½ÃÀ庸°í¼­
»óǰÄÚµå
1806540

¿¹Áöº¸Àü ½ÃÀå : ±¸¼º¿ä¼Ò, ±â¼ú, ¿ëµµ, Àü°³ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, »ê¾÷ ºÐ¾ßº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Predictive Maintenance Market by Component, Technique, Technology, Application, Deployment Model, Organization Size, Industry Vertical - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 190 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¿¹Áöº¸Àü ½ÃÀåÀº 2024³â¿¡ 101¾ï 7,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú½À´Ï´Ù. 2025³â¿¡´Â CAGR 31.32%·Î 132¾ï 1,000¸¸ ´Þ·¯·Î ¼ºÀåÇÏ¿© 2030³â¿¡´Â 522¾ï 2,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ ¿¬µµ : 2024³â 101¾ï 7,000¸¸ ´Þ·¯
ÃßÁ¤ ¿¬µµ : 2025³â 132¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø ¿¬µµ : 2030³â 522¾ï 2,000¸¸ ´Þ·¯
CAGR(%) 31.32%

ºü¸£°Ô ÁøÈ­ÇÏ´Â »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ±â¹Ý ¿¹Áöº¸Àü Àü·«À¸·Î Â÷¼¼´ë ÀÚ»êÀÇ ½Å·Ú¼ºÀ» Çâ»ó½Ã۱â À§ÇÑ È¯°æ ¼³Á¤

Áö³­ 10³â°£ Á¦Á¶, ¿¡³ÊÁö »ý»ê, ¿î¼Û ¹× °øÁ¤ »ê¾÷Àº °èȹµÇÁö ¾ÊÀº ´Ù¿îŸÀÓÀ» ÃÖ¼ÒÈ­Çϰí ÀÚ»ê Ȱ¿ëµµ¸¦ ±Ø´ëÈ­Çϱâ À§ÇÑ º¯ÇõÀÇ ¿©Á¤¿¡ Âø¼öÇß½À´Ï´Ù. ¼¾¼­ ±â¼ú, µ¥ÀÌÅÍ Ã³¸®, ¿¹Ãø ºÐ¼®ÀÇ Çõ½ÅÀÌ À¶ÇյǸ鼭 À¯Áöº¸¼ö´Â ¹ÝÀÀÀûÀÌ°í ½ºÄÉÁÙ¸µµÈ Á¢±Ù ¹æ½Ä¿¡¼­ °íÁ¤¹Ð, µ¥ÀÌÅÍ ±â¹Ý ¿î¿µÀ¸·Î ÀüȯµÇ°í ÀÖ½À´Ï´Ù. °ú°Å¿¡´Â °íÁ¤µÈ À¯Áöº¸¼ö °£°Ý¿¡ ÀÇÁ¸ÇÏ´ø Á¶Á÷µéµµ ÀÌÁ¦´Â ½Ç½Ã°£ µ¥ÀÌÅÍ Çǵ带 Ȱ¿ëÇÏ¿© ÀåºñÀÇ °íÀåÀ» ¹Ì¸® ¿¹ÃøÇϰí, ºñ¿ë Àý°¨, ¾ÈÀü¼º Çâ»ó, ¾÷¹« È¿À²¼º Çâ»óÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù.

÷´Ü ¿¹Áöº¸Àü Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ÀÚ»ê °ü¸®¿Í ½Å·Ú¼ºÀ» ÀçÁ¤ÀÇÇÏ´Â Çõ½ÅÀû º¯È­¸¦ ¹àÈü´Ï´Ù.

»ê¾÷ »ýŰè´Â ¿î¿µ Àü·«¿¡¼­ À¯Áöº¸¼öÀÇ ¿ªÇÒÀ» ÀçÁ¤ÀÇÇÏ´Â Æ®·»µåÀÇ ¼ö·ÅÀ» °æÇèÇϰí ÀÖ½À´Ï´Ù. »ê¾÷¿ë »ç¹°ÀÎÅͳÝÀÇ º¸±ÞÀº Áß¿äÇÑ ±â°èÀÇ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀ» °¡´ÉÇÏ°Ô Çϰí, ÀΰøÁö´É°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀº ¹æ´ëÇÑ ¾çÀÇ ¼¾¼­ µ¥ÀÌÅ͸¦ ¼öÁýÇÏ¿© ¹Ì¹¦ÇÑ ÀÌ»ó ¡Èĸ¦ ½Äº°ÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù. ¿§Áö ÄÄÇ»ÆÃÀº µ¥ÀÌÅ͸¦ ·ÎÄÿ¡¼­ ó¸®ÇÏ°í ¸Å°³º¯¼ö°¡ ¿¹»ó ±âÁØ¿¡¼­ ¹þ¾î³¯ °æ¿ì Áï°¢ÀûÀÎ °æº¸¸¦ ¹ß·ÉÇÒ ¼ö ÀÖ´Â ¸Å¿ì Áß¿äÇÑ Àο¡ÀÌºí·¯·Î µîÀåÇß½À´Ï´Ù. ±× °á°ú, Á¶Á÷Àº Á¤±âÀûÀÎ °Ë»ç¿¡¼­ Áö¼ÓÀûÀÎ »óÅ ¸ð´ÏÅ͸µÀ¸·Î ÀüȯÇÏ¿© ¸çÄ¥ ¶Ç´Â ¸î ÁÖ Èİ¡ ¾Æ´Ñ ½Ç½Ã°£À¸·Î ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ½À´Ï´Ù.

2025³â ½ÃÇàµÇ´Â ¹Ì±¹ÀÇ °ü¼¼ Á¶Ä¡°¡ ¼¼°è °ø±Þ¸Á°ú ¿¹Áöº¸Àü »ýŰ迡 ¹ÌÄ¡´Â ´©Àû ¿µÇâ Æò°¡

2025³â ¹Ì±¹ Á¤ºÎ°¡ ºÎ°úÇÑ »õ·Î¿î °ü¼¼ Á¶Ä¡´Â ¿¹Áöº¸Àü ¼Ö·ç¼Ç¿¡ ÇʼöÀûÀÎ ÇÙ½É ºÎǰ, ¼¾¼­, ¹ÝµµÃ¼ ¼öÀÔ¿¡ Ãß°¡ °ü¼¼¸¦ ºÎ°úÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ºñ¿ë Áõ°¡´Â ¼¼°è °ø±Þ¸Á Àüü¿¡ ¿µÇâÀ» ¹ÌÃÄ, °Å·¡Ã³ »óÇ¥±Ç Á¦Ç° Á¦Á¶¾÷ü¿Í ¼Ö·ç¼Ç Á¦°ø¾÷ü´Â Á¶´Þ Àü·«À» Àç°ËÅäÇØ¾ß Çß½À´Ï´Ù. ÀϺΠ°ø±Þ¾÷ü´Â ¿µÇâÀ» ÁÙÀ̱â À§ÇØ Áö¿ªº°·Î Á¶´ÞÀ» ÀüȯÇϰųª °è¾àÀ» ÀçÇù»óÇϰí, ÀϺΠ°ø±Þ¾÷ü´Â °í°´ÀÇ ½Å·Ú¿Í ½ÃÀå Á¡À¯À²À» À¯ÁöÇϱâ À§ÇØ °ü¼¼¸¦ ÀϽÃÀûÀ¸·Î Èí¼öÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù.

±¸¼º¿ä¼Ò, ±â¼ú, ±â¼ú, ¿ëµµ, ¹èÆ÷ ¸ðµ¨, Á¶Á÷ ±Ô¸ð, »ê¾÷º° µî ÁÖ¿ä ºÎ¹®¿¡ ´ëÇÑ ÀλçÀÌÆ® µµÃâ

¿¹Áöº¸Àü ½ÃÀåÀº ¿©·¯ Â÷¿øÀ¸·Î ¼¼ºÐÈ­ÇÒ ¼ö ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ¸íÈ®ÇÑ ±âȸ Æ÷ÄÏÀ» ¹ß°ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ÄÄÆ÷³ÍÆ® °üÁ¡¿¡¼­ º¼ ¶§, ¼Ö·ç¼Ç°ú ¼­ºñ½º´Â °¢°¢ °íÀ¯ÇÑ °¡Ä¡ Á¦¾ÈÀ» Á¦½ÃÇÕ´Ï´Ù. ¼­ºñ½º¿¡´Â ¿ÏÀü ¾Æ¿ô¼Ò½ÌµÈ ÀÚ»ê ¸ð´ÏÅ͸µ¿¡ ÃÊÁ¡À» ¸ÂÃá ¸Å´ÏÁöµå ¼­ºñ½º¿Í ÄÁ¼³ÆÃ, ½Ã½ºÅÛ ÅëÇÕ, ¸ÂÃãÇü ºÐ¼® °³¹ßÀ» Æ÷ÇÔÇÏ´Â ÇÁ·ÎÆä¼Å³Î ¼­ºñ½º°¡ ÀÖ½À´Ï´Ù. ¼Ö·ç¼Ç ºÐ¾ß¿¡¼­´Â ÀÚ»ê ¼º´É °ü¸®, ´ë½Ãº¸µå ¹× ½Ã°¢È­ µµ±¸, µ¥ÀÌÅÍ ÅëÇÕ ¹× Àüó¸® ¸ðµâ, °í±Þ ¿¹Ãø ¸ðµ¨¸µ ¹× ºÐ¼® Á¦Ç°±ºÀ» À§ÇÑ Àü¹® Ç÷§ÆûÀÌ ´Ù¾çÇÑ ±â¾÷ ¿ä±¸»çÇ׿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù.

¹ÌÁÖ, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼ºÀå ÃËÁø¿äÀΰú µµÀÔ ÆÐÅÏÀ» ÆÄ¾ÇÇÒ ¼ö ÀÖ´Â ÁÖ¿ä Áö¿ª ÅëÂû·Â

±â¾÷ÀÌ ´Ù¾çÇÑ °æÁ¦ »óȲ, ±ÔÁ¦ ȯ°æ, ÀÎÇÁ¶ó ¼º¼÷µµ¿Í ½Î¿ì´Â °¡¿îµ¥, Áö¿ª ¿ªÇÐÀÌ ¿¹Áöº¸Àü µµÀÔÀÇ ±Ëµµ¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â µðÁöÅÐ Àüȯ¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ¿Í ¼®À¯ ¹× °¡½º, Á¦Á¶, Ç×°ø¿ìÁÖ ºÎ¹®ÀÇ °­·ÂÇÑ ¼ö¿ä·Î ÀÎÇØ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù. ºÏ¹Ì ±â¾÷µéÀº Ŭ¶ó¿ìµå ±â¹Ý ºÐ¼® Ç÷§ÆûÀÇ ¼±±¸ÀÚÀ̸ç, Áß³²¹Ì ±â¾÷µéÀº Áß¿äÇÑ ¿¡³ÊÁö ¹× ±¤¾÷ ÀÚ»êÀ» º¸È£Çϱâ À§ÇØ »óÅ ¸ð´ÏÅ͸µÀ» ºü¸£°Ô ÅëÇÕÇϰí ÀÖ½À´Ï´Ù.

Àü·«Àû ÆÄÆ®³Ê½Ê, ÷´Ü ¼Ö·ç¼Ç, Ź¿ùÇÑ ¼­ºñ½º¸¦ ÅëÇØ ¿¹Áöº¸Àü Çõ½ÅÀ» ÁÖµµÇÏ´Â ½ÃÀå ¼±µµ ±â¾÷ ¹ß±¼

±â¼ú Á¦°ø¾÷ü¿Í ¼­ºñ½º ÅëÇÕ¾÷üÀÇ ÇÙ½É ±×·ìÀÌ ¿¹Áöº¸ÀüÀÇ ¹Ì·¡¸¦ Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ¿£µå Åõ ¿£µå ÀÚµ¿È­ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ±âÁ¸ »ê¾÷üµéÀº °í±Þ ºÐ¼® ¸ðµâÀ» ·¹°Å½Ã Á¦¾î ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ¿© °í°´ÀÌ ±âÁ¸ ÀÎÇÁ¶ó ÅõÀÚ¸¦ Ȱ¿ëÇÒ ¼ö ÀÖµµ·Ï µ½°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¼ÒÇÁÆ®¿þ¾î º¥´õ°¡ Çϵå¿þ¾î Á¦Á¶¾÷ü¿Í Á¦ÈÞÇÏ¿© ¼¾¼­ °ü¸®, µ¥ÀÌÅÍ Àüó¸®, ¿¹Ãø ¸ðµ¨¸µÀ» °áÇÕÇÑ ÅÏŰ Ç÷§ÆûÀ» Á¦°øÇÕ´Ï´Ù.

¾÷°è ¸®´õµéÀÌ ¿¹Áöº¸Àü µµÀÔÀ» °¡¼ÓÈ­ÇÏ°í ¿î¿µ ź·Â¼ºÀ» ±Ø´ëÈ­ÇÒ ¼ö ÀÖ´Â ½ÇÇà °¡´ÉÇÑ Àü·« Á¦¾È

¿¹Áöº¸ÀüÀ» Ȱ¿ëÇϰíÀÚ ÇÏ´Â ¸®´õ´Â ±â¼ú ÅõÀÚ¿Í ºñÁî´Ï½º ¸ñÇ¥¸¦ ÀÏÄ¡½ÃŰ´Â Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê¿¡ ¿ì¼±¼øÀ§¸¦ µÎ¾î¾ß ÇÕ´Ï´Ù. ¿ì¼±, ±â¾÷Àº À̱âÁ¾ ¼¾¼­ ½ºÆ®¸²À» ´ÜÀÏ ºÐ¼® Ç÷§ÆûÀ¸·Î ÅëÇÕÇϰí, ½Ã°è¿­ µ¥ÀÌÅÍ¿Í À̺¥Æ® µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¿øÈ°ÇÑ ¾×¼¼½º¸¦ º¸ÀåÇÏ´Â ÅëÇÕ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³¸¦ °³¹ßÇØ¾ß ÇÕ´Ï´Ù. ÀÌ ±â¹ÝÀº °í±Þ ¸Ó½Å·¯´× ¸ðµ¨À» Áö¿øÇÏ¿© ÀåºñÀÇ »óŸ¦ º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿¹Ãø À¯Áöº¸¼ö ½ÃÀå ÀλçÀÌÆ®À» ÃËÁøÇÏ´Â µ¥ÀÌÅÍ ¼öÁý, ºÐ¼® ÇÁ·¹ÀÓ¿öÅ©, °ËÁõ ¹æ¹ýÀ» ¹àÈ÷´Â Á¾ÇÕÀûÀÎ Á¶»ç ¹æ¹ý·Ð

ÀÌ ºÐ¼®Àº 1Â÷ Á¶»ç¿Í 2Â÷ µ¥ÀÌÅÍ °ËÁõÀ» °áÇÕÇÑ ´Ù´Ü°è Á¶»ç ¹æ½ÄÀ» ±â¹ÝÀ¸·Î ÇÕ´Ï´Ù. Ãʱ⠴ܰ迡¼­´Â ¼±ÀÓ À¯Áöº¸¼ö ¿£Áö´Ï¾î, ¿î¿µ °ü¸®ÀÚ, ±â¼ú ´ã´ç ÀÓ¿øÀ» ´ë»óÀ¸·Î Àü¹®°¡ ÀÎÅͺ並 ½Ç½ÃÇÏ¿© ä¿ë ÃËÁø¿äÀΰú °úÁ¦¿¡ ´ëÇÑ »ý»ýÇÑ °üÁ¡À» ÆÄ¾ÇÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ÁúÀû ÅëÂû·ÂÀº ¼¼°è ÀÚ»êÁý¾àÀû ±â¾÷À» ´ë»óÀ¸·Î ÇÑ Á¾ÇÕÀûÀÎ ¼³¹®Á¶»ç¸¦ ÅëÇØ µµÀÔ ¼±È£µµ, ±â¼ú Ȱ¿ëµµ, ÅõÀÚ ¿ì¼±¼øÀ§¿¡ ´ëÇÑ Á¤·®Àû µ¥ÀÌÅ͸¦ ¼öÁýÇÏ´Â µ¥¿¡ ¹Ý¿µµÆ½À´Ï´Ù.

ÁÖ¿ä ÀλçÀÌÆ®À» ÅëÇÕÇϰí, Àü·«Àû Á߿伺À» °­Á¶Çϸç, ¾÷°è¸¦ ÃÊ¿ùÇÑ ¿¹Áöº¸ÀüÀÇ ¹Ì·¡¸¦ ¿¹ÃøÇÏ´Â °á·ÐÀû °üÁ¡À» Á¦½ÃÇÕ´Ï´Ù.

÷´Ü ¼¾¼­, ÀΰøÁö´É, µðÁöÅÐ Æ®À© ±â¼úÀÇ À¶ÇÕÀº Á¶Á÷ÀÌ Áß¿ä ÀÚ»êÀ» º¸È£ÇÏ´Â ¹æ½ÄÀ» ±Ùº»ÀûÀ¸·Î º¯È­½Ã۰í ÀÖ½À´Ï´Ù. °¡µ¿½Ã°£¿¡ ´ëÇÑ ¿ä±¸°¡ Áõ°¡ÇÔ¿¡ µû¶ó, ¿¹Áöº¸ÀüÀº ±â¾÷ÀÌ ¼Ò¹æ Ȱµ¿¿¡¼­ Àü·«Àû ÀÚ»ê °ü¸®·Î ÀüȯÇÒ ¼ö ÀÖ´Â ±â¹Ý ¿ª·®À¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ ¿ä¾à¿¡¼­ Á¦½ÃµÈ ÅëÂû·ÂÀº ¼º°øÀÇ ¿­¼è°¡ µ¥ÀÌÅÍ ¾ÆÅ°ÅØÃ³, Àη ¿ª·®, ºÎ¼­ °£ Çù¾÷ÀÇ Á¶È­¿¡ ÀÖ´Ù´Â °ÍÀ» º¸¿©ÁÝ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¿¹Áöº¸Àü ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
    • ¸Å´ÏÁöµå ¼­ºñ½º
    • Àü¹® ¼­ºñ½º
  • ¼Ö·ç¼Ç
    • ÀÚ»ê ¼º°ú °ü¸®
    • ´ë½Ãº¸µå ¹× ½Ã°¢È­ Åø
    • µ¥ÀÌÅÍ ÅëÇÕ ¹× »çÀü ó¸®
    • ¿¹Ãø ¸ðµ¨¸µ ¹× ºÐ¼®

Á¦9Àå ¿¹Áöº¸Àü ½ÃÀå : ±â¼úº°

  • À½Çâ ¸ð´ÏÅ͸µ
  • ºÎ½Ä ¸ð´ÏÅ͸µ
  • Àü±â ¹× Àü·ù ÇØ¼®
  • ¿ÀÀÏ ºÐ¼®
  • ¿­ ¿µ»ó
  • ÃÊÀ½ÆÄ °Ë»ç
  • Áøµ¿ ¸ð´ÏÅ͸µ

Á¦10Àå ¿¹Áöº¸Àü ½ÃÀå : ±â¼úº°

  • ºòµ¥ÀÌÅÍ ¹× ºÐ¼®
  • µðÁöÅÐ Æ®À© Å×Å©³î·¯Áö
  • ¿§Áö ÄÄÇ»ÆÃ
  • »ç¹°ÀÎÅͳÝ(IoT)
  • ¸Ó½Å·¯´×(ML) ¹× ÀΰøÁö´É

Á¦11Àå ¿¹Áöº¸Àü ½ÃÀå : ¿ëµµº°

  • ÀÌ»ó °¨Áö
  • ÀÚ»ê ¸ð´ÏÅ͸µ
  • »óÅ ¸ð´ÏÅ͸µ
  • °íÀå ŽÁö
  • °Ç°­ Æò°¡
  • ÀÜ¿© »ç¿ë ¼ö¸í ÃßÁ¤(RUL)
  • ±Ùº» ¿øÀÎ ºÐ¼®
  • ÀÛ¾÷ Áö½Ã¼­ ½ºÄÉÁÙ¸µ

Á¦12Àå ¿¹Áöº¸Àü ½ÃÀå : Àü°³ ¸ðµ¨º°

  • Ŭ¶ó¿ìµå ±â¹Ý
  • On-Premise

Á¦13Àå ¿¹Áöº¸Àü ½ÃÀå : Á¶Á÷ ±Ô¸ðº°

  • ´ë±â¾÷
  • Áß¼Ò±â¾÷

Á¦14Àå ¿¹Áöº¸Àü ½ÃÀå : ¾÷°èº°

  • Ç×°ø¿ìÁÖ ¹× ¹æÀ§
  • È­ÇÐÁ¦Ç°
  • °Ç¼³
  • ¿¡³ÊÁö ¹× À¯Æ¿¸®Æ¼
    • ¹ßÀü
    • Àç»ý¿¡³ÊÁö
    • ¼Û¹èÀü
  • ½Äǰ ¹× À½·á
  • ÇコÄɾî
  • Á¦Á¶¾÷
    • µð½ºÅ©¸®Æ® Á¦Á¶¾÷
    • ÇÁ·Î¼¼½º Á¦Á¶
  • ±¤¾÷ ¹× ±Ý¼Ó
  • ¼®À¯ ¹× °¡½º
    • Downstream
    • Midstream
    • Upstream
  • Åë½Å
  • ¿î¼Û
    • Ç×°ø
    • ÇØ¾ç
    • öµµ
    • µµ·Î

Á¦15Àå ¾Æ¸Þ¸®Ä«ÀÇ ¿¹Áöº¸Àü ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦16Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¿¹Áöº¸Àü ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦17Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¿¹Áöº¸Àü ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦18Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Amazon Web Services, Inc.
    • Asystom
    • C3.ai, Inc.
    • Databricks, Inc.
    • DINGO Software Pty. Ltd.
    • Fiix Inc. by Rockwell Automation, Inc.
    • General Electric Company
    • Hitachi, Ltd.
    • Honeywell International Inc.
    • Infineon Technologies AG
    • Intel Corporation
    • International Business Machines Corporation
    • Limble Solutions, LLC
    • Micro Focus International PLC by Open Text Corporation
    • Microsoft Corporation
    • NVIDIA Corporation
    • Oracle Corporation
    • Robert Bosch GmbH
    • SAP SE
    • Schneider Electric SE
    • Siemens AG
    • TIBCO Software Inc. by Cloud Software Group, Inc.
    • Uptake Technologies Inc.

Á¦19Àå ¸®¼­Ä¡ AI

Á¦20Àå ¸®¼­Ä¡ Åë°è

Á¦21Àå ¸®¼­Ä¡ ÄÁÅÃÆ®

Á¦22Àå ¸®¼­Ä¡ ±â»ç

Á¦23Àå ºÎ·Ï

LSH

The Predictive Maintenance Market was valued at USD 10.17 billion in 2024 and is projected to grow to USD 13.21 billion in 2025, with a CAGR of 31.32%, reaching USD 52.22 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 10.17 billion
Estimated Year [2025] USD 13.21 billion
Forecast Year [2030] USD 52.22 billion
CAGR (%) 31.32%

Setting the Stage for Next Generation Asset Reliability Through Data-Driven Predictive Maintenance Strategies in a Rapidly Evolving Industry

Over the past decade, manufacturing, energy production, transportation, and process industries have embarked on a transformational journey toward minimizing unplanned downtime and maximizing asset utilization. Innovations in sensor technology, data processing, and predictive analytics have converged to make maintenance shifting from reactive and scheduled approaches to highly precise, data-driven operations. Organizations that once relied on fixed maintenance intervals now harness real-time data feeds to anticipate equipment failures before they occur, reducing costs, improving safety, and boosting operational efficiency.

