½ÃÀ庸°í¼­
»óǰÄÚµå
1806594

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : Á¦Ç° À¯Çü, ¼­ºñ½º À¯Çü, ¿öÅ©ÇÃ·Î¿ì ½ºÅ×ÀÌÁö, »ý»ê Ç÷§Æû, ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¸ðµå, ¼Ò½º, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áúȯ ¿µ¿ªº° - ¼¼°è ¿¹Ãø(2025-2030³â)

Viral Vector & Plasmid DNA Manufacturing Market by Product Type, Service Type, Workflow Stage, Production Platform, Bioprocess Mode, Source, Application, End User, Disease Area - Global Forecast 2025-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 182 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀÇ 2024³â ½ÃÀå ±Ô¸ð´Â 45¾ï 1,000¸¸ ´Þ·¯·Î, 2025³â¿¡´Â 52¾ï 4,000¸¸ ´Þ·¯·Î ¼ºÀåÇϸç, CAGRÀº 16.40%, 2030³â¿¡´Â 112¾ï 4,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁØ¿¬µµ 2024 45¾ï 1,000¸¸ ´Þ·¯
ÃßÁ¤¿¬µµ 2025 52¾ï 4,000¸¸ ´Þ·¯
¿¹Ãø¿¬µµ 2030 112¾ï 4,000¸¸ ´Þ·¯
CAGR(%) 16.40%

Á¦Á¶ °ß°í¼º, ±ÔÁ¦ Áؼö, Ç÷§Æû ¼±ÅÃÀÌ Ã·´Ü ¹ÙÀÌ¿ÀÀǾàǰÀÇ ÀÓ»óÀû, »ó¾÷Àû ¼º°øÀ» Á¿ìÇÏ´Â ¹æ¹ýÀ» ¼³¸íÇÏ´Â Àü·«Àû ¼Ò°³

¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNAÀÇ °³¹ß ¹× Á¦Á¶´Â À¯ÀüÀÚ Ä¡·á¿Í ¼¼Æ÷ Ä¡·á¿¡¼­ Á¾¾ç¿ëÇØ¼º ¹ÙÀÌ·¯½º ¿ä¹ý¿Í ÷´Ü ¹é½Å¿¡ À̸£±â±îÁö ºü¸£°Ô È®´ëµÇ°í ÀÖ´Â °Í·ÃÀÇ Ä¡·á¹ýÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ÀÌ »ê¾÷Àº °³³ä Áõ¸íÀ» ³Ñ¾î ÀçÇö¼º, ±ÔÁ¦ Áؼö, °ø±Þ¸Á °­Àμº¿¡ ÁßÁ¡À» µÐ »ý»ê ±Ô¸ðÀÇ Çö½Ç·Î ³ª¾Æ°¡°í ÀÖ½À´Ï´Ù. µû¶ó¼­ ÅõÀÚÀÚ, °³¹ßÀÚ, Á¦Á¶¾÷ü´Â °øÁ¤ °³¹ß, ºÐ¼®ÀÇ Á¤È®¼º, Á¦Á¶ °¡´É¼ºÀ» ´Ù¿î½ºÆ®¸² °øÁ¤ÀÇ Àå¾Ö¹°ÀÌ ¾Æ´Ñ ÇÁ·Î±×·¥ÀÇ ¼º°øÀ» °áÁ¤ÇÏ´Â Àü·«Àû ¿ä¼Ò·Î ÀνÄÇØ¾ß ÇÕ´Ï´Ù.

ÃÖ÷´Ü À¯ÀüÀÚ Ä¡·áÁ¦ÀÇ Á¦Á¶ ÇöȲÀ» ÀçÁ¤ÀÇÇϰí ÀÖ´Â ÆÐ·¯´ÙÀÓ ÀüȯÀû ±â¼ú, ±ÔÁ¦, ¾÷¹«Àû µ¿Çâ¿¡ ´ëÇÑ ½ÉÃþÀû °ËÅä

