시장보고서
상품코드
1803783

핵융합 에너지 시장 : 기술, 연료 유형, 최종사용자별 - 세계 예측(2025-2030년)

Fusion Energy Market by Technology, Fuel Type, End-User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

핵융합 에너지 시장은 2024년에는 276억 3,000만 달러로 평가되었으며, 2025년에는 293억 8,000만 달러, CAGR 6.58%로 성장하여 2030년에는 405억 3,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 276억 3,000만 달러
추정 연도 2025년 293억 8,000만 달러
예측 연도 2030년 405억 3,000만 달러
CAGR(%) 6.58%

세계 에너지 정세와 기술 프런티어를 변화시킬 혁명적 동력원으로서 핵융합 에너지의 부상 이해하기

핵융합 에너지가 수십 년간의 연구와 순 플러스 발전의 구체적 실증으로 발전하면서 세계 에너지 부문은 중대한 변화의 위기에 처해 있습니다. 이산화탄소 배출에 대한 우려의 증가, 화석연료 공급을 방해하는 지정학적 긴장, 신뢰할 수 있는 기저부하 전력에 대한 수요 급증은 핵융합을 이론적 유망성에서 단기적인 상업적 실현 가능성으로 끌어올리는 요인으로 작용하고 있습니다. 플라즈마 포획과 지속적인 고온 운전의 엔지니어링 이정표를 달성함으로써, 핵융합은 최소한의 환경 발자국으로 풍부한 탄소 제로 에너지를 공급한다는 영구적인 임무를 수행할 준비가 되어 있습니다.

핵융합 에너지의 상업적 실현을 앞당길 수 있는 중요한 기술적 강화와 새로운 규제 프레임워크의 식별

최근 핵융합 에너지 상용화를 위한 일련의 혁신적인 변화가 일어나고 있습니다. 고온 초전도체 기술 발전으로 더 작고 효율적인 자기 포획 장치가 가능해져 건설 면적과 운영 비용을 모두 절감할 수 있게 되었습니다. 동시에, 새로운 레이저 시스템은 에너지 공급 능력을 전례없는 수준으로 확장하고 관성 포획 접근 방식을 강화하며 점화에 대한 대체 경로를 제공합니다.

미국의 새로운 관세 조치가 국제 핵융합 에너지 공급망과 혁신 경로를 어떻게 재구성할 것인지 살펴봅니다.

2025년 발효되는 미국의 새로운 관세 조치의 도입은 세계 핵융합 에너지 공급망에 중요한 전환점이 될 것입니다. 수입되는 고강도 합금, 특수 초전도 선재, 자석 제조에 필수적인 희토류 부품에 관세를 부과함으로써 국내 생산능력을 강화하는 것을 목표로 하고 있습니다. 그러나 이 관세는 그동안 틈새 소재와 정밀 가공을 해외 유명 공급업체에 의존해 온 원자로 개발 기업들에게 단기적인 비용 압박을 가중시킬 수 있습니다.

핵융합 에너지 채택을 형성하는 원자로 플랫폼 연료 방식과 다양한 최종사용자 애플리케이션에 대한 시장 세분화 인사이트 공개

핵융합 에너지 시장은 두 가지 주요 원자로 기술인 관성 격납과 자기 격납으로 양분됩니다. 관성봉쇄 시스템은 고출력 레이저나 입자 빔을 이용하여 연료 펠릿을 빠르게 압축하고 핵융합에 필요한 온도와 압력을 발생시키는 시스템입니다. 한편, 자기봉쇄로는 강력한 자기장을 이용해 플라즈마를 토로형 챔버나 스텔라레이터 챔버 안에 가두는 방식입니다. 엔지니어링의 복잡성, 확장성, 운영 시간 효율성 측면에서 이들 플랫폼 간의 내재된 트레이드오프는 업계 전반에 걸쳐 서로 다른 개발 일정과 상업화 전략을 추진하고 있습니다.

