½ÃÀ庸°í¼­
»óǰÄÚµå
1803788

³ó¾÷ 4.0 ½ÃÀå : ±¸¼º¿ä¼Ò, ±â¼ú, ÃÖÁ¾»ç¿ëÀÚ, ¿ëµµ, À¯Åë ä³Îº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Agriculture 4.0 Market by Component, Technology, End Users, Application, Distribution Channel - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 191 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

³ó¾÷ 4.0 ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 1,421¾ï 9,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2025³â¿¡´Â 1,704¾ï 2,000¸¸ ´Þ·¯, CAGR 20.47%·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 4,347¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ 2024³â 1,421¾ï 9,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ 2025³â 1,704¾ï 2,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ 2030³â 4,347¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 20.47%

³ó¾÷ 4.0 ±â¼úÀÇ ¼¼°è äÅÃÀ» ÃËÁøÇÏ´Â ÇÙ½É ¿øÄ¢°ú Àü·«Àû ÇÙ½É »çÇ×À» ¹àÈ÷´Â Á¾ÇÕÀûÀÎ Åä´ë ¸¶·Ã

³ó¾÷Àº µðÁöÅÐ ±â¼ú À¶ÇÕ, µ¥ÀÌÅÍ ±â¹Ý ÀÇ»ç°áÁ¤, Áö¼Ó°¡´ÉÇÑ ½ÇõÀ» Ư¡À¸·Î ÇÏ´Â »õ·Î¿î ½Ã´ë¸¦ ¸ÂÀÌÇϰí ÀÖÀ¸¸ç, À̸¦ ÃÑĪÇÏ¿© ³ó¾÷ 4.0À¸·Î Á¤ÀÇÇϰí ÀÖ½À´Ï´Ù. ¼¼°è ½Ä·® ½Ã½ºÅÛÀÌ ¼ö¿ä Áõ°¡, ±âÈÄ º¯È­, ÀÚ¿ø Á¦¾à¿¡ Á÷¸éÇϸ鼭 ¾÷°è´Â »ý»ê¼º Çâ»ó, ȯ°æ ¿µÇâ °¨¼Ò, °ø±Þ¸Á º¹¿ø·Â Çâ»óÀ» À§ÇÑ Çõ½ÅÀ» äÅÃÇÒ ¼ö¹Û¿¡ ¾ø´Â »óȲ¿¡ Á÷¸éÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¸Æ¶ô¿¡¼­ ³ó¾÷ 4.0Àº ¹«ÀÎÇ×°ø±â, ¼¾½Ì ÀåÄ¡¿Í °°Àº Çϵå¿þ¾î ¼Ö·ç¼ÇÀÌ Ã·´Ü ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû ¹× Àü¹® ¼­ºñ½º¿Í ¿øÈ°ÇÏ°Ô À¶ÇյǴ Á¾ÇÕÀûÀÎ ÇÁ·¹ÀÓ¿öÅ©·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.

µðÁöÅÐ ÅëÇÕ ½Ã´ëÀÇ ³ó¾÷ °üÇàÀ» Çü¼ºÇÏ´Â ¸Å¿ì Áß¿äÇÑ ±â¼ú ÆÄ±«¿Í ¿î¿µ ÆÐ·¯´ÙÀÓÀÇ º¯È­¸¦ °­Á¶ÇÕ´Ï´Ù.

³óÀÛ¹° °ü¸®, °¡Ãà ¸ð´ÏÅ͸µ, ÀÚ¿ø ¹èºÐ ¹æ½ÄÀ» ÀçÁ¤ÀÇÇÏ´Â ÆÄ±«Àû ±â¼úÀÇ ¹°°á¿¡ ÈûÀÔ¾î âÁ¶Àû ÆÄ±«ÀÇ »óȲÀÌ Å©°Ô º¯È­Çϰí ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â ¼öÀÛ¾÷ÀÌ ÇÊ¿äÇß´ø ÀÛ¾÷À» ·Îº¿°ú ÀÚÀ² ±â°è°¡ ´ë½ÅÇϰí, ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ½Ç½Ã°£ ȯ°æ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î ÀÛ¹° Àç¹è ÀÏÁ¤°ú °ü°³ ÆÐÅÏÀ» Áö¼ÓÀûÀ¸·Î ÃÖÀûÈ­ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¹ÝÀÀÇü¿¡¼­ ¿¹ÃøÇüÀ¸·ÎÀÇ ÀüȯÀº ¼öÀ²À» Çâ»ó½ÃŰ°í ³¶ºñ¸¦ ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

³ó¾÷ 4.0 »ýŰè Àü¹ÝÀÇ ¼öÀÔ ¿ªÇÐ, °ø±Þ¸Á ¹× ÅõÀÚ È帧¿¡ ´ëÇÑ ¹Ì±¹ÀÇ ÃÖ±Ù °ü¼¼ Á¶Ä¡°¡ ¹ÌÄ¡´Â ´Ù°¢ÀûÀÎ ¿µÇâ Æò°¡