ÃÖ±Ù ¼ö³â°£ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNAÀÇ ±¸»ó, °³¹ß ¹× Á¦Á¶ ¹æ½ÄÀ» À籸¼ºÇÏ´Â Çõ½ÅÀûÀÎ º¯È­°¡ ÀϾ°í ÀÖ½À´Ï´Ù. ±â¼ú Ç÷§ÆûÀº ´ÜÆíÈ­µÈ ½ÇÇè½Ç ±Ô¸ðÀÇ ÇÁ·Î¼¼½º¿¡¼­ º¸´Ù ¸ðµâÈ­µÇ°í È®Àå °¡´ÉÇÑ ½Ã½ºÅÛÀ¸·Î ¼º¼÷ÇÏ¿© ½ÇÇè½Ç¿¡¼­ ÀÓ»óÀ¸·Î ºü¸£°Ô ÀüȯÇÒ ¼ö ÀÖ´Â ±â¼ú Ç÷§ÆûÀ¸·Î ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. ÀÏȸ¿ë ±â¼ú, ÷´Ü ¹ÙÀÌ¿À¸®¾×ÅÍ ¼³°è, Æ®·£½ºÆå¼Ç È¿À² ¹× ¹ÙÀÌ·¯½º »ý»ê ´É·ÂÀÇ Çâ»ó, °øÁ¤ °­È­ ¹× ¹èÄ¡ Àϰü¼º Çâ»óÀ» ÃËÁøÇß½À´Ï´Ù. µ¿½Ã¿¡ ºÐ¼® ´É·Âµµ ÁøÈ­ÇÏ¿© ´õ ±íÀº ºÐÀÚ ¹× ±â´ÉÀû Ư¼ºÈ­°¡ °¡´ÉÇØÁ® º¸´Ù ¾ö°ÝÇÑ ¸±¸®½º ±âÁذú ·ÎÆ® °£ ºñ±³ °¡´É¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

2025³â »õ·Î¿î °ü¼¼ Á¤Ã¥ÀÌ ¹ÙÀÌ¿ÀÀǾàǰ Á¦Á¶ ÇÁ·Î±×·¥ÀÇ Á¶´Þ, ÀÚº» °èȹ, °ø±Þ¸Á °­°Ç¼ºÀ» ¾î¶»°Ô À籸¼ºÇϰí ÀÖ´ÂÁö¿¡ ´ëÇÑ Àü·« ºÐ¼®

2025³â ½ÃÇàµÈ Á¤Ã¥ Á¶Ä¡·Î ÀÎÇØ ¹ÙÀÌ¿ÀÀǾàǰ Á¦Á¶ÀÇ ¼¼°è °ø±Þ¸Á¿¡ »õ·Î¿î º¯¼ö°¡ µµÀÔµÇ¾î ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶¿¡ ÇʼöÀûÀÎ ½Ã¾à, ¼Ò¸ðǰ, Ư¼ö Àåºñ¿¡ ´ëÇÑ °ü¼¼°¡ ¿µÇâÀ» ¹ÌÄ¡°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ °ü¼¼ÀÇ ´©ÀûµÈ ¿µÇâÀº Á¶´Þ Àü·«, ÀÚº» °èȹ, ÆÄÆ®³Ê ¼±Á¤¿¡ ÆÄ±ÞµÇ¾î ±â¾÷Àº Á¶´Þ ¸ðµ¨°ú °è¾à ±¸Á¶¸¦ Àç°ËÅäÇØ¾ß ÇÏ´Â »óȲÀÔ´Ï´Ù. ¸¹Àº ±â¾÷¿¡°Ô Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ£ °ÍÀº °ø±Þ¾÷üÀÇ ¸®½ºÅ© ÇÁ·ÎÆÄÀÏÀ» ÀçÁ¶Á¤Çϰí, ÇÁ·Î±×·¥ ŸÀÓ¶óÀΰú ¸¶ÁøÀ» Áö۱â À§ÇØ ´Ï¾î¼î¾î¸µ°ú ´Ù°¢È­¸¦ °í·ÁÇÏ´Â °ÍÀ̾ú½À´Ï´Ù.

