시장보고서
상품코드
1804621

핵의학 소프트웨어 시장 : 제품 유형, 워크플로우, 통합, 기능, 전개 방식, 용도, 최종사용자별 - 세계 예측(2025-2030년)

Nuclear Medicine Software Market by Product Type, Workflow, Integration, Functionality, Deployment Mode, Application, End User - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

핵의학 소프트웨어 시장은 2024년에는 9억 1,215만 달러로 평가되었으며, 2025년에는 9억 9,753만 달러, CAGR 9.52%로 성장하여 2030년에는 15억 7,480만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 9억 1,215만 달러
추정 연도 2025년 9억 9,753만 달러
예측 연도 2030년 15억 7,480만 달러
CAGR(%) 9.52%

진단 정확도 향상, 워크플로우 간소화, 환자 치료 성과 향상, 핵의학 소프트웨어의 혁신 추진

핵의학 소프트웨어의 발전에 힘입어 영상 진단 및 치료 계획의 환경은 큰 변화를 맞이하고 있습니다. 의료 서비스 제공자가 더 높은 진단 정확도와 개인화된 치료 프로토콜을 목표로 하는 가운데, 소프트웨어 솔루션은 단순한 이미지 시각화를 넘어 진화하고 있습니다. 최신 핵의학 플랫폼은 현재 정교한 알고리즘과 실시간 분석을 통합하여 병변 탐지를 강화하고, 방사성 추적자 섭취를 정량화하며, 복잡한 치료 계획 워크플로우를 지원합니다. 머신러닝 모델을 활용하면 임상팀은 이전에는 감지할 수 없었던 멀티모달 데이터의 미묘한 패턴을 파악할 수 있으며, 궁극적으로 환자 결과를 개선할 수 있습니다.

핵의학 소프트웨어 아키텍처, 데이터 워크플로우, 분석 기능 및 임상 의사결정 지원 패러다임을 변화시키는 혁신적인 변화를 공개합니다.

핵의학 소프트웨어 생태계는 핵심 아키텍처에서 최종사용자 애플리케이션에 이르기까지 혁신적인 개발 사슬을 경험하고 있습니다. 인공지능과 딥러닝 기술은 파일럿 연구에서 주류 진단 모듈로 전환하여 자동 병변 세분화, 이상 감지, 예측 분석을 가능하게 하고 있습니다. 이러한 도구들은 더 이상 독립적인 실험이 아닌 임상 판단 지원 시스템에 통합되어 의사의 전문성을 강화하고 의사 간 편차를 줄이는 역할을 하고 있습니다.

미국의 관세 정책이 2025년 핵의학 소프트웨어 공급망, 비용, 혁신 경로에 미치는 파급 효과 평가

미국이 2025년에 시행한 관세 정책의 진전은 핵의학 소프트웨어의 개발 및 배포를 지원하는 공급망에 복잡한 역학을 도입했습니다. 국제적으로 조달되는 특수 하드웨어 부품과 클라우드 인프라 서비스 중 상당수가 수입관세 인상 대상입니다. 그 직접적인 결과로 소프트웨어 벤더들은 운영 비용 상승에 직면하여 세계 조달 전략을 재검토해야 하는 상황에 직면하게 되었습니다. 일부 업체들은 비용 상승을 완화하기 위해 제조 거점을 다변화하거나 국내 조립 파트너십에 투자하는 방식으로 대응하고 있습니다.

핵의학 소프트웨어의 제품 유형, 워크플로우, 통합, 기능, 전개 모델, 용도, 최종사용자 니즈에 대한 중요한 세분화 인사이트 파악

세분화 분석을 통해 핵의학 소프트웨어 제품 및 사용자 요구 사항의 여러 측면에서 미묘한 비즈니스 기회를 발견할 수 있습니다. 제품 포트폴리오에서 영상처리 소프트웨어는 직관적인 사용자 인터페이스와 고급 재구성 알고리즘으로 큰 주목을 받고 있으며, 임상 의사결정 지원 모듈은 예측 분석을 활용하여 치료 옵션을 안내합니다. 데이터 관리 플랫폼은 안전한 저장, 검색 및 컴플라이언스 추적에 중점을 두고, 방사선 치료 계획 솔루션은 선량 계산과 환자별 해부학 모델을 통합합니다. 각 제품 카테고리는 각기 다른 임상 과제에 대응하고 벤더의 로드맵과 투자 우선순위를 형성하고 있습니다.