2025³â ¹Ì±¹ÀÇ »õ·Î¿î °ü¼¼ Á¶Ä¡ µµÀÔÀº ¼¼°è °ø±Þ¸Á Àüü¿¡ ÆÄ±ÞµÇ¾î °¡°Ý ±¸Á¶, Á¶´Þ Àü·«, ÅõÀÚ °áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÚµ¿È­ ¹× Á¦¾î ½Ã½ºÅÛ, ¼¾¼­, µå·Ð µî ÁÖ¿ä Çϵå¿þ¾î ºÎǰ¿¡ ´ëÇÑ °ü¼¼ ÀλóÀ¸·Î ÀÎÇØ Á¦Á¶¾÷ü¿Í ÃÖÁ¾»ç¿ëÀÚ ¸ðµÎ Á¶´Þ ¹æ½ÄÀ» Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲ¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±¹³» »ý»ê´É·ÂÀ» °¡¼ÓÈ­ÇÏ´Â ±â¾÷µµ ÀÖ°í, Àú°ü¼¼ ´ëü Á¶´Þ °ÅÁ¡À» ¸ð»öÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

Áß¿äÇÑ ½ÃÀå ¼¼ºÐÈ­ÀÇ ±âµÕÀ» ¹àÈ÷°í, ±¸¼º¿ä¼Ò ±â¼ú°ú ÀÀ¿ë ÇÁ·Î±×·¥ ±â¹ÝÀÇ Â÷À̰¡ ³ó¾÷ 4.0 ¼Ö·ç¼ÇÀÇ °¡Ä¡ âÃâ °æ·Î¸¦ Á¤ÀÇÇÑ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

³ó¾÷ 4.0 ½ÃÀåÀº ±¸¼º¿ä¼Ò, ±â¼ú, ÃÖÁ¾»ç¿ëÀÚ, ¿ëµµ, À¯Åë °æ·ÎÀÇ »óÈ£ ÀÛ¿ëÀ» Æ÷ÂøÇÏ´Â ¿©·¯ ·»Á ÅëÇØ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ±¸¼º¿ä¼ÒÀÇ °üÁ¡¿¡¼­ º¼ ¶§, »ýŰè´Â RFID ÅÂ±× ¹× ¸®´õ, °¨Áö ¹× ¸ð´ÏÅ͸µ ±â±â, ¹«ÀÎÇ×°ø±â ¹× µå·Ð°ú ÇÔ²² ÀÚµ¿È­ ¹× Á¦¾î ½Ã½ºÅÛ°ú °°Àº Çϵå¿þ¾î Á¦Ç°À» Æ÷ÇÔÇÕ´Ï´Ù. ÀÌ·¯ÇÑ Çϵå¿þ¾î ¿ä¼Ò´Â ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû°ú ±ä¹ÐÇÏ°Ô ÅëÇյǾî ÄÁ¼³ÆÃ ¹× ÅëÇÕ¿¡¼­ ¸Å´ÏÁöµå ¼­ºñ½º ¹× Áö¼ÓÀûÀÎ Áö¿ø¿¡ À̸£±â±îÁö ÀÏ·ÃÀÇ ¼­ºñ½º·Î º¸¿ÏµË´Ï´Ù.

¾Æ¸Þ¸®Ä«, EMEA, ¾Æ½Ã¾ÆÅÂÆò¾ç ³ó¾÷ 4.0 ºÎ¹®ÀÇ ¼ºÀå ±âȸ¸¦ µÞ¹ÞħÇÏ´Â Áö¸®Àû Â÷º°È­ ¿äÀΰú Áö¿ª ½ÃÀå ÃËÁø¿äÀÎÀ» Àо´Ï´Ù.

³ó¾÷ 4.0 ºÐ¾ß¿¡¼­ È¿°úÀûÀÎ ½ÃÀå ÁøÀÔ ¹× È®Àå Àü·«À» ¼ö¸³Çϱâ À§Çؼ­´Â Áö¿ªº° ´µ¾Ó½º¸¦ ÀÌÇØÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ¾Æ¸Þ¸®Ä«¿¡¼­´Â źźÇÑ ÀÎÇÁ¶ó¿Í ±¤¹üÀ§ÇÑ R&D ÅõÀÚ¸¦ ¹ÙÅÁÀ¸·Î ÇÑ ³ó¾÷ ±â¼ú »ýŰ谡 ±¸ÃàµÇ¾î ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ÀÌÇØ°ü°èÀÚµéÀº ¼º¼÷ÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©¿Í ¸·´ëÇÑ ÀçÁ¤Àû Àμ¾Æ¼ºêÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÀ¸¸ç, ´ë±Ô¸ð »ç¾÷¿¡¼­ ÀÚÀ²ÁÖÇà ±â°è¿Í µðÁöÅÐ ³ó¾÷ Ç÷§ÆûÀÇ ¹èÆ÷¸¦ °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÀÚµ¿ ºÐ¼® ·Îº¿ ¹× Á¤¹Ð³ó¾÷ÀÇ ¹Ì·¡ Çõ½Å ¹æÇâÀ» Á¦½ÃÇÏ´Â ¾÷°è ¼±±¸ÀÚ ¹× Çõ½Å ±â¾÷À» ÇÁ·ÎÆÄÀϸµÇÏ¿© ÀÚµ¿ ºÐ¼® ·Îº¿ ¹× Á¤¹Ð³ó¾÷ÀÇ ¹Ì·¡ Çõ½Å ¹æÇâ Á¦½Ã

Àü·«Àû ÅõÀÚ, Á¦ÈÞ, Á¦Ç° °³¹ßÀ» ÅëÇØ ³ó¾÷ Çõ½ÅÀÇ °æ°è¸¦ ÀçÁ¤ÀÇÇϰí ÀÖ´Â °ÍÀº ´ë±â¾÷°ú ½ºÅ¸Æ®¾÷ ¸ðµÎ ¸¶Âù°¡Áö´Ù. ÁÖ¿ä Àåºñ Á¦Á¶¾÷ü´Â °í±Þ ºÐ¼® ¸ðµâÀ» ±âÁ¸ ±â°è Æ÷Æ®Æú¸®¿À¿¡ ÅëÇÕÇϰí, ¼ÒÇÁÆ®¿þ¾î ¾÷ü´Â Çϵå¿þ¾î °ø±Þ¾÷ü¿Í Çù·ÂÇÏ¿© ¿Ïº®ÇÑ ¿£µå Åõ ¿£µå ¼Ö·ç¼ÇÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. °¡Ä¡»ç½½ Àü¹Ý¿¡¼­ ±âÁ¸ ±â¾÷µéÀº »ç³» µðÁöÅÐ ÀüȯÀ» ÅëÇØ IoT ³×Æ®¿öÅ©¿Í Ŭ¶ó¿ìµå ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ¿© Á¦Ç°ÀÇ ½Å·Ú¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù.

¾÷°è ¸®´õµéÀÌ ³ó¾÷ 4.0ÀÇ ½Å±â¼úÀ» Ȱ¿ëÇϰí, º¹ÀâÇÑ ±ÔÁ¦¸¦ ±Øº¹Çϱâ À§ÇÑ Àü·«Àû ÇÙ½É °úÁ¦¿Í Àü¼úÀû ·Îµå¸Ê °³¿ä

³ó¾÷ 4.0À» Ȱ¿ëÇϰíÀÚ ÇÏ´Â ¾÷°è ¸®´õµéÀº Çõ½Å°ú ¿î¿µÀÇ °­ÀÎÇÔÀ» ¸ðµÎ ¿ì¼±½ÃÇÏ´Â ´Ù°¢ÀûÀÎ Àü·« Á¢±Ù ¹æ½ÄÀ» äÅÃÇØ¾ß ÇÕ´Ï´Ù. ù°, Á¶Á÷Àº »õ·Î¿î ¼Ö·ç¼ÇÀÇ ½Å¼ÓÇÑ ÅëÇÕÀ» ÃËÁøÇÏ´Â ¸ðµâ½Ä ±â¼ú ¾ÆÅ°ÅØÃ³¸¦ ±¸ÃàÇØ¾ß ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº µµÀÔ ¸®½ºÅ©¸¦ ÁÙÀ̰í ÀÇ»ç°áÁ¤±ÇÀÚ°¡ ´ë´ëÀûÀÎ Á¡°Ë ¾øÀ̵µ AI, ·Îº¿°øÇÐ, IoTÀÇ Ãֽбâ¼úÀ» Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

1Â÷ Á¤º¸ ¹× 2Â÷ Á¤º¸ ¼Ò½º¸¦ ÅëÇÕÇÏ´Â ¾ö°ÝÇÑ ´Ù´Ü°è Á¶»ç ¹æ¹ýÀ» ÅëÇØ ¼¼ºÎ ºÐ¼®ÀÇ °ß°í¼ºÀ» º¸ÀåÇϰí ÁÖ¿ä ½ÃÀå µ¿ÇâÀ» °ËÁõÇÕ´Ï´Ù.

ÀÌ Á¶»ç ¹æ¹ýÀº µ¥ÀÌÅÍÀÇ ¿ÏÀü¼º, ºÐ¼®ÀÇ ¾ö°Ý¼º ¹× Á¶»ç °á°úÀÇ ½Ç¿ëÀû Ÿ´ç¼ºÀ» º¸ÀåÇϱâ À§ÇØ °í¾ÈµÈ ´Ù´Ü°è ¹æ¹ýÀ» Áß½ÉÀ¸·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù. Ãʱ⠴ܰ迡¼­´Â ÇǾºä Àú³Î, ±â¼ú¹é¼­, ±ÔÁ¦ ´ç±¹ ½Å°í, ¾÷°è ´Üü °£Ç๰ µî 2Â÷ Á¤º¸¸¦ öÀúÇÏ°Ô Á¶»çÇß½À´Ï´Ù. ÀÌ ÀÚ·áµéÀº ±âÃÊÀûÀÎ ¸Æ¶ôÀ» Á¦°øÇϰí ÁÖ¿ä ÁÖÁ¦¿Í ±â¼ú º¤Å͸¦ ½Äº°Çß½À´Ï´Ù.