Á¦Ç° À¯Çü, ¼­ºñ½º, ¿öÅ©ÇÃ·Î¿ì ´Ü°è, Ç÷§Æû, ÇÁ·Î¼¼½º ¸ðµå, ¼Ò½Ì, ¿ëµµ, »ç¿ëÀÚ, Áúº´ Ÿ°Ù°ú °ü·ÃµÈ Á¾ÇÕÀûÀÎ ¼¼ºÐÈ­¿¡ ±â¹ÝÇÑ ÀλçÀÌÆ®¸¦ ÅëÇØ Àü·«Àû ¸íÈ®¼ºÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐÀ» ÀÌÇØÇÏ·Á¸é Á¦Ç° À¯Çü, ¼­ºñ½º ³»¿ë, ¿öÅ©ÇÃ·Î¿ì ´Ü°è, Ç÷§Æû, ÇÁ·Î¼¼½º ¸ðµå, ¼Ò½Ì Àü·«, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Ä¡·á ¿µ¿ª¿¡ °ÉÄ£ »ó¼¼ÇÑ ½Ã°¢ÀÌ ÇÊ¿äÇÕ´Ï´Ù. Á¦Ç° À¯ÇüÀÇ °üÁ¡¿¡¼­ º¸¸é, Çö󽺹̵å DNA¿Í ¹ÙÀÌ·¯½º º¤Å͸¦ ±¸ºÐÇÏ´Â °ÍÀÌ ±âº»ÀÔ´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ ÀÚü¿¡´Â ¾Æµ¥³ë ºÎ¼Ó ¹ÙÀÌ·¯½º º¤ÅÍ, ¾Æµ¥³ë ¹ÙÀÌ·¯½º º¤ÅÍ, ¾Æµ¥³ë ¹ÙÀÌ·¯½º º¤ÅÍ, Ç츣Æä½º ¹ÙÀÌ·¯½º º¤ÅÍ, ·»Ä¡ ¹ÙÀÌ·¯½º º¤ÅÍ, ·¹Æ®·Î ¹ÙÀÌ·¯½º º¤ÅͰ¡ Æ÷ÇԵǸç, °¢°¢ Á¦Á¶ ÀÇ»ç°áÁ¤À» Çü¼ºÇÏ´Â ¸íÈ®ÇÑ ÇÁ·Î¼¼½º¿Í ±ÔÁ¦ °í·Á »çÇ×ÀÌ ÀÖ½À´Ï´Ù. ºÐ¼® Å×½ºÆ®, Á¦Á¶, °øÁ¤ °³¹ß, ±ÔÁ¦ ¹× CMC Áö¿øÀº ¸ðµÎ »óÈ£ º¸¿ÏÀûÀÎ ¿ªÇÒÀ» Çϸç, °øÁ¤ °³¹ßÀº ´Ù¿î½ºÆ®¸² ÃÖÀûÈ­, Á¦Çü °³¹ß, ½ºÄÉÀϾ÷ ¹× ±â¼ú ÀÌÀü, ±×¸®°í Á¶±â ¹ß°ß¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â »ó¾÷Àû »ý»êÀ¸·Î ¿¬°áµÇ´Â ¾÷½ºÆ®¸² ÃÖÀûÈ­¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù.

¾Æ¸Þ¸®Ä«, À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«, ¾Æ½Ã¾ÆÅÂÆò¾çº°·Î °¢±â ´Ù¸¥ ±ÔÁ¦ ü°è, Àη Ǯ, »ý»ê ´É·Â ¿ªÇÐÀÌ Á¦Á¶ Àü·«¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» »ó¼¼ÇÏ°Ô ¼³¸íÇÏ´Â Áö¿ª Àü·« °üÁ¡

Áö¿ªÀû ¿ªÇÐÀº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ýŰè Àü¹Ý¿¡ °ÉÃÄ ¿ª·® °³¹ß, ±ÔÁ¦ Âü¿©, »ó¾÷Àû Àü·«¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ºÏ¹Ì¿Í ³²¹Ì¿¡¼­´Â Ȱ¹ßÇÑ º¥Ã³ Ȱµ¿°ú ÀÓ»ó ÇÁ·Î±×·¥ÀÇ ¹ÐÁýÀ¸·Î CDMOÀÇ ¿ª·®°ú °í±Þ ºÐ¼®¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ±ÔÁ¦ ´ç±¹Àº Ãʱ⠴ëÈ­¿Í ¸íÈ®ÇÑ CMC¿¡ ´ëÇÑ ±â´ëÄ¡¸¦ °è¼Ó °­Á¶Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¿£Áö´Ï¾î¸µ°ú ¹ø¿ª °úÇÐ ºÐ¾ßÀÇ Ç³ºÎÇÑ ÀÎÀç Ç®ÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖÁö¸¸, µ¿½Ã¿¡ ¼÷·ÃµÈ ÀηÂÀ» È®º¸Çϱâ À§ÇÑ °æÀï°ú ÇÁ·Î¼¼½º °­È­¸¦ Áö¿øÇϱâ À§ÇÑ ÀÎÇÁ¶ó Çö´ëÈ­ÀÇ Çʿ伺¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù.