세계 핵의학 소프트웨어 채택 동향, 성장 촉진요인, 규제 환경, 인프라 개발을 형성하는 다양한 지역적 역학 관계를 살펴봅니다.

지역별 분석을 통해 아메리카, 유럽, 중동 및 아프리카, 아시아태평양별로 각기 다른 채용 패턴과 전략적 우선순위를 확인할 수 있었습니다. 아메리카에서는 첨단 의료 인프라와 영상 진단 및 표적치료에 대한 지원적인 상환 정책이 결합되어 클라우드 네이티브 및 AI 지원 플랫폼의 대대적인 도입이 진행되고 있습니다. 주요 의료기관들은 기존 PACS 네트워크 및 전자 의료 기록과 원활하게 통합할 수 있는 소프트웨어에 많은 투자를 하고 있으며, 업무 효율성과 환자 처리량을 높이는 솔루션을 우선순위로 두고 있습니다.

핵의학 소프트웨어 시장의 주요 혁신가 및 신흥 업체를 프로파일링하고 전략적 파트너십, 기술 혁신, 경쟁 포지셔닝, 전략적 파트너십, 기술 혁신 및 경쟁 포지셔닝을 밝힙니다.

주요 기술 제공업체들은 전략적 제휴, 인수, 내부 기술 혁신을 통해 핵심 플랫폼을 지속적으로 개선하고 있습니다. 주요 기존 기업들은 병변의 정량화 및 치료 효과 평가를 가속화하는 독자적인 머신러닝 프레임워크를 활용하여 고급 분석 모듈을 포함한 포트폴리오를 확장하고 있습니다. 동시에, 민첩한 스타트업은 소아 영상 및 감염 모니터링과 같은 특수 임상 애플리케이션에 초점을 맞추고, 학술 의료 센터와 협력 관계를 맺고 실제 환경에서 알고리즘을 검증함으로써 틈새 시장을 개척하고 있습니다.

기술 발전을 활용하고, 투자를 최적화하고, 핵의학 소프트웨어 분야에서 전략적 입지를 강화하기 위해 업계 리더에게 실행 가능한 권장 사항을 제공합니다.

업계 리더들은 정확성과 업무 효율성을 높이기 위해 AI 기반 분석을 우선적으로 도입해야 합니다. 검증된 모델을 기존 워크플로우에 통합함으로써 조직은 해석 시간을 단축하고 조기 임상 개입을 지원할 수 있습니다. 동시에 모듈화된 구성요소를 갖춘 클라우드 네이티브 아키텍처를 채택하여 확장성과 유연성을 보장하고, 중앙 집중식 병원과 분산형 외래 영상 센터 모두에 신속하게 구축할 수 있도록 지원합니다.

인사이트의 정확성과 신뢰성을 보장하기 위한 1차 인터뷰, 2차 데이터 검증, 강력한 분석 기법을 활용한 엄격한 조사 방법론 개요

연구팀은 포괄적이고 신뢰할 수 있는 인사이트를 확보하기 위해 다단계 조사 방법을 채택했습니다. 초기 단계에서는 시장 경계를 명확히 하고 주요 이해관계자를 식별하기 위해 피어리뷰 학술지, 규제 관련 간행물, 특정 분야에 특화된 백서를 활용한 광범위한 탁상 조사를 실시했습니다. 이 단계는 임상 지도자, 소프트웨어 개발자, 방사선과 과장, 컴플라이언스 전문가와의 구조화된 인터뷰로 구성된 타겟팅된 1차 조사 활동의 기반이 되었습니다.

핵의학 소프트웨어 생태계의 미래를 이끄는 기술 동향, 시장 촉진요인, 지역적 차이, 전략적 중요 사항에 대한 주요 조사 결과 통합

이번 조사를 통해 핵의학 소프트웨어가 인공지능, 클라우드 컴퓨팅, 정밀치료의 융합으로 정의되는 매우 중요한 국면을 맞이하고 있음을 알 수 있었습니다. 기계 학습 알고리즘의 기술적 도약은 진단 정확도를 높이고 임상의가 더 빠르고 더 많은 정보에 입각한 의사결정을 내릴 수 있도록 돕습니다. 동시에 상호 운용 가능한 클라우드 네이티브 솔루션으로의 전환은 데이터 워크플로우를 재구성하고, 시설과 지역을 넘어선 원활한 협업을 가능하게 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 핵의학 소프트웨어 시장 : 제품 유형별

  • 핵의학 분석 소프트웨어
  • 핵의학 임상 의사결정 지원 소프트웨어
  • 핵의학 데이터 관리 소프트웨어
  • 핵의학 영상 소프트웨어
  • 핵의학 방사선 치료 소프트웨어

제9장 핵의학 소프트웨어 시장 : 워크플로우별

  • 데이터 관리
  • 데이터 처리
  • 영상 취득
  • 보고서

제10장 핵의학 소프트웨어 시장 : 통합별

  • 통합형
  • 독립형

제11장 핵의학 소프트웨어 시장 : 기능성별

  • 진단
  • 치료

제12장 핵의학 소프트웨어 시장 : 전개 방식별

  • 클라우드 기반
  • 온프레미스

제13장 핵의학 소프트웨어 시장 : 용도별

  • 심장병학
  • 감염증
  • 신경학
  • 종양학
    • 암 스테이징과 모니터링
    • 방사선 치료 계획과 선량 측정
    • 치료 표적
    • 종양 검출과 진단
  • 정형외과
  • 소아과

제14장 핵의학 소프트웨어 시장 : 최종사용자별

  • 진단 영상 센터
  • 병원
  • 연구기관

제15장 아메리카의 핵의학 소프트웨어 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 핵의학 소프트웨어 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 핵의학 소프트웨어 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Bracco Group
    • Canon Medical Systems Corporation
    • Comecer S.p.A.
    • Convergent Imaging Solutions
    • ec2 Software Solutions
    • Esaote S.p.A.
    • Gamma Gurus Pty Ltd
    • GE Healthcare
    • Hermes Medical Solutions, Inc.
    • InMed Healthcare
    • Koninklijke Philips N.V
    • LabLogic Systems Ltd.
    • Mediso Medical Imaging Systems
    • MIM Software Inc.
    • Mirada Medical Ltd. by Sectra AB
    • Mirion Technologies Inc.
    • Segami Corporation
    • Siemens Healthineers AG
    • Syntermed Inc.
    • Winkgen Medical Systems GmbH & Co. KG

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택트

제22장 리서치 기사

제23장 부록

KSM 25.09.11

The Nuclear Medicine Software Market was valued at USD 912.15 million in 2024 and is projected to grow to USD 997.53 million in 2025, with a CAGR of 9.52%, reaching USD 1,574.80 million by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 912.15 million
Estimated Year [2025] USD 997.53 million
Forecast Year [2030] USD 1,574.80 million
CAGR (%) 9.52%

Driving Innovation in Nuclear Medicine Software to Elevate Diagnostic Accuracy, Streamline Workflows, and Improve Patient Care Outcomes

The landscape of diagnostic imaging and therapeutic planning is undergoing a profound transformation driven by advances in nuclear medicine software. As healthcare providers strive for greater diagnostic precision and personalized treatment protocols, software solutions have evolved far beyond simple image visualization. Modern nuclear medicine platforms now integrate sophisticated algorithms and real-time analytics to enhance lesion detection, quantify radiotracer uptake, and support complex treatment planning workflows. By harnessing machine learning models, clinical teams can identify subtle patterns in multimodal data that were previously undetectable, ultimately driving better patient outcomes.

Concurrently, the shift toward cloud-native architectures and interoperable data standards has reshaped how institutions manage imaging studies and associated metadata. Rather than siloed on-premises installations, many organizations are adopting hybrid or fully cloud-based deployments, enabling distributed access, seamless collaboration, and centralized data governance. This evolution supports accelerated clinical trials, retrospective studies, and multi-site networks that collectively fuel innovation. With regulatory bodies placing greater emphasis on patient data security and traceability, vendors are embedding robust compliance frameworks into their offerings. These capabilities ensure that as clinical environments become more digitized, they remain aligned with stringent privacy and quality requirements.

Together, these technological and infrastructural shifts mark the beginning of a new era for nuclear medicine software-one in which diagnostic accuracy, workflow efficiency, and patient-centric approaches converge to redefine the standards of care.

Unveiling the Revolutionary Shifts Transforming Nuclear Medicine Software Architectures, Data Workflows, Analytics Capabilities, and Clinical Decision Support Paradigms

The nuclear medicine software ecosystem is experiencing a cascade of transformative developments that extend from core architectures to end-user applications. Artificial intelligence and deep learning techniques have moved from pilot studies into mainstream diagnostic modules, enabling automated lesion segmentation, anomaly detection, and predictive analytics. These tools are no longer standalone experiments; they are increasingly embedded within clinical decision support systems, augmenting physician expertise and reducing inter-operator variability.

Parallel to AI integration, the adoption of cloud and edge computing infrastructures has accelerated. This hybrid model allows for latency-sensitive tasks such as image acquisition and preliminary processing to occur locally, while more computationally intensive analytics and data archiving migrate to centralized cloud platforms. The result is a seamless patient journey from imaging suite to multidisciplinary review boards, complete with advanced visualization tools and collaborative annotations. Moreover, standardized integration frameworks such as DICOMweb and HL7 FHIR have improved interoperability, ensuring that systems from different vendors can share and interpret data consistently.

Regulatory frameworks are also evolving in response to these technological leaps. Agencies are updating guidelines to address the validation of AI algorithms and the secure handling of cloud-based health information. As a consequence, vendors and healthcare institutions are establishing formal governance committees and risk-management processes, ensuring that new solutions meet both clinical efficacy and compliance standards. Together, these shifts redefine what is possible within nuclear medicine software and set the stage for the next wave of innovation.

Assessing the Ripple Effects of Escalating United States Tariff Policies on Nuclear Medicine Software Supply Chains, Costs, and Innovation Pathways in 2025

Evolving tariff policies enacted by the United States in 2025 have introduced a complex dynamic into the supply chains that underpin nuclear medicine software development and deployment. Many specialized hardware components and cloud infrastructure services sourced internationally are now subject to increased import duties. As a direct result, software vendors face elevated operational expenses and must reassess global procurement strategies. Some providers have responded by diversifying manufacturing locations or investing in domestic assembly partnerships to mitigate cost escalations.

These adjustments have also influenced software licensing models. Vendors are exploring subscription-based pricing structures and tiered support packages to absorb the impact of higher hardware costs without transferring the full burden to end users. Such flexibility helps maintain adoption momentum, particularly among mid-sized hospitals and independent imaging centers that operate under tighter budgetary constraints. In parallel, capital investments in R&D continue to prioritize modular, scalable architectures that can adapt to shifting economic conditions, ensuring that new feature rollouts remain financially viable.

Looking ahead, collaboration between industry consortia and government agencies is emerging as a crucial mitigation strategy. By advocating for tariff exemptions on critical imaging components and promoting domestic innovation clusters, stakeholders aim to stabilize supply networks. This cooperative approach not only addresses immediate cost pressures but also fosters a resilient ecosystem capable of sustaining long-term advances in nuclear medicine software.

Revealing Critical Segmentation Insights Across Product Types, Workflows, Integrations, Functionalities, Deployment Models, Applications, and End User Needs in Nuclear Medicine Software

Segmentation analysis reveals nuanced opportunities across multiple dimensions of nuclear medicine software offerings and user requirements. Within product portfolios, imaging software commands significant attention for its intuitive user interfaces and advanced reconstruction algorithms, while clinical decision support modules leverage predictive analytics to guide therapy options. Data management platforms focus on secure storage, retrieval, and compliance tracking, and radiation therapy planning solutions integrate dosimetry calculations with patient-specific anatomical models. Each product category addresses distinct clinical challenges, shaping vendor roadmaps and investment priorities.

Workflow segmentation further highlights how data management capabilities underpin both image acquisition and processing operations. Systems that offer seamless orchestration from initial capture through reporting deliver measurable improvements in throughput and report turnaround times. Integration models differentiate between turnkey solutions that embed analytics within a unified platform and standalone applications that can be combined into bespoke workflows. In this context, organizations weigh the benefits of end-to-end interoperability against the agility of best-of-breed tools.

Functionality segmentation underscores the dual imperatives of diagnostics and therapeutics. Diagnostic modules prioritize sensitivity and specificity in detecting pathologies such as neurodegenerative disorders or cardiac perfusion defects. Meanwhile, therapeutic applications emphasize precision in radiation dose calculations and treatment planning for oncology cases, including staging, monitoring, and targeted interventions. Deployment choices span from on-premises installations favored by institutions with strict data residency policies to cloud-based services that support distributed care networks. Across all segments, end users-from diagnostic imaging centers to major hospital systems and research institutes-seek solutions that align with organizational goals and patient care mandates.

Exploring Diverse Regional Dynamics Shaping Nuclear Medicine Software Adoption Trends, Growth Drivers, Regulatory Environments, and Infrastructure Developments Globally

Regional analysis reveals distinct adoption patterns and strategic priorities across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, advanced healthcare infrastructure, coupled with supportive reimbursement policies for diagnostic imaging and targeted therapies, drives substantial uptake of cloud-native and AI-enabled platforms. Leading institutions invest heavily in software that integrates seamlessly with existing PACS networks and electronic health records, prioritizing solutions that enhance operational efficiency and patient throughput.

Across Europe, Middle East & Africa, diverse regulatory environments and funding structures shape vendor strategies. The European Union's harmonized medical device regulations encourage standardization and interoperability, while individual countries balance innovation incentives with strict data privacy requirements. In the Middle East, government-funded health initiatives accelerate software deployments in cutting-edge centers of excellence. Meanwhile, Africa's emerging markets present both infrastructure challenges and high-impact opportunities, prompting flexible deployment models tailored to local connectivity and resource constraints.

In Asia-Pacific, rapid modernization of healthcare systems and growing investments in cancer diagnostics spur demand for integrated imaging and therapy planning solutions. Governments in key markets actively support digital health transformations through public-private partnerships, enabling providers to pilot advanced analytics and remote collaboration capabilities. Cost-sensitivity remains an important factor, encouraging vendors to offer scalable licensing options that align with diverse institutional budgets.

Profiling Leading Innovators and Emerging Players in Nuclear Medicine Software Market Highlighting Strategic Partnerships, Technological Breakthroughs, and Competitive Positioning

Leading technology providers continue to refine core platforms through strategic partnerships, acquisitions, and in-house innovation. Major incumbents are expanding their portfolios to include advanced analytics modules, leveraging proprietary machine learning frameworks that accelerate lesion quantification and treatment response assessments. Simultaneously, agile startups are carving out niche positions by focusing on specialized clinical applications such as pediatric imaging or infectious disease monitoring, forging collaborations with academic medical centers to validate their algorithms under real-world conditions.

Competitive differentiation increasingly hinges on interoperability and ecosystem integration. Vendors that offer open APIs and adhere to emerging data standards gain an edge by enabling seamless connectivity with a range of imaging modalities and electronic health record systems. Moreover, alliances between software developers and major imaging hardware manufacturers are driving co-developed solutions that embed analytics directly into imaging consoles, reducing manual data transfers and enhancing workflow continuity.

Investment activity underscores the sector's vitality. Recent funding rounds and joint development agreements have bolstered efforts to deploy cloud-native infrastructures capable of real-time collaboration across global research networks. As competition intensifies, providers are prioritizing customer success programs and professional services, ensuring that end users can rapidly adopt new features, optimize performance, and maintain compliance within evolving regulatory frameworks.

Delivering Actionable Recommendations for Industry Leaders to Capitalize on Technological Advances, Optimize Investments, and Strengthen Strategic Positioning in Nuclear Medicine Software

Industry leaders should prioritize the adoption of AI-driven analytics to enhance accuracy and operational efficiency. By integrating validated models into existing workflows, organizations can reduce interpretation times and support earlier clinical interventions. At the same time, embracing cloud-native architectures with modular components ensures scalability and flexibility, enabling rapid deployment across both centralized hospitals and decentralized outpatient imaging centers.

To maintain resilience in the face of supply chain disruptions and tariff fluctuations, companies are advised to diversify sourcing strategies and cultivate strategic partnerships with domestic manufacturers. This approach mitigates cost volatility and sustains development timelines for critical software upgrades. In parallel, establishing open standards for interoperability will accelerate multi-vendor integration, allowing institutions to select best-of-breed solutions that align with their clinical and operational requirements.

Furthermore, aligning product roadmaps with emerging therapeutic trends-such as precision oncology and theranostics-can unlock new revenue streams and differentiate offerings. Investing in robust cybersecurity frameworks and comprehensive training programs will foster stakeholder confidence, ensuring that regulatory compliance and patient data protection remain top priorities. By combining these strategies, industry leaders can position themselves to capitalize on the next wave of innovation in nuclear medicine software.

Outlining Rigorous Research Methodology Leveraging Primary Interviews, Secondary Data Validation, and Robust Analytical Techniques to Ensure Insights Accuracy and Reliability

The research team adopted a multi-phase methodology designed to ensure comprehensive and reliable insights. Initial scoping involved extensive desk research, leveraging peer-reviewed journals, regulatory publications, and domain-specific white papers to define market boundaries and identify key stakeholders. This phase provided the foundation for targeted primary research activities, which comprised structured interviews with clinical leaders, software developers, radiology department heads, and compliance experts.

Quantitative data gathered through professional surveys and anonymized usage statistics was subjected to rigorous validation processes. Findings were cross-referenced with public filings, conference proceedings, and case studies to confirm consistency. Qualitative insights were synthesized through thematic analysis, enabling the team to contextualize numerical trends within the perspectives of frontline practitioners.

Subsequently, advanced analytical techniques were applied to uncover hidden correlations between technology adoption patterns, clinical outcomes, and regulatory trajectories. Scenario planning workshops with in-house subject-matter experts tested the robustness of assumptions under varied economic and policy conditions. Finally, a multi-tiered peer review and editorial process ensured that the report's conclusions are both defensible and actionable for decision-makers.

Synthesizing Key Findings on Technological Trends, Market Drivers, Regional Variations, and Strategic Imperatives Guiding the Future of Nuclear Medicine Software Ecosystem

Through this study, it becomes evident that nuclear medicine software is entering a pivotal phase defined by the convergence of artificial intelligence, cloud computing, and precision therapeutics. Technological breakthroughs in machine learning algorithms are enhancing diagnostic accuracy and empowering clinicians to make faster, more informed decisions. At the same time, the shift toward interoperable, cloud-native solutions is reshaping data workflows, enabling seamless collaboration across institutions and geographies.

Regional dynamics further illustrate how adoption strategies vary according to healthcare infrastructure maturity, regulatory frameworks, and economic considerations. Companies that tailor their offerings to these local nuances are well positioned to capture new opportunities. The cumulative effects of evolving tariff policies underscore the importance of resilient supply chains and adaptive pricing models. Key market players continue to differentiate through strategic partnerships, open standards integration, and focused R&D investments in high-impact applications such as oncology and neurology.

By following the actionable recommendations outlined in this report and leveraging the detailed segmentation and regional analyses, stakeholders can navigate the complexities of the nuclear medicine software ecosystem. Ultimately, organizations that align technological innovation with operational excellence and regulatory compliance will lead the transformation toward more precise, personalized patient care.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI-driven automated image analysis with clinical decision support platforms in nuclear medicine software
  • 5.2. Cloud-based PACS solutions enabling real-time remote collaboration and data sharing among nuclear medicine departments
  • 5.3. Advanced theranostics workflow management systems optimizing personalized radionuclide therapy planning and tracking
  • 5.4. Interoperable software platforms for seamless integration of PET/CT, SPECT, and hybrid imaging modalities across modalities
  • 5.5. Implementation of data security and HIPAA-compliant encryption protocols to safeguard nuclear medicine patient data in software
  • 5.6. Deployment of predictive maintenance and IoT-enabled equipment monitoring modules integrated into nuclear medicine informatics
  • 5.7. Adoption of standardized DICOM SR and HL7 FHIR protocols for improved cross-vendor data exchange and reporting automation in nuclear medicine

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Nuclear Medicine Software Market, by Product Type

  • 8.1. Introduction
  • 8.2. Nuclear Medicine Analysis Software
  • 8.3. Nuclear Medicine Clinical Decision Support Software
  • 8.4. Nuclear Medicine Data Management Software
  • 8.5. Nuclear Medicine Imaging Software
  • 8.6. Nuclear Medicine Radiation Therapy Software

9. Nuclear Medicine Software Market, by Workflow

  • 9.1. Introduction
  • 9.2. Data Management
  • 9.3. Data Processing
  • 9.4. Image Acquisition
  • 9.5. Reporting

10. Nuclear Medicine Software Market, by Integration

  • 10.1. Introduction
  • 10.2. Integrated
  • 10.3. Standalone

11. Nuclear Medicine Software Market, by Functionality

  • 11.1. Introduction
  • 11.2. Diagnostics
  • 11.3. Therapeutics

12. Nuclear Medicine Software Market, by Deployment Mode

  • 12.1. Introduction
  • 12.2. Cloud Based
  • 12.3. On Premises

13. Nuclear Medicine Software Market, by Application

  • 13.1. Introduction
  • 13.2. Cardiology
  • 13.3. Infectious Diseases
  • 13.4. Neurology
  • 13.5. Oncology
    • 13.5.1. Cancer Staging & Monitoring
    • 13.5.2. Radiation Therapy Planning & Dosimetry
    • 13.5.3. Therapeutic Targeting
    • 13.5.4. Tumor Detection and Diagnosis
  • 13.6. Orthopedics
  • 13.7. Pediatrics

14. Nuclear Medicine Software Market, by End User

  • 14.1. Introduction
  • 14.2. Diagnostic Imaging Centers
  • 14.3. Hospitals
  • 14.4. Research Institutes

15. Americas Nuclear Medicine Software Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Nuclear Medicine Software Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Nuclear Medicine Software Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Bracco Group
    • 18.3.2. Canon Medical Systems Corporation
    • 18.3.3. Comecer S.p.A.
    • 18.3.4. Convergent Imaging Solutions
    • 18.3.5. ec2 Software Solutions
    • 18.3.6. Esaote S.p.A.
    • 18.3.7. Gamma Gurus Pty Ltd
    • 18.3.8. GE Healthcare
    • 18.3.9. Hermes Medical Solutions, Inc.
    • 18.3.10. InMed Healthcare
    • 18.3.11. Koninklijke Philips N.V
    • 18.3.12. LabLogic Systems Ltd.
    • 18.3.13. Mediso Medical Imaging Systems
    • 18.3.14. MIM Software Inc.
    • 18.3.15. Mirada Medical Ltd. by Sectra AB
    • 18.3.16. Mirion Technologies Inc.
    • 18.3.17. Segami Corporation
    • 18.3.18. Siemens Healthineers AG
    • 18.3.19. Syntermed Inc.
    • 18.3.20. Winkgen Medical Systems GmbH & Co. KG

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제