³ó¾÷ 4.0 ±â¼úÀÇ º¯È­ ±ËÀû¿¡ ´ëÇÑ ¸íÈ®ÇÑ Àü¸Á°ú ÀÇ»ç°áÁ¤ÀÚ¿¡°Ô ±ÇÇÑÀ» ºÎ¿©ÇÏ´Â ÇÙ½É ¹ß°ß°ú Àü·«Àû ÀλçÀÌÆ® ÅëÇÕ

ÀÌ ºÐ¼®Àº ³ó¾÷ 4.0ÀÌ ½Ä·® »ý»ê, °ø±Þ¸Á °ü¸® ¹× ÀÚ¿ø °ü¸®ÀÇ ¹Ì·¡¸¦ ¾î¶»°Ô À籸¼ºÇϰí ÀÖ´ÂÁö¸¦ °­Á¶ÇÕ´Ï´Ù. º» º¸°í¼­´Â Çõ½ÅÀû ±â¼ú, °ü¼¼ µ¿ÅÂ, ¼¼ºÐÈ­ ÇÁ·¹ÀÓ¿öÅ©, Áö¿ªÀû Ư¼º, °æÀï Àü·« µîÀ» °ËÅäÇÏ¿© ÀÇ»ç°áÁ¤±ÇÀÚµéÀÌ »õ·Î¿î Á¤¼¼¿¡ ´ëÇÑ ÀüüÀûÀÎ ±×¸²À» ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ÃàÀûµÈ ÀλçÀÌÆ®´Â ¹Îø¼º, Çù¾÷, µ¥ÀÌÅÍ ±â¹Ý Çõ½ÅÀÌ Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» ÃËÁøÇÏ´Â »ýŰ踦 °¡¸®Åµ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ³ó¾÷ 4.0 ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • ÀÚµ¿È­ ¹× Á¦¾î ½Ã½ºÅÛ
    • RFID ÅÂ±×¿Í ¸®´õ
    • ¼¾½Ì ¹× ¸ð´ÏÅ͸µ ±â±â
    • ¹«ÀÎÇ×°ø±â/µå·Ð
  • ¼­ºñ½º
    • ÄÁ¼³ÆÃ
    • ÅëÇÕ°ú ±¸Çö
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Áö¿ø°ú À¯Áö°ü¸®
  • ¼ÒÇÁÆ®¿þ¾î

Á¦9Àå ³ó¾÷ 4.0 ½ÃÀå : ±â¼úº°

  • ÀΰøÁö´É°ú ¸Ó½Å·¯´×
  • ºòµ¥ÀÌÅÍ ºÐ¼®
  • GPS¿Í °¡ÀÌ´ø½º ½Ã½ºÅÛ
  • ·Îº¿°øÇÐ
  • ¼¾¼­¿Í IoT

Á¦10Àå ³ó¾÷ 4.0 ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • Á¤ºÎ
  • ´ë±â¾÷
  • ¼Ò±Ô¸ð ³ó°¡

Á¦11Àå ³ó¾÷ 4.0 ½ÃÀå : ¿ëµµº°

  • °¡Ãà ¸ð´ÏÅ͸µ
    • °Ç°­ ¸ð´ÏÅ͸µ
    • À§Ä¡ Á¤º¸¿Í ÃßÀû
    • »ý½Ä ¹× ¹ø½Ä ¸ð´ÏÅ͸µ
  • Á¤¹Ð³ó¾÷
    • ÀÛ¹° ½ºÄ«¿ìÆÃ
    • °¡ÀÌ´ø½º¿Í ½ºÆ¼¾î¸µ
    • º¯·® »ìÆ÷ ±â¼ú
    • ¼öÈ®·® ¸ð´ÏÅ͸µ°ú ¸ÅÇÎ
  • ½º¸¶Æ® ¿Â½Ç
    • ÀÚµ¿ Â÷±¤¡¤È¯±â
    • ±âÈÄ °¨½Ã
  • ½º¸¶Æ® °ü°³
    • Á¡Àû °ü°³
    • ÇǺ¿ °ü°³

Á¦12Àå ³ó¾÷ 4.0 ½ÃÀå : À¯Åë ä³Îº°

  • ¿ÀÇÁ¶óÀÎ
    • Á÷Á¢ ÆÇ¸Å
    • ÆÇ¸Å´ë¸®Á¡
  • ¿Â¶óÀÎ
    • ±â¾÷ À¥»çÀÌÆ®
    • E-Commerce Ç÷§Æû

Á¦13Àå ¾Æ¸Þ¸®Ä«ÀÇ ³ó¾÷ 4.0 ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦14Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ³ó¾÷ 4.0 ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦15Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷ 4.0 ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦16Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Aerobotics(Pty) Ltd.
    • AG Leader Technology
    • Arable Labs Inc.
    • BASF SE
    • Bayer AG
    • Claas KGaA mbH
    • CNH Industrial N.V.
    • Corteva Agriscience
    • Deere & Company
    • DroneDeploy, Inc.
    • FlyPard Analytics GmbH
    • Helena Agri-Enterprises, LLC
    • Hexagon AB
    • Kubota Corporation
    • KUHN SAS
    • Lindsay Corporation
    • Mahindra & Mahindra Ltd.
    • Netafim Limited
    • Sentera Inc.
    • Syngenta Crop Protection AG
    • Taranis Visual Ltd.
    • Topcon Positioning Systems, Inc.
    • Trimble Inc.
    • xFarm Srl
    • Yara International ASA

Á¦17Àå ¸®¼­Ä¡ AI

Á¦18Àå ¸®¼­Ä¡ Åë°è

Á¦19Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦20Àå ¸®¼­Ä¡ ±â»ç

Á¦21Àå ºÎ·Ï

KSM 25.09.10

The Agriculture 4.0 Market was valued at USD 142.19 billion in 2024 and is projected to grow to USD 170.42 billion in 2025, with a CAGR of 20.47%, reaching USD 434.72 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 142.19 billion
Estimated Year [2025] USD 170.42 billion
Forecast Year [2030] USD 434.72 billion
CAGR (%) 20.47%

Establishing a Comprehensive Foundation to Unveil the Core Principles and Strategic Imperatives Driving Global Adoption of Agriculture 4.0 Technologies

Agriculture has entered a new era characterized by the convergence of digital technologies, data-driven decision-making, and sustainable practices that collectively define Agriculture 4.0. As global food systems confront rising demand, climate volatility, and resource constraints, the industry is compelled to adopt innovations that enhance productivity, reduce environmental impact, and improve supply chain resilience. In this context, Agriculture 4.0 emerges as a holistic framework where hardware solutions such as unmanned aerial vehicles and sensing devices merge seamlessly with advanced software platforms and professional services.

This introduction sets the stage by outlining the foundational pillars of Agriculture 4.0 and the strategic imperatives that are shaping its rapid adoption. The integration of automation and control systems, coupled with artificial intelligence and big data analytics, has begun to transform traditional farming operations into precision-driven enterprises. Meanwhile, consulting and managed services are enabling stakeholders to navigate complex implementation challenges and extract maximum value from technological investments.

By examining the interplay between tools, technologies, and end-user requirements, this overview provides a clear perspective on why Agriculture 4.0 represents a critical inflection point. It frames the subsequent analysis of market shifts, tariff influences, segmentation insights, and regional dynamics, ensuring that decision-makers have a solid contextual understanding before delving into targeted strategic recommendations.

Highlighting the Pivotal Technological Disruptions and Operational Paradigm Shifts Reshaping Agricultural Practices in the Age of Digital Integration

The agricultural landscape is undergoing a profound transformation, propelled by a wave of disruptive technologies that are redefining how crops are managed, livestock is monitored, and resources are allocated. Robotics and autonomous machinery now undertake tasks that once required manual labor, while artificial intelligence and machine learning algorithms continuously optimize planting schedules and irrigation patterns based on real-time environmental data. This shift from reactive to predictive operations enhances yields and minimizes wastage.

Simultaneously, the Internet of Things (IoT) ecosystem is expanding through sensor networks and guidance systems that provide granular visibility into soil moisture, nutrient levels, and crop health. Drones equipped with high-resolution imaging capture multispectral data that drive precision farming strategies, transforming decision-making into a data-rich, science-backed discipline. Integration platforms and digital twins unify these data streams to facilitate scenario modeling and risk mitigation.

These transformative shifts are not merely technological; they signal a broader operational paradigm change. Service providers are evolving from transactional vendors to strategic partners, offering integration, support, and continuous optimization. Consequently, farmers and agribusinesses are recalibrating organizational structures, acquiring new skill sets, and forging cross-industry partnerships. The result is a self-reinforcing ecosystem in which technological advancement and operational innovation accelerate one another, creating sustainable competitive advantage.

Assessing the Multifaceted Repercussions of Recent United States Tariffs on Import Dynamics Supply Chains and Investment Flows Across Agriculture 4.0 Ecosystems

The introduction of new tariff measures by the United States in 2025 has reverberated across global supply chains, influencing price structures, sourcing strategies, and investment decisions. Increased duties on critical hardware components such as automation and control systems, sensors, and drones have compelled manufacturers and end users alike to reassess procurement approaches. In response, some firms are accelerating domestic production capabilities, while others are exploring alternative low-tariff sourcing hubs.

These tariff dynamics extend beyond immediate cost implications. Technology providers are renegotiating supplier agreements and revising product roadmaps to accommodate shifting input costs. End-user adoption curves have been affected as budgetary constraints prompt phased implementations and pilot programs rather than full-scale rollouts. Meanwhile, consulting services and support contracts have gained prominence as organizations seek expertise in tariff mitigation and supply chain diversification.

Looking ahead, this environment underscores the need for agile planning and strategic foresight. Cross-border partnerships are being revisited, particularly with nations outside the tariff regime that can offer cost-competitive components or end-to-end solution bundles. Regulatory monitoring services and trade advisory functions are now integral to project planning, ensuring that decision-makers remain informed of evolving policy landscapes and can adjust investment strategies proactively.

Elucidating Critical Market Segmentation Pillars Illustrating How Component Technology and Application-Based Variances Define Value Creation Pathways in Agriculture 4.0 Solutions

The Agriculture 4.0 market can be understood through multiple lenses that capture the interplay between components, technologies, end users, applications, and distribution pathways. From a component perspective, the ecosystem encompasses hardware offerings such as automation and control systems alongside RFID tags and readers, sensing and monitoring devices, and unmanned aerial vehicles and drones. These hardware elements integrate tightly with software platforms and are complemented by a suite of services that range from consulting and integration to managed services and ongoing support.

Exploring the technology dimension reveals how artificial intelligence and machine learning, big data analytics, GPS and guidance systems, robotics, and sensor networks form the backbone of precision farming initiatives. Each technology strand unlocks new efficiencies, whether by enabling variable rate applications or by providing real-time decision support based on predictive analytics. When it comes to end users, government bodies, large agribusiness enterprises, and small farmholders each exhibit distinct adoption patterns and investment priorities, reflecting variances in scale, regulatory engagement, and risk tolerance.

Application-level segmentation highlights solutions from livestock monitoring-including health tracking, location services, and reproductive oversight-to precision farming activities such as crop scouting, guidance and steering, variable rate technology, and yield monitoring and mapping. Further innovation emerges in smart greenhouse configurations featuring automated shading, ventilation, and climate control, as well as in advanced irrigation techniques like drip and pivot systems. Finally, distribution channels span offline direct sales and distributor networks, as well as online portals including company websites and e-commerce marketplaces, ensuring that stakeholders can access tailored end-to-end offerings in alignment with their operational and procurement preferences.

Decoding the Geographical Differentiators and Regional Market Drivers That Underpin Growth Opportunities Across the Americas EMEA and Asia-Pacific Agriculture 4.0 Sectors

Understanding regional nuances is central to crafting effective market entry and expansion strategies within the Agriculture 4.0 domain. In the Americas, well-established agri-technology ecosystems leverage robust infrastructure and extensive R&D investments. This region's stakeholders benefit from mature regulatory frameworks and significant fiscal incentives, which have accelerated the deployment of autonomous machinery and digital agriculture platforms across large-scale operations.

Conversely, the Europe Middle East and Africa region presents a multifaceted landscape shaped by stringent environmental regulations, diverse climatic conditions, and a growing focus on sustainable farming practices. European markets are leading in carbon-neutral initiatives and precision irrigation techniques, while Middle Eastern nations are investing heavily in greenhouse automation and water-efficient solutions. African markets exhibit emerging potential, with pilot programs and public-private partnerships laying the groundwork for broader digital adoption.

In the Asia-Pacific, the convergence of high population density, land fragmentation, and rapid technology uptake drives unique innovation models. Governments and private entities collaborate to bolster food security through IoT-enabled smallholder platforms and cooperative frameworks. Market participants in this region prioritize cost-effective sensor deployments and scalable software solutions that cater to diverse agricultural conditions, from rice paddies to high-altitude fruit orchards. Together these regional insights inform targeted strategies that optimize resource allocation and catalyze growth in line with local market dynamics.

Profiling Industry Trailblazers and Innovative Enterprises That Are Charting the Course for Future Breakthroughs in Automation Analytics Robotics and Precision Farming

Leading corporations and emerging challengers alike are redefining the boundaries of agricultural innovation through strategic investments, alliances, and product development. Major equipment manufacturers are integrating advanced analytics modules into traditional machinery portfolios, while software firms are partnering with hardware vendors to deliver seamless end-to-end solutions. Across the value chain, incumbents are embracing digital transformation initiatives internally, leveraging IoT networks and cloud infrastructure to enhance product reliability and performance.

Simultaneously, a wave of venture-backed startups is injecting fresh perspectives into the ecosystem, focusing on hyper-specialized segments such as drone-based crop analytics or robotics-driven harvesting. These agile pioneers are forging strategic partnerships with research institutions and government agencies to pilot novel service models and accelerate time to market. This dynamic interplay between established players and nimble innovators fosters competitive intensity and spurs continuous technology refinement.

Additionally, cross-industry collaborations are becoming a hallmark of the competitive landscape. Agritech firms are forging alliances with telecommunication providers to extend connectivity into remote areas, while partnerships with financial services companies enable embedded lending and insurance solutions. Collectively, these company-level strategies underscore the importance of ecosystem orchestration and collaborative innovation in delivering scalable, sustainable Agriculture 4.0 offerings to global markets.

Outlining Strategic Imperatives and Tactical Roadmaps That Enable Industry Leaders to Capitalize on Emerging Technologies and Navigate Regulatory Complexity in Agriculture 4.0

Industry leaders seeking to capitalize on Agriculture 4.0 must adopt a multi-pronged strategic approach that prioritizes both innovation and operational resilience. First, organizations should establish modular technology architectures that facilitate rapid integration of emerging solutions. This flexibility reduces implementation risk and ensures that decision-makers can leverage the latest advancements in AI, robotics, and IoT without extensive overhauls.

Next, forging strategic partnerships across the value chain enhances resource access and accelerates co-innovation. Collaboration with research institutions, government agencies, and complementary technology providers can unlock new use cases and expand addressable markets. Equally important is the cultivation of an internal culture that values data literacy and continuous learning; retraining existing workforces and recruiting specialized talent will be critical to maintaining a competitive edge.

Finally, proactive engagement with regulatory stakeholders and investment in sustainability-driven metrics will differentiate market leaders. By adopting transparent governance frameworks and embedding environmental considerations into product roadmaps, companies can secure long-term stakeholder trust and anticipate policy shifts. These combined actions will empower industry leaders to navigate uncertainty, seize emerging opportunities, and drive meaningful impact across the Agriculture 4.0 landscape.

Detailing the Rigorous Multi-Stage Research Methodology Employed to Aggregate Primary and Secondary Data Sources Ensure Analytical Robustness and Validate Key Market Trends

This research effort was structured around a multi-stage methodology designed to ensure data integrity, analytical rigor, and the actionable relevance of findings. The initial phase involved an extensive review of secondary sources, including peer-reviewed journals, technical white papers, regulatory filings, and industry association publications. These materials provided foundational context and identified key themes and technology vectors.

Building on this groundwork, primary research was conducted through structured interviews and surveys with a diverse cross-section of stakeholders such as farm operators, technology vendors, consultants, and policy makers. Expert panels and advisory boards contributed qualitative insights, validating emerging trends and highlighting practical implementation challenges. Quantitative survey data were subjected to statistical validation and triangulated against secondary benchmarks to ensure consistency.

Finally, a comprehensive analytical framework was applied to synthesize the data, incorporating scenario analysis, value chain mapping, and risk assessment models. This approach facilitated the identification of strategic priorities, segmentation patterns, and regional nuances. Throughout the process, iterative peer reviews and quality checks were employed to uphold methodological transparency and confirm that conclusions are empirically grounded.

Synthesizing Core Findings and Strategic Insights to Empower Decision-Makers with a Clear Perspective on the Transformational Trajectory of Agriculture 4.0 Technologies

The analysis presented herein underscores how Agriculture 4.0 is reshaping the future of food production, supply chain management, and resource stewardship. By examining transformative technologies, tariff dynamics, segmentation frameworks, regional characteristics, and competitive strategies, this report equips decision-makers with a holistic understanding of the emerging landscape. The cumulative insights point toward an ecosystem where agility, collaboration, and data-driven innovation converge to drive sustainable growth.

Strategic stakeholders must be prepared to navigate complex regulatory environments, embrace new partnership models, and invest in the talent and platforms necessary to harness evolving capabilities. The intersection of hardware, software, and services demands integrated approaches that balance immediate operational needs with long-term resilience objectives. In doing so, organizations will unlock value across yield optimization, cost efficiency, and environmental impact reduction.

Ultimately, the trajectory of Agriculture 4.0 will be shaped by those who move decisively to integrate advanced technologies into their core operations, differentiate through sustainable practices, and adapt to shifting policy landscapes. This conclusion sets the stage for the actionable recommendations and strategic imperatives that follow, ensuring that industry participants can translate insights into tangible competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Precision drone-based crop monitoring systems optimize input use and yields
  • 5.2. Integration of AI-driven soil nutrient mapping for real-time farm management
  • 5.3. Adoption of blockchain-enabled supply chain traceability to improve food safety
  • 5.4. Deployment of autonomous agricultural robots streamlining harvesting and labor efficiency
  • 5.5. Implementation of vertical farming with IoT sensors to maximize urban crop production
  • 5.6. Use of CRISPR gene editing platforms for accelerated development of drought-resistant seeds
  • 5.7. Expansion of satellite remote sensing analytics for early detection of crop diseases and pests
  • 5.8. Growth of subscription-based farm management platforms offering predictive maintenance and yield forecasting
  • 5.9. Adoption of AI-driven predictive analytics for early pest and disease intervention in large-scale farms
  • 5.10. Adoption of autonomous field robots using LIDAR and computer vision for precision weeding

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Agriculture 4.0 Market, by Component

  • 8.1. Introduction
  • 8.2. Hardware
    • 8.2.1. Automation & Control Systems
    • 8.2.2. RFID Tags & Readers
    • 8.2.3. Sensing & Monitoring Devices
    • 8.2.4. UAVs/ Drones
  • 8.3. Services
    • 8.3.1. Consulting
    • 8.3.2. Integration & Implementation
    • 8.3.3. Managed Services
    • 8.3.4. Support & Maintenance
  • 8.4. Software

9. Agriculture 4.0 Market, by Technology

  • 9.1. Introduction
  • 9.2. Artificial Intelligence & Machine Learning
  • 9.3. Big Data Analytics
  • 9.4. GPS & Guidance Systems
  • 9.5. Robotics
  • 9.6. Sensor & IoT

10. Agriculture 4.0 Market, by End Users

  • 10.1. Introduction
  • 10.2. Governments
  • 10.3. Large Enterprises
  • 10.4. Small Farmholders

11. Agriculture 4.0 Market, by Application

  • 11.1. Introduction
  • 11.2. Livestock Monitoring
    • 11.2.1. Health Monitoring
    • 11.2.2. Location & Tracking
    • 11.2.3. Reproductive & Breeding Monitoring
  • 11.3. Precision Farming
    • 11.3.1. Crop Scouting
    • 11.3.2. Guidance & Steering
    • 11.3.3. Variable Rate Technology
    • 11.3.4. Yield Monitoring & Mapping
  • 11.4. Smart Greenhouse
    • 11.4.1. Automated Shading & Ventilation
    • 11.4.2. Climate Monitoring
  • 11.5. Smart Irrigation
    • 11.5.1. Drip Irrigation
    • 11.5.2. Pivot Irrigation

12. Agriculture 4.0 Market, by Distribution Channel

  • 12.1. Introduction
  • 12.2. Offline
    • 12.2.1. Direct Sales
    • 12.2.2. Distributors
  • 12.3. Online
    • 12.3.1. Company Website
    • 12.3.2. E-Commerce Platforms

13. Americas Agriculture 4.0 Market

  • 13.1. Introduction
  • 13.2. United States
  • 13.3. Canada
  • 13.4. Mexico
  • 13.5. Brazil
  • 13.6. Argentina

14. Europe, Middle East & Africa Agriculture 4.0 Market

  • 14.1. Introduction
  • 14.2. United Kingdom
  • 14.3. Germany
  • 14.4. France
  • 14.5. Russia
  • 14.6. Italy
  • 14.7. Spain
  • 14.8. United Arab Emirates
  • 14.9. Saudi Arabia
  • 14.10. South Africa
  • 14.11. Denmark
  • 14.12. Netherlands
  • 14.13. Qatar
  • 14.14. Finland
  • 14.15. Sweden
  • 14.16. Nigeria
  • 14.17. Egypt
  • 14.18. Turkey
  • 14.19. Israel
  • 14.20. Norway
  • 14.21. Poland
  • 14.22. Switzerland

15. Asia-Pacific Agriculture 4.0 Market

  • 15.1. Introduction
  • 15.2. China
  • 15.3. India
  • 15.4. Japan
  • 15.5. Australia
  • 15.6. South Korea
  • 15.7. Indonesia
  • 15.8. Thailand
  • 15.9. Philippines
  • 15.10. Malaysia
  • 15.11. Singapore
  • 15.12. Vietnam
  • 15.13. Taiwan

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Aerobotics (Pty) Ltd.
    • 16.3.2. AG Leader Technology
    • 16.3.3. Arable Labs Inc.
    • 16.3.4. BASF SE
    • 16.3.5. Bayer AG
    • 16.3.6. Claas KGaA mbH
    • 16.3.7. CNH Industrial N.V.
    • 16.3.8. Corteva Agriscience
    • 16.3.9. Deere & Company
    • 16.3.10. DroneDeploy, Inc.
    • 16.3.11. FlyPard Analytics GmbH
    • 16.3.12. Helena Agri-Enterprises, LLC
    • 16.3.13. Hexagon AB
    • 16.3.14. Kubota Corporation
    • 16.3.15. KUHN SAS
    • 16.3.16. Lindsay Corporation
    • 16.3.17. Mahindra & Mahindra Ltd.
    • 16.3.18. Netafim Limited
    • 16.3.19. Sentera Inc.
    • 16.3.20. Syngenta Crop Protection AG
    • 16.3.21. Taranis Visual Ltd.
    • 16.3.22. Topcon Positioning Systems, Inc.
    • 16.3.23. Trimble Inc.
    • 16.3.24. xFarm Srl
    • 16.3.25. Yara International ASA

17. ResearchAI

18. ResearchStatistics

19. ResearchContacts

20. ResearchArticles

21. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