Á¦Á¶ ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ Àü¹®È­, ÆÄÆ®³Ê½Ê, ¾÷¹« À¯¿¬¼ºÀÌ ¾î¶»°Ô Àü°³µÇ°í ÀÖ´ÂÁö, ½Ç¿ëÀûÀÎ ±â¾÷ Àü·«¿¡ ´ëÇÑ ÀλçÀÌÆ®¸¦ Á¦°ø

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA ºÐ¾ßÀÇ ÁÖ¿ä ±â¾÷Àº °æÀï ¿ìÀ§¸¦ È®º¸Çϱâ À§ÇØ Ç÷§Æû Àü¹®È­, »ý»ê ´É·Â È®´ë, ¼±ÅÃÀû ¼öÁ÷ ÅëÇÕ µî ´Ù¾çÇÑ Àü·«Àû ¼ö´ÜÀ» Ãß±¸Çϰí ÀÖ½À´Ï´Ù. ÀϺΠ±â¾÷Àº ƯÁ¤ º¤ÅÍ Å¬·¡½º ¹× ÇÁ·Î¼¼½º ´Ü°è¿¡ ´ëÇÑ ½ÉÃþÀûÀÎ Àü¹® Áö½ÄÀ» ±¸ÃàÇÏ´Â µ¥ ÁßÁ¡À» µÎ¾î µ¶ÀÚÀûÀÎ ÇÁ·Î¼¼½º ³ëÇÏ¿ì¿Í ºÐ¼® ÅøÅ°Æ®À» °³¹ßÇÏ¿© ÀÓ»ó±îÁöÀÇ ½Ã°£À» ´ÜÃàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯¿¬¼ºÀ» ¿ì¼±½ÃÇÏ°í ´Ù¾çÇÑ ÇÁ·Î±×·¥À» Áö¿øÇϸç Àüȯ ±â°£À» ´ÜÃàÇÏ´Â ¸ðµâ½Ä ¼³ºñ³ª ´ÙǰÁ¾ ¶óÀο¡ ÅõÀÚÇÏ´Â ±â¾÷µµ ÀÖ½À´Ï´Ù.

Á¦Á¶ ¿¬¼Ó¼º º¸ÀåÀ» À§ÇÑ ±â¼ú ÅõÀÚ, °ø±Þ¸Á °­°Ç¼º, ±ÔÁ¦ ´ç±¹°úÀÇ °ü°è, ÀÎÀç °³¹ß¿¡ ´ëÇÑ ¿ì¼±¼øÀ§¸¦ Á¤ÇÑ ÀÏ·ÃÀÇ ½Ç¿ëÀûÀÎ ±Ç°í¾È

¾÷°è ¸®´õ´Â ±â¼úÀÇ º¹À⼺, Á¤Ã¥ÀÇ ºÒÈ®½Ç¼º, °æÀï ¾Ð·Â¿¡ ´ëóÇϱâ À§ÇØ ÀÏ·ÃÀÇ ½Ç¿ëÀûÀÌ°í ¿µÇâ·Â ÀÖ´Â Á¶Ä¡¸¦ ÃëÇØ¾ß ÇÕ´Ï´Ù. ù°, ¸ðµâÈ­ ¹× ´ÙǰÁ¾ »ý»êÀÌ °¡´ÉÇÑ Ç÷§Æû¿¡ ¿ì¼±ÀûÀ¸·Î ÅõÀÚÇÏ¿© ÇÁ·Î±×·¥ ÆÄÀÌÇÁ¶óÀÎÀÌ º¯È­ÇÒ ¶§ ¹Îø¼ºÀ» À¯ÁöÇÕ´Ï´Ù. µÑ°, Áß¿äÇÑ ½Ã¾à ¹× Àåºñ°ø±Þ¾÷ü °ü°è¸¦ ´Ùº¯È­ÇÏ´Â ÇÑÆí, °ËÁõµÈ 2Â÷ °ø±Þó¸¦ °³¹ßÇÏ¿© ´ÜÀÏ Àå¾ÖÁ¡ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ¼Â°, °³¹ß ¹× Á¦Á¶ Àü¹Ý¿¡ °ÉÃÄ °í±Þ ºÐ¼® ¹× µðÁöÅРǰÁú ½Ã½ºÅÛÀ» ÅëÇÕÇÏ¿© ÇÁ·Î¼¼½º ÀÌÇØ¸¦ °¡¼ÓÈ­ÇÏ°í ±ÔÁ¦ ´ç±¹¿¡ Á¦ÃâÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù.

Àü¹®°¡ ÀