시장보고서
상품코드
1803776

배압 증기 터빈 시장 : 유형별, 용량별, 터빈 유형별, 연료원별, 용도별, 최종 이용 산업별 - 세계 예측(2025-2030년)

Backpressure Steam Turbine Market by Type, Capacity, Turbine Type, Fuel Source, Application, End-Use Industry - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

배압 증기 터빈 시장은 2024년에는 25억 1,000만 달러로 평가되었으며, 2025년에는 CAGR 3.05%로 25억 8,000만 달러로 성장하여 2030년에는 30억 1,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 25억 1,000만 달러
추정 연도 2025년 25억 8,000만 달러
예측 연도 2030년 30억 1,000만 달러
CAGR(%) 3.05%

배압 증기 터빈의 원동력과 새로운 비즈니스 기회를 탐구하여 산업 역학의 기초를 다집니다.

배압 증기 터빈은 에너지 회수를 촉진하고 운전 효율을 극대화함으로써 현대 산업 및 발전 생태계에서 필수적인 구성요소로 자리매김하고 있습니다. 이러한 특수 터빈은 원래 배출되어야 할 증기를 회수하여 기계 구동 애플리케이션 및 공정 가열에 재사용함으로써 경제적, 환경적 이점을 제공합니다. 조직이 지속가능성 목표를 추구하는 가운데, 이산화탄소 배출을 줄이면서 증기 활용을 최적화할 수 있는 역압 증기 터빈 솔루션의 중요성이 커지고 있습니다.

세계 배압 증기 터빈 시장의 궤적과 기술 진보를 형성하는 가장 영향력 있는 변혁적 변화를 알아봅니다.

배압 증기 터빈은 기술의 발전, 규제 상황의 변화, 최종사용자의 우선순위 변화로 인해 큰 변화의 시기를 맞이하고 있습니다. 기술적 측면에서는 블레이드 설계, 재료 과학, 수치 유체 역학의 비약적인 발전으로 터빈의 효율, 내구성, 적응성이 그 어느 때보다 향상되었습니다. 그 결과, 제조업체들은 연구 개발에 많은 투자를 하고 있으며, 다양한 압력 및 유량 요구 사항을 충족시키기 위해 다단 및 단단 구성을 개선하고 있습니다.

2025년까지 발표된 미국 관세가 배압 증기 터빈 공급망과 투자에 미치는 누적된 영향에 대한 평가

2025년 미국이 증기터빈 수입에 관세를 도입하면 세계 공급망과 투자 의사결정에 연쇄적인 영향을 미칠 것입니다. 이러한 관세는 기존 생산기지에서 조달하는 주요 부품의 비용을 증가시킴으로써 이해관계자들이 조달 전략을 재검토하고 대체 조달 옵션을 검토하도록 유도하고 있습니다. 이에 따라 공급망 다변화가 가장 중요한 과제로 떠오르고 있으며, 기업들은 무역 관련 비용 변동에 노출되는 위험을 줄이기 위해 북미, 유럽, 아시아 각 지역의 생산능력을 평가하고 있습니다.

유형별, 용량별, 터빈 구성별, 연료원별, 용도별, 최종 용도별 산업 역학에 따른 전략적 세분화를 탐색합니다.

전략적 세분화는 시장의 복잡성을 이해하고 명확한 비즈니스 니즈에 맞는 솔루션을 제공하기 위한 핵심입니다. 터빈의 종류를 고려할 때, 다단 배압 증기 터빈과 단단 배압 증기 터빈을 구분하면 산업 공정과 압력 프로파일에 따라 용도가 다르다는 것을 알 수 있습니다. 다단식 증기 터빈은 대용량, 다단식 에너지 회수가 우수하며, 단단식 증기 터빈은 열 통합에 중점을 둔 간단한 설치에 적합합니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 다양한 지역적 역학을 밝혀내고 전략적 시장 접근을 유도합니다.

배압 증기 터빈 시장의 지역 역학은 아메리카, 유럽, 중동 및 아프리카, 아시아태평양별로 각기 다른 성장 촉진요인과 비즈니스 프레임워크가 특징입니다. 아메리카에서는 노후화된 인프라와 야심찬 탈탄소화 목표가 결합되어 개보수 프로젝트와 고효율 터빈의 개보수 채택을 촉진하고 있습니다. 청정에너지와 산업 효율성 향상을 장려하는 정책 이니셔티브는 아메리카 시장에서의 투자 모멘텀을 더욱 강화하고 있습니다.

배압 증기 터빈 생태계에서 혁신, 협업, 경쟁 전략을 추진하는 주요 기업 개요

배압 증기 터빈의 주요 기업들은 기술 혁신, 전략적 파트너십, 종합적인 서비스 제공을 통해 차별화를 꾀하고 있습니다. 세계 OEM들은 신속한 배치와 기존 시스템과의 통합을 용이하게 하는 모듈식 터빈 아키텍처를 추진하는 데 주력하고 있습니다. 이러한 접근 방식은 프로젝트 리드타임을 단축하고 고객의 요구사항에 맞춰 유연한 용량 확장을 지원합니다.

효율성, 탄력성, 성장 잠재력을 극대화하기 위해 업계 리더를 지원하는 실행 가능한 권장 사항을 제공합니다.

업계 리더는 진화하는 시장 환경과 기술 발전을 활용하기 위해 일련의 전략적 이니셔티브를 도입해야 합니다. IoT 센서와 예측 분석을 터빈 작동에 통합하면 예방적 유지보수 개입이 가능하여 계획되지 않은 다운타임을 최소화하고 자산 성능을 최적화할 수 있습니다. 그 결과, 기업은 상당한 비용 절감을 달성하고 전체 공장의 효율성을 높일 수 있습니다.

배압 증기 터빈 분석을 위한 1차 인터뷰, 2차 데이터 소스, 강력한 검증을 통합한 엄격한 조사 방법론의 정교화

본 Executive Summary의 기초가 되는 조사는 1차 및 2차 정보에서 얻은 인사이트를 삼각측량하는 종합적인 방법을 채택하여 확고한 증거에 기반한 결론을 보장합니다. 1차 데이터 수집을 위해 주요 지역의 경영진, 기술 전문가, 최종사용자를 대상으로 심층 인터뷰를 실시하여 비즈니스 과제, 기술 채택 패턴, 전략적 우선순위에 대한 생생한 관점을 제공했습니다.

배압 증기 터빈 시장 조사에서 얻은 중요한 인사이트와 전략적 관점 통합

배압 증기 터빈 시장에 대한 종합적인 조사를 통해 이 분야의 진화를 형성하는 중요한 추진 요인, 변화하는 트렌드 및 전략적 중요 사항을 파악할 수 있습니다. 에너지 효율, 배출가스 저감, 연료의 다양화, 기술 혁신과 첨단 디지털 기능의 도입이 촉진되고 있습니다. 동시에 미국의 2025년 관세 인상과 같은 무역 정책은 공급망 재구축과 현지 제조업과의 파트너십에 대한 재조명을 촉구하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 배압 증기 터빈 시장 : 유형별

  • 다단 배압 증기 터빈
  • 단단 배압 증기 터빈

제9장 배압 증기 터빈 시장 : 용량별

  • 대규모(100MW 이상)
  • 중규모(30-100 MW)
  • 소규모(1-30 MW)

제10장 배압 증기 터빈 시장 : 터빈 유형별

  • 응축
  • 비응축

제11장 배압 증기 터빈 시장 : 연료원별

  • 바이오매스
  • 석탄
  • 지열
  • 천연가스

제12장 배압 증기 터빈 시장 : 용도별

  • 코제너레이션
  • 지역 난방
  • 산업 발전
  • 기계 구동
  • 원격지용 발전

제13장 배압 증기 터빈 시장 : 최종 이용 산업별

  • 화학 및 석유화학
  • 식품 및 음료
  • 석유 및 가스 산업
  • 제지·펄프
  • 의약품
  • 섬유

제14장 아메리카의 배압 증기 터빈 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 배압 증기 터빈 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 배압 증기 터빈 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Ansaldo Energia S.p.A.
    • Baker Hughes Company
    • Chola Turbo Machinery International Private Limited
    • Doosan Skoda Power by Doosan Group
    • Fuji Electric Co., Ltd.
    • Hayward Tyler Group PLC by Avingtrans PLC
    • Industrial Boilers America, Inc.
    • Kessels Engineering Works Pvt. Ltd.
    • MAN Energy Solutions SE by Volkswagen Group
    • Mitsubishi Heavy Industries Ltd.
    • N. S. Terbo Private Limited
    • SHANDONG QINGNENG POWER CO., LTD
    • Shanghai Electric Group Co., Ltd.
    • Siemens AG
    • Sumitomo Heavy Industries Ltd.
    • Triveni Turbine Limited
    • TurboTech Precision Engineering Pvt. Ltd.
    • Turtle Turbines Private Limited
    • WEG S.A.
    • Andritz AG
    • Belliss India Limited
    • Harbin Integrated Power Control Engineering Ltd.
    • Kawasaki Heavy Industries, Ltd.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택트

제21장 리서치 기사

제22장 부록

KSM 25.09.10

The Backpressure Steam Turbine Market was valued at USD 2.51 billion in 2024 and is projected to grow to USD 2.58 billion in 2025, with a CAGR of 3.05%, reaching USD 3.01 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 2.51 billion
Estimated Year [2025] USD 2.58 billion
Forecast Year [2030] USD 3.01 billion
CAGR (%) 3.05%

Laying the Foundations of Industry Dynamics with an In-Depth Exploration of Backpressure Steam Turbine Drivers and Emerging Opportunities

Backpressure steam turbines have established themselves as vital components in modern industrial and power generation ecosystems, facilitating energy recovery and maximizing operational efficiency. These specialized turbines capture steam that would otherwise be exhausted and repurpose it for mechanical drive applications or process heating, delivering both economic and environmental advantages. As organizations pursue sustainability goals, the capacity to optimize steam utilization while reducing carbon footprints underscores the growing relevance of backpressure steam turbine solutions.

Moreover, the current energy transition, characterized by decarbonization initiatives and the integration of renewable feedstocks, has intensified interest in versatile turbine configurations. Demand now extends beyond traditional coal or natural gas platforms to include biomass, geothermal, and nuclear applications. Consequently, industry players are innovating to accommodate diverse fuel sources and meet stringent emissions regulations while ensuring robust performance under fluctuating load conditions.

In parallel, the advent of digital twin technologies, predictive maintenance algorithms, and advanced materials has catalyzed a shift toward more intelligent, reliable, and durable turbine systems. This evolution is redefining lifecycle management, driving down total cost of ownership, and enhancing plant availability. Understanding these dynamics is essential for stakeholders seeking to capitalize on emerging opportunities.

This introduction sets the stage for an in-depth exploration of transformative market shifts, policy impacts, segmentation strategies, regional dynamics, competitive landscapes, and strategic recommendations within the backpressure steam turbine domain. Subsequent sections will delve into each dimension, offering industry leaders a comprehensive foundation for informed decision making.

Unraveling the Most Influential Transformative Shifts Shaping Global Backpressure Steam Turbine Market Trajectories and Technological Progress

The backpressure steam turbine landscape is experiencing profound transformational shifts driven by converging technological advancements, evolving regulatory frameworks, and changing end-user priorities. On the technology front, breakthroughs in blade design, materials science, and computational fluid dynamics are delivering unprecedented enhancements in turbine efficiency, durability, and adaptability. Consequently, manufacturers are investing heavily in research and development to refine multi-stage and single-stage configurations that cater to a broader spectrum of pressure and flow requirements.

Furthermore, regulatory imperatives related to emissions reduction and resource efficiency have prompted a transition toward low-carbon fuel sources. This has elevated the importance of biomass, geothermal, and waste heat recovery applications, positioning backpressure turbines as pivotal enablers of circular economy models. At the same time, growing digitalization through IoT integration and cloud-based analytics is transforming operational paradigms, enabling real-time condition monitoring and predictive maintenance that minimize unplanned downtime and extend asset lifespans.

Equally significant is the rise of strategic collaborations between equipment OEMs, engineering firms, and end users, which are fostering co-innovation ecosystems. These partnerships are streamlining project timelines, accelerating customization for niche applications, and mitigating technical risks through shared expertise. In addition, expansion of service offerings-from turnkey installations to comprehensive maintenance contracts-reflects a broader shift toward outcome-based engagement models.

As a result, the sector is witnessing heightened competition and a reorientation of value propositions. Stakeholders who actively adapt to these transformative forces and integrate them into core strategies will be best positioned to lead the next wave of market growth.

Assessing the Far-Reaching Cumulative Impact of United States Tariffs Announced for 2025 on Backpressure Steam Turbine Supply Chains and Investments

The introduction of United States tariffs on steam turbine imports in 2025 has generated a cascade of implications for global supply chains and investment decisions. By increasing the cost of key components sourced from established manufacturing hubs, these duties are prompting stakeholders to reassess procurement strategies and explore alternative sourcing options. As a result, supply chain diversification has moved to the forefront, with companies evaluating regional production capabilities across North America, Europe, and Asia to mitigate exposure to trade-related cost volatility.

Moreover, the tariffs are accelerating conversations around onshoring and local manufacturing partnerships. Domestic fabrication of turbine casings, blades, and auxiliary systems is becoming more attractive, supported by government incentives aimed at bolstering critical infrastructure resilience. Consequently, OEMs and service providers are evaluating joint ventures with local fabricators to secure preferential access to tariff-free supply while fostering technology transfer and skills development within regional workforces.

This tariff environment is also influencing aftermarket strategies, as rising import expenses for replacement parts drive the adoption of remanufacturing and refurbishment services. Extended service agreements and modular upgrade offerings are gaining traction as cost-effective alternatives to full equipment replacement. Such approaches not only alleviate immediate financial pressures but also advance sustainability objectives through resource conservation.

Overall, the cumulative impact of the 2025 tariff measures is reshaping capital allocation patterns, encouraging investment in domestic capabilities, and fostering innovative service models. Stakeholders who proactively adapt to these dynamics will be well placed to maintain competitive advantage and long-term operational continuity.

Uncovering Strategic Segmentation Insights by Type, Capacity, Turbine Configuration, Fuel Source, Application and End-Use Industry Dynamics

Strategic segmentation lies at the heart of understanding market complexities and tailoring solutions to distinct operational needs. When examining type, the distinction between multi-stage backpressure steam turbines and single-stage backpressure steam turbines reveals divergent applications across industrial processes and pressure profiles. Multi-stage variants excel in high-capacity, multistage energy recovery implementations, whereas single-stage configurations serve simpler setups with focused heat integration requirements.

Considering capacity, the spectrum spans large installations above 100 megawatts that cater to utility-scale facilities, medium units ranging from 30 to 100 megawatts optimized for mid-tier industrial complexes, and small-scale systems between one and thirty megawatts providing localized power and heat solutions. This gradation underscores the need for modular design philosophies and scalability that support expanding energy portfolios from centralized plants to distributed generation sites.

A further layer of segmentation arises from turbine type, where condensing backpressure turbines deliver maximum exhaust enthalpy recovery for process heating, and non-condensing variants focus on mechanical drive applications without steam condensation. This bifurcation influences plant layout decisions and integration strategies with downstream equipment.

Fuel source segmentation highlights the capabilities of turbine solutions across biomass, coal, geothermal, natural gas, and nuclear feedstocks, each with unique thermodynamic characteristics and regulatory parameters. Application-specific segmentation demonstrates the versatility of turbines in co-generation, district heating, industrial power generation, mechanical drive functions, and remote area power supplies. Lastly, end-use industry segmentation spans chemical and petrochemical plants, food and beverage facilities, oil and gas operations, paper and pulp mills, pharmaceutical complexes, and textile manufacturing, revealing tailored service and maintenance frameworks aligned with sectoral compliance and performance expectations.

Illuminating Divergent Regional Dynamics across Americas, Europe Middle East and Africa, and Asia-Pacific to Guide Strategic Market Approaches

Regional dynamics in the backpressure steam turbine market are characterized by distinct growth drivers and operational frameworks across the Americas, Europe Middle East and Africa, and Asia-Pacific. In the Americas, the convergence of aging infrastructure and ambitious decarbonization targets is stimulating refurbishment projects and the adoption of high-efficiency turbine retrofits. Policy initiatives that incentivize clean energy and industrial efficiency upgrades further reinforce investment momentum across North and South American markets.

Transitioning eastward, the Europe Middle East and Africa region exhibits a patchwork of regulatory landscapes and resource endowments. Western European markets prioritize biomass and waste heat recovery applications aligned with stringent emissions mandates, while emerging economies in the Middle East are leveraging natural gas assets to develop combined heat and power complexes. In Africa, electrification efforts and industrialization drives create new opportunities for modular, small-to-medium capacity turbine installations in mining, manufacturing, and district heating applications.

Across the Asia-Pacific expanse, robust economic growth and rapid industrial expansion underscore the demand for scalable steam turbine solutions. China, India, and Southeast Asian nations are investing in both centralized and decentralized power generation, with a growing emphasis on integrating renewable feedstocks into thermal cycles. Market participants are responding by offering bespoke capacity ranges and fuel-flexible designs that accommodate shifting energy mixes and evolving environmental regulations.

The interplay between regional policy frameworks, infrastructure maturity, and energy transition priorities defines strategic approaches across these territories. Stakeholders who align deployment strategies with localized incentives and resource profiles will optimize market penetration and long-term operational resilience.

Profiling Leading Companies Driving Innovation, Collaboration, and Competitive Strategies in the Backpressure Steam Turbine Industry Ecosystem

Leading companies in the backpressure steam turbine arena have differentiated themselves through technological innovation, strategic partnerships, and comprehensive service offerings. Global OEMs are focusing on advancing modular turbine architectures that facilitate rapid deployment and simplified integration into existing systems. This approach reduces project lead times and supports flexible capacity expansions tailored to customer requirements.

In parallel, technology providers are forging alliances with digital solution firms to embed analytics and remote monitoring capabilities directly into turbine platforms. Such collaborations not only enhance predictive maintenance and performance benchmarking but also create new revenue channels through subscription-based condition monitoring services. These integrated offerings underscore a shift from transactional equipment sales toward long-term customer engagement models.

Forward-thinking organizations are also prioritizing sustainability by developing turbines optimized for low-carbon fuel sources, including biomass combustion and geothermal steam. Companies that invest in material science innovations to improve corrosion resistance and thermal efficiency secure a competitive edge in regions enforcing strict emissions regulations.

Furthermore, market leaders are differentiating through value-added service networks that span installation, commissioning, routine maintenance, and on-site training programs. This end-to-end support not only elevates customer experience but also fosters brand loyalty and recurring service revenue. By continuously refining product portfolios and aligning with customer lifecycle needs, these companies set benchmarks for operational excellence and industry leadership.

Delivering Actionable Recommendations to Empower Industry Leaders in Maximizing Efficiency, Resilience and Growth Potential

Industry leaders must embrace a suite of strategic initiatives to capitalize on evolving market conditions and technological advancements. Prioritizing digital transformation is essential: integrating IoT sensors and predictive analytics into turbine operations enables proactive maintenance interventions, minimizes unplanned downtime, and optimizes asset performance. Consequently, organizations can achieve significant cost savings and enhance overall plant efficiency.

Simultaneously, diversifying supply chain footprints reduces exposure to trade-related risks and cost fluctuations. Establishing regional manufacturing partnerships and localizing critical component production can mitigate tariff impacts and reinforce supply continuity. This localized approach also supports rapid response to service requests and fosters stronger ties with end-user communities.

Moreover, cultivating collaborative ecosystems with original equipment manufacturers, service providers, and research institutions accelerates innovation cycles. Joint development projects focused on carbon-neutral fuel utilization and advanced materials create opportunities for differentiated offerings and new revenue streams. Engaging in cross-sector alliances, particularly within renewable energy and waste heat recovery domains, will yield synergies that expand addressable markets.

Finally, adopting flexible business models-such as outcome-based contracts and performance guarantees-aligns service revenues with customer value delivery. By shifting from one-time sales to ongoing partnership frameworks, organizations can secure predictable revenue flows and deepen customer relationships. Collectively, these recommendations equip industry stakeholders to navigate complexity, foster resilience, and drive sustainable growth in the backpressure steam turbine sector.

Elaborating Rigorous Research Methodology Integrating Primary Interviews, Secondary Data Sources and Robust Validation for Backpressure Steam Turbine Analysis

The research underpinning this executive summary employs a comprehensive methodology that triangulates insights from primary and secondary sources to ensure robust, evidence-based conclusions. Primary data collection involved in-depth interviews with senior executives, technical specialists, and end users across key regions, providing firsthand perspectives on operational challenges, technology adoption patterns, and strategic priorities.

Secondary research encompassed analysis of industry white papers, regulatory publications, patent filings, and corporate disclosures to map technological trends and competitive landscapes. Market dynamics were further validated through case studies of benchmark projects, offering granular visibility into deployment scenarios, performance metrics, and lifecycle cost considerations.

Quantitative data sets were subjected to rigorous cross-verification processes, including consistency checks and sensitivity analyses, to enhance data integrity and reliability. Qualitative insights garnered from expert panels and advisory boards were synthesized to contextualize market forces, emerging business models, and policy impacts. This multi-layered approach ensured that findings reflect both macroeconomic drivers and on-the-ground realities.

Finally, the entire research framework underwent systematic peer review by external domain specialists, reinforcing the accuracy and relevance of strategic recommendations. The result is a cohesive, validated body of knowledge that equips stakeholders with actionable intelligence to navigate the complex landscape of backpressure steam turbine markets.

Synthesizing Key Findings and Strategic Perspectives to Conclude the Critical Insights Emanating from Backpressure Steam Turbine Market Investigation

This comprehensive exploration of the backpressure steam turbine marketplace has illuminated critical drivers, transformational trends, and strategic imperatives shaping the sector's evolution. Emphasis on energy efficiency, emissions reduction, and fuel diversification has catalyzed technological innovation and the adoption of advanced digital capabilities. Simultaneously, trade policies such as the 2025 United States tariffs have prompted a reconfiguration of supply chains and renewed focus on local manufacturing partnerships.

Segmentation analysis across turbine type, capacity, configuration, fuel source, application, and end-use industry has revealed nuanced demand patterns and growth opportunities. Regional insights underscored the importance of aligning market entry tactics with localized policy incentives and infrastructure development priorities in the Americas, Europe Middle East and Africa, and Asia-Pacific. Competitive profiling highlighted the strategies of leading firms as they navigate the shift toward outcome-based service models and carbon-neutral solutions.

The actionable recommendations distilled from this study emphasize digital integration, supply chain diversification, collaborative innovation, and customer-centric business frameworks. Collectively, these strategies provide a roadmap for stakeholders to foster resilience, enhance operational performance, and achieve sustainable growth.

As organizations chart their course through an increasingly complex and dynamic environment, the insights presented here offer a strategic foundation for informed decision making and long-term value creation in the backpressure steam turbine sector.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Innovations in turbine blade design enhancing performance in backpressure steam turbines
  • 5.2. Growing adoption of backpressure steam turbines in combined heat and power (CHP) applications worldwide
  • 5.3. Trends in material science contributing to longer lifespan and reduced maintenance of backpressure steam turbines
  • 5.4. Advancements in backpressure steam turbine technology improving energy efficiency and operational reliability
  • 5.5. Customization and scalability of backpressure steam turbines for diverse industrial processes
  • 5.6. Collaborations between turbine manufacturers and technology firms accelerating smart steam turbine solutions
  • 5.7. Government regulations and incentives promoting eco-friendly backpressure steam turbine installations
  • 5.8. Emerging markets driving increased investment in backpressure steam turbine infrastructure development
  • 5.9. Role of digital monitoring and predictive maintenance in optimizing backpressure steam turbine operations
  • 5.10. Impact of renewable energy integration on the demand for backpressure steam turbines in industrial sectors

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Backpressure Steam Turbine Market, by Type

  • 8.1. Introduction
  • 8.2. Multi-Stage Backpressure Steam Turbines
  • 8.3. Single-Stage Backpressure Steam Turbines

9. Backpressure Steam Turbine Market, by Capacity

  • 9.1. Introduction
  • 9.2. Large (Above 100 MW)
  • 9.3. Medium (30 to 100 MW)
  • 9.4. Small (1 to 30 MW)

10. Backpressure Steam Turbine Market, by Turbine Type

  • 10.1. Introduction
  • 10.2. Condensing
  • 10.3. Non-Condensing

11. Backpressure Steam Turbine Market, by Fuel Source

  • 11.1. Introduction
  • 11.2. Biomass
  • 11.3. Coal
  • 11.4. Geothermal
  • 11.5. Natural Gas
  • 11.6. Nuclear

12. Backpressure Steam Turbine Market, by Application

  • 12.1. Introduction
  • 12.2. Co-generation
  • 12.3. District Heating
  • 12.4. Industrial Power Generation
  • 12.5. Mechanical Drive
  • 12.6. Power Generation for Remote Areas

13. Backpressure Steam Turbine Market, by End-Use Industry

  • 13.1. Introduction
  • 13.2. Chemical & Petrochemical
  • 13.3. Food & Beverage
  • 13.4. Oil & Gas Industry
  • 13.5. Paper & Pulp
  • 13.6. Pharmaceutical
  • 13.7. Textile

14. Americas Backpressure Steam Turbine Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Backpressure Steam Turbine Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Backpressure Steam Turbine Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Ansaldo Energia S.p.A.
    • 17.3.2. Baker Hughes Company
    • 17.3.3. Chola Turbo Machinery International Private Limited
    • 17.3.4. Doosan Skoda Power by Doosan Group
    • 17.3.5. Fuji Electric Co., Ltd.
    • 17.3.6. Hayward Tyler Group PLC by Avingtrans PLC
    • 17.3.7. Industrial Boilers America, Inc.
    • 17.3.8. Kessels Engineering Works Pvt. Ltd.
    • 17.3.9. MAN Energy Solutions SE by Volkswagen Group
    • 17.3.10. Mitsubishi Heavy Industries Ltd.
    • 17.3.11. N. S. Terbo Private Limited
    • 17.3.12. SHANDONG QINGNENG POWER CO., LTD
    • 17.3.13. Shanghai Electric Group Co., Ltd.
    • 17.3.14. Siemens AG
    • 17.3.15. Sumitomo Heavy Industries Ltd.
    • 17.3.16. Triveni Turbine Limited
    • 17.3.17. TurboTech Precision Engineering Pvt. Ltd.
    • 17.3.18. Turtle Turbines Private Limited
    • 17.3.19. WEG S.A.
    • 17.3.20. Andritz AG
    • 17.3.21. Belliss India Limited
    • 17.3.22. Harbin Integrated Power Control Engineering Ltd.
    • 17.3.23. Kawasaki Heavy Industries, Ltd.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제