unprecedented operational flexibility, while regional procurement shifts and tariff policies are accelerating supply chain realignment and localized production efforts.

Furthermore, the competitive landscape is evolving as defense primes deepen aftermarket support and non-traditional entrants challenge established players with agile development cycles. In this environment, organizations that embrace open-systems standards, diversify their supplier base, and cultivate strategic technology partnerships will secure a decisive advantage.

Ultimately, the imperative for defense planners and technology leaders is to integrate these insights into coherent acquisition and development roadmaps. By aligning procurement strategies with evolving operational needs and technological trajectories, they can ensure that thermal imaging solutions continue to deliver critical situational awareness, force protection, and precision targeting capabilities in the most demanding environments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of lightweight high resolution uncooled thermal sensors for soldier portable gear
  • 5.2. Rising adoption of multispectral imaging combining thermal and visible sensors in battlefield reconnaissance
  • 5.3. Integration of AI-driven automatic target recognition in next generation thermal imaging systems
  • 5.4. Emerging use of wearable thermal imaging modules for soldier situational awareness and threat detection
  • 5.5. Increasing deployment of compact drone mounted thermal cameras for persistent surveillance missions
  • 5.6. Advancements in quantum detector technology boosting sensitivity and range of military thermal imagers
  • 5.7. Transition from cooled to uncooled thermal detectors for reduced power consumption and maintenance requirements
  • 5.8. Expansion of networked thermal imaging systems enabling real time data sharing across command units
  • 5.9. Growing demand for handheld thermal scopes with augmented reality overlays in infantry operations
  • 5.10. Launch of dual field of view thermal optics for simultaneous wide area monitoring and precision targeting

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Military Thermal Imaging Equipment Market, by Product

  • 8.1. Introduction
  • 8.2. Multi-Sensor EO/IR Systems
  • 8.3. Thermal Imaging Cameras
  • 8.4. Thermal Imaging Goggles
  • 8.5. Thermal Weapon Sights

9. Military Thermal Imaging Equipment Market, by Technology Type

  • 9.1. Introduction
  • 9.2. Cooled Thermal Imaging
  • 9.3. Uncooled Thermal Imaging

10. Military Thermal Imaging Equipment Market, by Platform

  • 10.1. Introduction
  • 10.2. Airborne Platform
  • 10.3. Ground Platform
  • 10.4. Naval Platform

11. Military Thermal Imaging Equipment Market, by Wavelength

  • 11.1. Introduction
  • 11.2. Long Wave Infrared (8-14 μm)
  • 11.3. Mid Wave Infrared (3-5 μm)
  • 11.4. Short Wave Infrared (0.9 to 2 μm)

12. Military Thermal Imaging Equipment Market, by System Type

  • 12.1. Introduction
  • 12.2. Handheld Systems
    • 12.2.1. Binoculars
    • 12.2.2. Monoculars
    • 12.2.3. Pocket Scopes
  • 12.3. Mounted Systems
    • 12.3.1. Helmet-Mounted
    • 12.3.2. Vehicle-Mounted
    • 12.3.3. Weapon-Mounted

13. Military Thermal Imaging Equipment Market, by Application

  • 13.1. Introduction
  • 13.2. Fire Control
    • 13.2.1. Aiming Assistance
    • 13.2.2. Ballistic Calculation
  • 13.3. Navigation
    • 13.3.1. Night Vision
    • 13.3.2. Obstacle Avoidance
  • 13.4. Surveillance
    • 13.4.1. Persistent
    • 13.4.2. Short Range
  • 13.5. Target Acquisition
    • 13.5.1. Range Finding
    • 13.5.2. Weapon Guidance

14. Military Thermal Imaging Equipment Market, by End-User

  • 14.1. Introduction
  • 14.2. Air Force
  • 14.3. Army
  • 14.4. Border Security Agencies
  • 14.5. Navy
  • 14.6. Special Forces

15. Americas Military Thermal Imaging Equipment Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Military Thermal Imaging Equipment Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Military Thermal Imaging Equipment Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Teledyne Technologies Incorporated
    • 18.3.2. L3Harris Technologies, Inc.
    • 18.3.3. Axis Communications AB by Canon Inc
    • 18.3.4. BAE Systems plc
    • 18.3.5. Elbit Systems Ltd.
    • 18.3.6. Hensoldt AG
    • 18.3.7. HGH Systemes Infrarouges SAS
    • 18.3.8. Infiniti Electro-Optics by Ascendent Technology Group
    • 18.3.9. Leonardo S.p.A.
    • 18.3.10. Opgal Ltd by Rafael Advanced Defense Systems Ltd
    • 18.3.11. Raytheon Technologies Corporation
    • 18.3.12. Revlight Security
    • 18.3.13. Rheinmetall AG
    • 18.3.14. RTX Corporation
    • 18.3.15. Safran Group
    • 18.3.16. Shoghi Communications Ltd.
    • 18.3.17. Testo SE & Co. KGaA
    • 18.3.18. Thales S.A.
    • 18.3.19. Thermoteknix Systems Ltd.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