This executive summary introduces key themes shaping the predictive maintenance landscape. It examines how advanced analytics and machine learning are driving new levels of insight into asset health, explores the implications of recent trade policies on supply chains, and reveals critical segmentation dimensions from component and technique to industry vertical. Subsequent sections delve into regional patterns, leading companies, actionable strategic recommendations, and the rigorous research methodology behind these insights. Together, they provide a cohesive foundation for decision makers seeking to unlock the full potential of predictive maintenance.

Uncovering the Transformative Shifts That Are Redefining Asset Management and Reliability Through Advanced Predictive Maintenance Approaches

Industrial ecosystems are experiencing a convergence of trends that are redefining the role of maintenance within operational strategy. The proliferation of the Industrial Internet of Things has enabled continuous monitoring of critical machinery, while artificial intelligence and machine learning algorithms ingest vast volumes of sensor data to identify subtle anomalies. Edge computing has emerged as a pivotal enabler, allowing data to be processed locally and triggering immediate alerts when parameters deviate from expected norms. As a result, organizations can move beyond periodic inspections toward continuous condition monitoring, with insights delivered in real time rather than days or weeks later.

Moreover, digital twin technology has taken center stage by creating virtual replicas of physical assets, enabling engineers to simulate performance under various scenarios. This shift toward virtualization and simulation is fostering more proactive asset management plans and guiding investment decisions in spare parts inventory, workforce training, and process redesign. In parallel, cloud-based architectures are offering the scalability needed to centralize data from distributed sites, unlocking enterprise-wide analytics capabilities. Collectively, these transformative shifts are elevating maintenance functions from cost centers to strategic levers that drive operational excellence and business growth.

Assessing the Cumulative Impact of United States Tariffs Enforced in 2025 on Global Supply Chains and Predictive Maintenance Ecosystem

In 2025, new tariff measures imposed by the United States government introduced additional duties on critical components, sensors, and semiconductor imports essential to predictive maintenance solutions. These increased costs have reverberated across global supply chains, compelling original equipment manufacturers and solution providers to reassess procurement strategies. Some suppliers have turned to regional sourcing alternatives or renegotiated contracts to mitigate the impact, while others have absorbed tariffs temporarily to maintain customer confidence and market share.

The downstream effects have also influenced cloud service providers and analytics platforms that rely on imported hardware accelerators and networking equipment. To preserve margin structures, several technology firms have begun localizing manufacturing operations, accelerating investments in domestic production, and forming partnerships with regional electronics manufacturers. Although these adaptations have generated short-term cost pressures, they have also catalyzed supply chain resilience by diversifying the supplier base. Looking ahead, maintenance service providers are expected to collaborate more closely with hardware vendors to co-develop tariff-resistant solutions and optimize total cost of ownership.

Extracting Key Segmentation Insights Across Components, Techniques, Technologies, Applications, Deployment Models, Organization Sizes, and Industry Verticals

The predictive maintenance market can be deconstructed across multiple dimensions that reveal distinct opportunity pockets. From a component standpoint, solutions and services each present unique value propositions. Services span managed offerings focused on fully outsourced asset monitoring as well as professional services that encompass consulting, system integration, and custom analytics development. Within the solutions domain, specialized platforms for asset performance management, dashboard and visualization tools, data integration and preprocessing modules, and advanced predictive modeling and analytics suites cater to diverse enterprise requirements.

Techniques such as acoustic monitoring, corrosion monitoring, electrical and current analysis, oil analysis, thermal imaging, ultrasound testing, and vibration monitoring form the backbone of condition assessment strategies. These methods are enabled by underlying technologies including big data and analytics platforms, digital twin environments, edge computing nodes, the Internet of Things sensor networks, and machine learning and artificial intelligence algorithms. Across application areas, organizations employ anomaly detection, asset monitoring, condition monitoring, failure detection, health assessment, remaining useful life estimation, root cause analysis, and work order scheduling to translate insights into action. Deployment options range from fully cloud-based architectures that offer rapid scalability to on-premise installations that emphasize data sovereignty. Finally, both large enterprises and SMEs tap into these capabilities differently, while industry verticals such as aerospace and defense, chemicals, construction, energy and utilities, food and beverages, healthcare, manufacturing, mining and metals, oil and gas, telecommunications, and transportation each drive specialized use cases.

Revealing Key Regional Insights That Illuminate Growth Drivers and Adoption Patterns Across Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics are shaping the trajectory of predictive maintenance adoption as organizations contend with varying economic conditions, regulatory environments, and infrastructure maturity. In the Americas, robust investments in digital transformation and strong demand from oil and gas, manufacturing, and aerospace sectors are accelerating deployments. North American companies are pioneering cloud-based analytics platforms, while Latin American enterprises are rapidly integrating condition monitoring to safeguard critical energy and mining assets.

In Europe, the Middle East, and Africa, regulatory frameworks emphasizing sustainability, emissions reduction, and safety compliance are driving the uptake of predictive analytics. Industries in Western Europe are emphasizing edge-to-cloud architectures to balance latency and data privacy concerns, whereas Middle Eastern energy producers are deploying temperature and vibration monitoring at scale to maintain continuous operations. Meanwhile, Asia-Pacific markets present a heterogeneous landscape. Mature economies such as Japan and Australia are leading in digital twin adoption, while emerging markets across Southeast Asia and India are prioritizing cost-effective sensor networks and managed services to elevate maintenance efficiency.

Identifying Market-Leading Companies Shaping Predictive Maintenance Innovation Through Strategic Partnerships, Advanced Solutions, and Service Excellence

A core group of technology providers and service integrators are shaping the future of predictive maintenance. Established industrial firms that offer end-to-end automation solutions are integrating advanced analytics modules into their legacy control systems, enabling customers to leverage existing infrastructure investments. Simultaneously, cloud-native software vendors are partnering with hardware manufacturers to deliver turnkey platforms that combine sensor management, data preprocessing, and prognostic modeling.

Service players with deep domain expertise in sectors such as oil and gas, utilities, and manufacturing are differentiating through outcome-based contracts that align maintenance fees with uptime and performance metrics. A new wave of startups is also emerging, focused on niche applications like railway condition monitoring and remote turbine diagnostics. Collaboration among these diverse players-ranging from multinational conglomerates to agile niche innovators-is fostering a vibrant ecosystem where co-creation of solutions accelerates time to insight and amplifies customer value.

Actionable Strategic Recommendations for Industry Leaders to Accelerate Adoption of Predictive Maintenance and Maximize Operational Resilience

Leaders seeking to capitalize on predictive maintenance must prioritize strategic initiatives that align technology investments with operational objectives. First, enterprises should develop a unified data architecture that consolidates disparate sensor streams into a single analytics platform, ensuring seamless access to time series and event data. This foundation supports advanced machine learning models and drives more accurate forecasts of equipment health.

Second, organizations should invest in workforce upskilling by combining technical training on analytics tools with domain workshops on failure modes and root cause analysis. Empowered practitioners will be able to translate model outputs into actionable maintenance plans. Third, adopting a phased deployment approach-starting with high-value assets and progressively expanding to less critical equipment-minimizes risk and demonstrates quantifiable benefits early in the program. Finally, forging collaborative partnerships with technology vendors, consulting firms, and research institutions will bolster innovation pipelines and accelerate the development of customized maintenance solutions tailored to specific industry challenges.

Comprehensive Research Methodology Unveiling Data Collection, Analysis Frameworks, and Validation Techniques Driving Predictive Maintenance Market Insights

This analysis rests on a multi-stage research methodology combining primary engagements and secondary data validation. In the initial phase, expert interviews were conducted with senior maintenance engineers, operations managers, and technology executives to capture firsthand perspectives on adoption drivers and challenges. These qualitative insights informed the development of a comprehensive questionnaire administered to global asset-intensive organizations, gathering quantitative data on deployment preferences, technology utilizations, and investment priorities.

Simultaneously, a rigorous review of industry publications, white papers, patent filings, and vendor collateral was undertaken to map the competitive landscape and identify emerging innovations. Data triangulation techniques ensured consistency between primary findings and secondary sources. Finally, advanced statistical analysis and scenario modeling were applied to distill key themes, segment-specific dynamics, and regional variations. This systematic approach guarantees that the conclusions and recommendations reflect the most current market realities and strategic imperatives.

Concluding Perspectives That Synthesize Key Insights, Highlight Strategic Imperatives, and Foreshadow the Future of Predictive Maintenance Across Industries

The convergence of advanced sensors, artificial intelligence, and digital twin technologies is fundamentally altering how organizations safeguard critical assets. As the imperative for operational uptime intensifies, predictive maintenance emerges as a cornerstone capability, enabling enterprises to shift from reactive firefighting to strategic asset management. The insights presented in this summary reveal that success hinges on harmonizing data architectures, workforce competencies, and cross-functional collaboration.

Looking forward, the narrowing gap between on-premise and cloud-based solutions, coupled with increasing focus on sustainability metrics, will drive further innovation in real-time analytics and remote monitoring. Leaders who proactively embrace these trends, cultivate partnerships, and refine deployment roadmaps will unlock competitive differentiation, reduced lifecycle costs, and enhanced safety outcomes. By integrating the strategic recommendations herein, organizations can lay a robust foundation for resilient, data-driven maintenance regimes that evolve in step with future technological advances.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of IoT and edge computing to transform maintenance strategies
  • 5.2. Growing adoption of cloud-based PdM platforms to enhance real-time asset monitoring
  • 5.3. Implementation of AI driven anomaly detection models using deep learning for predictive asset failure
  • 5.4. Expanding use of digital twin technology to enhance predictive accuracy and equipment lifespan
  • 5.5. Rising adoption of CMMS and EAM systems with predictive capabilities
  • 5.6. Growing deployment of PdM in energy and utilities sector for cost optimization
  • 5.7. Incorporation of blockchain based data integrity solutions for secure predictive maintenance record keeping
  • 5.8. Increasing investments in AI/ML analytics to minimize downtime
  • 5.9. Surging collaborations and partnerships to fuel innovation in predictive maintenance solutions
  • 5.10. Utilization of cloud native architectures to scale predictive maintenance applications across global operations

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Predictive Maintenance Market, by Component

  • 8.1. Introduction
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
  • 8.3. Solutions
    • 8.3.1. Asset Performance Management
    • 8.3.2. Dashboard & Visualization Tools
    • 8.3.3. Data Integration & Preprocessing
    • 8.3.4. Predictive Modeling & Analytics

9. Predictive Maintenance Market, by Technique

  • 9.1. Introduction
  • 9.2. Acoustic Monitoring
  • 9.3. Corrosion Monitoring
  • 9.4. Electrical & Current Analysis
  • 9.5. Oil Analysis
  • 9.6. Thermal Imaging
  • 9.7. Ultrasound Testing
  • 9.8. Vibration Monitoring

10. Predictive Maintenance Market, by Technology

  • 10.1. Introduction
  • 10.2. Big Data & Analytics
  • 10.3. Digital Twin Technology
  • 10.4. Edge Computing
  • 10.5. Internet of Things (IoT)
  • 10.6. Machine Learning (ML) & Artificial Intelligence

11. Predictive Maintenance Market, by Application

  • 11.1. Introduction
  • 11.2. Anomaly Detection
  • 11.3. Asset Monitoring
  • 11.4. Condition Monitoring
  • 11.5. Failure Detection
  • 11.6. Health Assessment
  • 11.7. Remaining Useful Life Estimation (RUL)
  • 11.8. Root Cause Analysis
  • 11.9. Work Order Scheduling

12. Predictive Maintenance Market, by Deployment Model

  • 12.1. Introduction
  • 12.2. Cloud-Based
  • 12.3. On-Premise

13. Predictive Maintenance Market, by Organization Size

  • 13.1. Introduction
  • 13.2. Large Enterprises
  • 13.3. SMEs

14. Predictive Maintenance Market, by Industry Vertical

  • 14.1. Introduction
  • 14.2. Aerospace & Defense
  • 14.3. Chemicals
  • 14.4. Construction
  • 14.5. Energy & Utilities
    • 14.5.1. Power Generation
    • 14.5.2. Renewables
    • 14.5.3. Transmission & Distribution
  • 14.6. Food & Beverages
  • 14.7. Healthcare
  • 14.8. Manufacturing
    • 14.8.1. Discrete Manufacturing
    • 14.8.2. Process Manufacturing
  • 14.9. Mining & Metals
  • 14.10. Oil & Gas
    • 14.10.1. Downstream
    • 14.10.2. Midstream
    • 14.10.3. Upstream
  • 14.11. Telecommunications
  • 14.12. Transportation
    • 14.12.1. Aviation
    • 14.12.2. Marine
    • 14.12.3. Railways
    • 14.12.4. Roadways

15. Americas Predictive Maintenance Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Predictive Maintenance Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Predictive Maintenance Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Amazon Web Services, Inc.
    • 18.3.2. Asystom
    • 18.3.3. C3.ai, Inc.
    • 18.3.4. Databricks, Inc.
    • 18.3.5. DINGO Software Pty. Ltd.
    • 18.3.6. Fiix Inc. by Rockwell Automation, Inc.
    • 18.3.7. General Electric Company
    • 18.3.8. Hitachi, Ltd.
    • 18.3.9. Honeywell International Inc.
    • 18.3.10. Infineon Technologies AG
    • 18.3.11. Intel Corporation
    • 18.3.12. International Business Machines Corporation
    • 18.3.13. Limble Solutions, LLC
    • 18.3.14. Micro Focus International PLC by Open Text Corporation
    • 18.3.15. Microsoft Corporation
    • 18.3.16. NVIDIA Corporation
    • 18.3.17. Oracle Corporation
    • 18.3.18. Robert Bosch GmbH
    • 18.3.19. SAP SE
    • 18.3.20. Schneider Electric SE
    • 18.3.21. Siemens AG
    • 18.3.22. TIBCO Software Inc. by Cloud Software Group, Inc.
    • 18.3.23. Uptake Technologies Inc.

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