핵융합 에너지 개발의 궤도를 좌우하는 아시아태평양 역학관계 분석

핵융합 에너지 개발의 속도와 성격을 결정하는 데 있어 지역 역학이 차지하는 역할은 매우 큽니다. 아메리카의 경우, 미국은 풍부한 벤처 캐피털 시장, 광범위한 국립 연구소 네트워크, 그리고 민간의 기술 혁신에 대한 연방 정부의 지원 프로그램의 혜택을 누리고 있습니다. 캐나다는 강자기장 초전도 전문가로서 기여하고 있으며, 차세대 설계의 테스트베드가 될 연구로를 유지하고 있습니다. 대륙을 넘나드는 개발 협력은 공동 개발 벤처와 양자 간 자금 지원 이니셔티브를 창출하고 있습니다.

진화하는 핵융합 에너지 분야의 리더십을 정의하는 전략적 기업 이니셔티브와 협력적 생태계의 주요 내용 소개

신흥국 시장을 개척하는 핵융합 개발 기업들은 기술 리더십과 시장에서의 포지셔닝을 확보하기 위해 각각 독자적인 전략을 실행하고 있습니다. 한 회사는 신속한 프로토타입 반복과 비용 효율적인 확장을 위해 모듈화 및 구성요소화된 원자로 아키텍처에 초점을 맞추고 있습니다. 또한 초전도 자석 제조부터 플라즈마 진단, 제어 소프트웨어에 이르기까지 모든 것을 제어하는 수직통합형 가치사슬에 집중하는 기업도 있습니다. 선정된 기업은 원자로의 수명을 연장하고 유지보수 중단을 줄이기 위해 첨단 재료 연구에 자원을 투입하고, 동시에 실시간 플라즈마 안정화를 달성하기 위해 AI 기반 운영 모델을 최적화하고 있습니다.

공급망을 강화하고, 규제 당국을 참여시키고, 상업적 출시를 가속화하기 위해 핵융합 에너지 이해관계자들에게 전략적 실행 계획을 제공합니다.

핵융합 에너지의 잠재력을 최대한 활용하기 위해 업계 리더들은 기술 발전과 전략적 이해관계자 참여의 균형을 맞추는 다각적인 접근 방식을 채택해야 합니다. 첫째, 조직은 국내 공급망 탄력성에 대한 투자를 심화하여 변동하는 관세 속에서 중요한 자재와 제조 능력에 대한 접근성을 확보해야 합니다. 지역 파운드리 및 전문 부품 제조업체와의 관계를 강화하여 조달 위험을 줄이고 민첩한 스케일링을 지원합니다.

종합적인 융합 분석을 위해 전문가 인터뷰 데이터 분석과 시나리오 플래닝을 결합한 견고한 혼합 방법론 조사 프레임워크 개요

본 조사에서는 포괄적이고 신뢰할 수 있는 결과를 얻기 위해 혼합 방법 접근법을 통합했습니다. 1차 데이터는 핵융합 에너지 생태계 전반의 경영진, 기술 책임자, 정책 고문과의 일대일 인터뷰를 통해 수집된 것으로, 기술 로드맵, 자금 전략, 규제 우선순위에 대한 직접적인 관점을 파악할 수 있었습니다. 이러한 질적 연구 결과는 오픈 소스 기술 논문, 특허 출원, 정부 정책 문서, 투자 공시를 광범위하게 검토하여 업계 발전에 대한 객관적인 스토리를 구축했습니다.

핵융합 에너지 발전의 전략적 중요성을 밝히기 위해 기술 발전, 규제 변화, 시장 역학에 대한 통합적인 인사이트를 도출합니다.

이 보고서는 핵융합 에너지의 기술적 진보, 관세 동향, 세분화의 뉘앙스, 지역 역학, 기업 전략을 통합하여 핵융합 에너지가 실험실의 호기심에서 신뢰할 수 있는 상업적 경쟁자로 변모하고 있음을 강조합니다. 초전도 자석, 레이저 포획, 원자로 재료의 획기적인 발전은 지원적인 정책 환경과 결합하여 민간 부문의 기술 혁신을 위한 비옥한 토양을 조성했습니다. 동시에 새로운 관세 제도와 지역적 투자 패턴으로 인해 적응력 있는 공급망 전략과 국경을 초월한 협력 체계가 요구되고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 핵융합 에너지 시장 : 기술별

  • 관성 가둠
  • 자기 가둠

제9장 핵융합 에너지 시장 : 연료 종류별

  • 중수소-중수소
  • 중수소-삼중수소
  • 헬륨 3
  • 양자-붕소

제10장 핵융합 에너지 시장 : 최종사용자별

  • 항공우주
  • 농업
  • 상업용
  • 산업
  • 군·방위
  • 주거용
  • 운송 부문

제11장 아메리카의 핵융합 에너지 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제12장 유럽, 중동 및 아프리카의 핵융합 에너지 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제13장 아시아태평양의 핵융합 에너지 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Commonwealth Fusion Systems
    • TAE Technologies, Inc.
    • Commonwealth Fusion Systems, LLC
    • Elytt Energy, Inc.
    • First Light Fusion Ltd.
    • Fuse
    • Fusion Industry Association, Inc.
    • General Fusion Inc.
    • HB11 Energy Holdings Pty Ltd
    • Helion Energy, Inc.
    • Hyperjet Fusion Corporation
    • Kyoto Fusioneering Ltd.
    • Lawrence Livermore National Security, LLC
    • LPPFusion, Inc.
    • Magneto-Inertial Fusion Technologies, Inc.
    • Marvel Fusion GmbH
    • MITSUBISHI HEAVY INDUSTRIES, LTD.
    • Oklo Inc.
    • Proxima Fusion GmbH
    • Renaissance Fusion
    • Thea Energy Inc.
    • Tokamak Energy Ltd.
    • Tokamak Energy Ltd.
    • Woodruff Scientific, Inc.
    • Xcimer Energy, Inc.
    • Zap Energy, Inc.

제15장 리서치 AI

제16장 리서치 통계

제17장 리서치 컨택트

제18장 리서치 기사

제19장 부록

KSM 25.09.10

The Fusion Energy Market was valued at USD 27.63 billion in 2024 and is projected to grow to USD 29.38 billion in 2025, with a CAGR of 6.58%, reaching USD 40.53 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 27.63 billion
Estimated Year [2025] USD 29.38 billion
Forecast Year [2030] USD 40.53 billion
CAGR (%) 6.58%

Understanding the Imminent Rise of Fusion Energy as a Revolutionary Power Source Transforming Global Energy Landscapes and Technological Frontiers

The global energy sector stands on the cusp of a profound transformation as fusion energy emerges from decades of research into tangible demonstrations of net-positive power generation. Rising concerns over carbon emissions, geopolitical tensions disrupting fossil fuel supply, and surging demand for reliable baseload electricity have converged to elevate fusion from theoretical promise to near-term commercial viability. With engineering milestones achieved in plasma confinement and sustained high-temperature operation, fusion is poised to fulfill an enduring mandate: delivering abundant, zero-carbon energy with minimal environmental footprint.

This report initiates with a detailed examination of the current fusion landscape, tracing the critical breakthroughs in superconducting magnet technology, high-power lasers, and advanced materials that have accelerated progress. It also considers the pivotal role of public-private partnerships, government funding increases, and international collaborations that have de-risked projects and attracted unprecedented venture capital investment. By situating these developments within the broader context of energy security concerns and decarbonization mandates, the analysis highlights why fusion now commands the attention of policymakers, utilities, and forward-looking corporations seeking stable, scalable power solutions.

As a result, decision-makers are confronted with both remarkable opportunity and complex challenges. This introduction sets the stage for subsequent sections, which delve into regulatory shifts, tariff impacts, segmentation nuances, regional dynamics, competitive positioning, and actionable recommendations. The insights offered here will equip executives and stakeholders with the knowledge required to navigate an industry on the brink of revolution.

Identifying Key Technological Enhancements and Emerging Regulatory Frameworks That Propel Fusion Energy Closer to Commercial Realization

Recent years have witnessed a series of transformative shifts that have collectively propelled fusion energy toward commercialization. Technological advancements in high-temperature superconductors have enabled more compact and efficient magnetic confinement devices, reducing both construction footprints and operating costs. Simultaneously, novel laser systems have scaled their energy delivery capability to unprecedented levels, enhancing inertial confinement approaches and offering alternative pathways to ignition.

Regulatory ecosystems have adapted in parallel. Several national authorities have introduced fast-track permitting processes for fusion pilot plants, while cross-border frameworks are being negotiated to standardize licensing and safety protocols. This regulatory harmonization reduces project lead times and clarifies compliance requirements for private developers. Moreover, governments in key markets have unveiled incentive structures, including tax credits and milestone-based grants, specifically designed to accelerate private investment and de-risk early prototypes.

Collectively, these shifts underscore a pivotal moment in energy innovation. Technological readiness has converged with supportive policy frameworks, ushering in an era where fusion is no longer an abstract aspiration but an achievable industrial endeavor. The interplay between rapid hardware improvements, evolving regulatory landscapes, and intensified stakeholder collaboration sets the stage for the next wave of commercial fusion projects.

Examining How New United States Tariff Measures Will Reshape International Fusion Energy Supply Chains and Innovation Pathways

The introduction of new United States tariff measures effective in 2025 represents a significant inflection point for global fusion energy supply chains. By imposing duties on imported high-strength alloys, specialized superconducting wire, and select rare earth components critical to magnet manufacture, these tariffs aim to strengthen domestic production capabilities. However, they also catalyze near-term cost pressures for reactor developers that have historically relied on established overseas suppliers for niche materials and precision fabrication.

In response, several fusion enterprises are accelerating onshore partnerships with domestic foundries and forging co-investment agreements to localize critical imports. This strategic supply chain realignment mitigates exposure to tariffs but can entail longer development timelines as new vendors scale up expertise. At the same time, tariff-driven increases in upstream component pricing threaten to erode project budgets, compelling stakeholders to reevaluate capital allocation and financing structures.

Despite these headwinds, the policy has spurred a renaissance in U.S. manufacturing innovation. Tier-one industrial players are deploying advanced metallurgy processes and automated production lines to meet rising demand for superconducting materials. Concurrently, dialogue between industry consortia and federal regulators has intensified around refining tariff schedules to balance domestic capacity building with international collaboration. By reshaping procurement strategies and fostering public-private partnerships, the 2025 tariff regime introduces both challenges and incentives that will redefine the pace and geography of fusion deployment.

Unveiling Market Segmentation Insights Across Reactor Platforms Fuel Modalities and Diverse End User Applications Shaping Fusion Energy Adoption

The fusion energy market bifurcates according to two primary reactor technologies: inertial confinement and magnetic confinement. Inertial confinement systems leverage high-power lasers or particle beams to compress fuel pellets rapidly, generating the necessary temperatures and pressures for fusion. Magnetic confinement reactors, in contrast, use intense magnetic fields to contain plasma within toroidal or stellarator chambers. The inherent trade-offs between these platforms-in terms of engineering complexity, scalability, and runtime efficiency-drive divergent development timelines and commercialization strategies across the industry.

Fuel type further nuances market dynamics. Deuterium-deuterium reactions offer the advantage of abundant raw materials but demand higher ignition energies. Deuterium-tritium cycles, currently the most mature pathway, benefit from relatively lower threshold conditions and established research infrastructure, albeit with tritium's supply constraints. Emerging modalities such as helium-3 fusion and proton-boron reactions promise reduced neutron generation and simplified waste profiles, yet they face steeper scientific hurdles and require breakthroughs in fuel sourcing or acceleration technologies to achieve parity with more conventional cycles.

Beyond reactor architecture and fuel selection, end-user applications play a pivotal role in guiding near-term adoption. Aerospace entities are investigating compact fusion units to power satellites and deep-space missions, while agricultural ventures explore high-intensity plasma for novel nitrogen fixation methods. Commercial developers envision grid-scale fusion plants that co-generate heat and electricity. Industrial operations seek on-site fusion to decarbonize heavy processes. Defense agencies evaluate mobile fusion modules for remote installations, and residential as well as transportation stakeholders are monitoring compact reactor prototypes for distributed power generation. This multi-dimensional segmentation underscores the need for tailored strategies that align technological readiness with sector-specific requirements.

Analyzing Regional Dynamics Across the Americas Europe Middle East Africa and Asia Pacific That Influence Fusion Energy Development Trajectories

Regional dynamics play an outsized role in determining the pace and character of fusion energy deployment. In the Americas, the United States benefits from deep venture capital markets, extensive national laboratory networks, and supportive federal programs that reward private innovation. Canada contributes specialized talent in high-field superconductivity and maintains research reactors that serve as testbeds for next-generation designs. Collaboration across the continent has spawned joint development ventures and bilateral funding initiatives.

Across Europe, Middle East, and Africa, a patchwork of national approaches is emerging under a broader regulatory framework designed to harmonize safety standards and streamline cross-border project approvals. European member states are leveraging existing large accelerator facilities and nuclear research infrastructures to advance magnetic confinement prototypes. Meanwhile, Gulf Cooperation Council nations are investing heavily in alternative energy futures, positioning fusion as part of diversified decarbonization strategies. African research institutions, though at earlier stages, are forging partnerships with international consortia to build local expertise.

Asia-Pacific markets represent a dynamic frontier. China has announced flagship fusion demonstration reactors backed by state-owned enterprises, while South Korea and Japan pursue parallel tokamak and stellarator advancements through national labs and industrial alliances. Australia leverages its helium-3 reserves to explore isotopic fusion pathways, and Southeast Asian economies evaluate the potential for fusion to support emerging smart grid deployments. The region's combination of scale, funding commitment, and technological ambition makes it a crucible for the next generation of fusion breakthroughs.

Highlighting Strategic Corporate Initiatives and Collaborative Ecosystems That Define Leadership in the Evolving Fusion Energy Sector

Leading fusion developers are executing distinct strategies to secure technological leadership and market positioning. Some firms focus on modular, componentized reactor architectures, enabling rapid prototype iteration and cost-effective scaling. Others concentrate on vertically integrated value chains, controlling everything from superconducting magnet fabrication to plasma diagnostics and control software. Select enterprises are channeling resources into advanced materials research to enhance reactor longevity and reduce maintenance interruptions, while a parallel cohort is optimizing AI-driven operational models to achieve real-time plasma stabilization.

Strategic collaborations have emerged as a critical competitive lever. Partnerships between fusion startups and established engineering conglomerates allow access to industrial manufacturing expertise and global supply networks. Joint ventures with utilities facilitate integrated grid demonstrations that validate load-following capabilities and revenue models. Alliances with academic institutions accelerate talent pipelines and grant developers access to specialized facilities, such as high-power laser laboratories and cryogenic test chambers.

Intellectual property portfolios provide further differentiation. Organizations that secure key patents around superconducting coil winding techniques, radiation-hard materials, or plasma confinement algorithms strengthen their negotiating positions when engaging potential investors or strategic acquirers. As the industry matures, mergers and acquisitions activity is expected to consolidate these innovations under a narrower set of stakeholders, reinforcing the importance of early IP development and cross-licensing strategies.

Delivering Strategic Action Plans for Fusion Energy Stakeholders to Strengthen Supply Chains Engage Regulators and Accelerate Commercial Deployment

To harness the full potential of fusion energy, industry leaders should adopt a multi-pronged approach that balances technological advancement with strategic stakeholder engagement. First, organizations must deepen investments in domestic supply chain resilience, ensuring access to critical materials and fabrication capabilities amidst fluctuating tariff landscapes. Cultivating relationships with regional foundries and specialized component manufacturers will mitigate procurement risks and support agile scaling.

Second, stakeholders should proactively engage with regulators to co-create predictable policy frameworks. Early participation in standards bodies and licensing dialogues will help align safety protocols with emerging reactor designs and secure fast-track approvals. Concurrently, forming consortiums that span universities, utilities, and government agencies can leverage combined resources to de-risk demonstration projects and share best practices.

Third, fusion developers must prioritize workforce development, partnering with academic institutions to establish specialized training programs in plasma physics, cryogenics, and advanced manufacturing. Building a robust talent pipeline will address looming skill shortages and facilitate technology transfer from lab to commercial settings.

Lastly, organizations should adopt modular business models that allow phased deployment, enabling early revenue generation through pilot installations while iterating on next-generation designs. By maintaining a balance between ambitious long-term R&D and near-term commercialization pilots, industry leaders can sustain momentum and build market confidence in the transformative promise of fusion energy.

Outlining a Robust Mixed Method Research Framework Combining Expert Interviews Data Analytics and Scenario Planning for Comprehensive Fusion Analysis

This research integrates a mixed-methods approach to ensure comprehensive and reliable insights. Primary data was gathered through one-on-one interviews with executives, technical directors, and policy advisors across the fusion energy ecosystem, capturing firsthand perspectives on technology roadmaps, funding strategies, and regulatory priorities. These qualitative findings were supplemented by an extensive review of open-source technical papers, patent filings, government policy documents, and investment disclosures to construct an objective narrative of industry progress.

Quantitative analysis entailed the aggregation of public and proprietary datasets covering R&D expenditures, manufacturing capacity indicators, and tariff schedules. Statistical techniques, including trend extrapolation and sensitivity modeling, were applied to assess the impact of regulatory shifts and supply chain dynamics on technology deployment timelines. Scenario planning workshops with cross-functional experts then stress-tested key assumptions, generating multiple pathways that reflect varying levels of policy support, capital availability, and technological breakthroughs.

Rigorous data triangulation and iterative peer review processes were employed to validate findings. By combining qualitative richness with quantitative rigor, this methodology provides decision-makers with a nuanced understanding of risks, opportunities, and strategic imperatives in the rapidly evolving fusion energy landscape.

Drawing Integrated Insights on Technology Progress Regulatory Shifts and Market Dynamics to Illuminate the Strategic Imperatives for Fusion Energy Advancement

In synthesizing technological advancements, tariff landscapes, segmentation nuances, regional dynamics, and corporate strategies, this report underscores fusion energy's transition from laboratory curiosity to credible commercial contender. Breakthroughs in superconducting magnets, laser confinement, and reactor materials have converged with supportive policy environments to create a fertile ground for private-sector innovation. At the same time, new tariff regimes and regional investment patterns necessitate adaptive supply chain strategies and cross-border collaborations.

Segmentation across reactor technology, fuel type, and end-user application reveals that no single pathway will dominate; rather, a mosaic of specialized solutions will emerge to address diverse market requirements. Regional leadership in the Americas, coordinated frameworks in Europe, Middle East & Africa, and rapid scaling in Asia Pacific will collectively drive global progress. Industry leaders who forge strong ecosystem partnerships, invest in IP and workforce development, and engage proactively with regulators will capture first-mover advantages.

Ultimately, fusion energy promises to redefine power generation by offering scalable, zero-carbon baseload capacity. The insights contained herein equip stakeholders with the strategic context and actionable intelligence necessary to navigate this inflection point and shape the future of energy.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advancements in high-temperature superconducting magnets improving tokamak performance
  • 5.2. Expanding private sector funding accelerating development of compact fusion reactors
  • 5.3. Integration of artificial intelligence for predictive plasma control and real time optimization
  • 5.4. Emergence of alternative confinement approaches such as stellarators and inertial fusion drivers
  • 5.5. Supply chain innovations reducing critical material dependencies for fusion reactor components

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Fusion Energy Market, by Technology

  • 8.1. Introduction
  • 8.2. Inertial Confinement
  • 8.3. Magnetic Confinement

9. Fusion Energy Market, by Fuel Type

  • 9.1. Introduction
  • 9.2. Deuterium-Deuterium
  • 9.3. Deuterium-Tritium
  • 9.4. Helium-3
  • 9.5. Proton-Boron

10. Fusion Energy Market, by End-User

  • 10.1. Introduction
  • 10.2. Aerospace
  • 10.3. Agriculture
  • 10.4. Commercial
  • 10.5. Industrial
  • 10.6. Military & Defense
  • 10.7. Residential
  • 10.8. Transportation Sector

11. Americas Fusion Energy Market

  • 11.1. Introduction
  • 11.2. United States
  • 11.3. Canada
  • 11.4. Mexico
  • 11.5. Brazil
  • 11.6. Argentina

12. Europe, Middle East & Africa Fusion Energy Market

  • 12.1. Introduction
  • 12.2. United Kingdom
  • 12.3. Germany
  • 12.4. France
  • 12.5. Russia
  • 12.6. Italy
  • 12.7. Spain
  • 12.8. United Arab Emirates
  • 12.9. Saudi Arabia
  • 12.10. South Africa
  • 12.11. Denmark
  • 12.12. Netherlands
  • 12.13. Qatar
  • 12.14. Finland
  • 12.15. Sweden
  • 12.16. Nigeria
  • 12.17. Egypt
  • 12.18. Turkey
  • 12.19. Israel
  • 12.20. Norway
  • 12.21. Poland
  • 12.22. Switzerland

13. Asia-Pacific Fusion Energy Market

  • 13.1. Introduction
  • 13.2. China
  • 13.3. India
  • 13.4. Japan
  • 13.5. Australia
  • 13.6. South Korea
  • 13.7. Indonesia
  • 13.8. Thailand
  • 13.9. Philippines
  • 13.10. Malaysia
  • 13.11. Singapore
  • 13.12. Vietnam
  • 13.13. Taiwan

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Commonwealth Fusion Systems
    • 14.3.2. TAE Technologies, Inc.
    • 14.3.3. Commonwealth Fusion Systems, LLC
    • 14.3.4. Elytt Energy, Inc.
    • 14.3.5. First Light Fusion Ltd.
    • 14.3.6. Fuse
    • 14.3.7. Fusion Industry Association, Inc.
    • 14.3.8. General Fusion Inc.
    • 14.3.9. HB11 Energy Holdings Pty Ltd
    • 14.3.10. Helion Energy, Inc.
    • 14.3.11. Hyperjet Fusion Corporation
    • 14.3.12. Kyoto Fusioneering Ltd.
    • 14.3.13. Lawrence Livermore National Security, LLC
    • 14.3.14. LPPFusion, Inc.
    • 14.3.15. Magneto-Inertial Fusion Technologies, Inc.
    • 14.3.16. Marvel Fusion GmbH
    • 14.3.17. MITSUBISHI HEAVY INDUSTRIES, LTD.
    • 14.3.18. Oklo Inc.
    • 14.3.19. Proxima Fusion GmbH
    • 14.3.20. Renaissance Fusion
    • 14.3.21. Thea Energy Inc.
    • 14.3.22. Tokamak Energy Ltd.
    • 14.3.23. Tokamak Energy Ltd.
    • 14.3.24. Woodruff Scientific, Inc.
    • 14.3.25. Xcimer Energy, Inc.
    • 14.3.26. Zap Energy, Inc.

15. ResearchAI

16. ResearchStatistics

17. ResearchContacts

18. ResearchArticles

19. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제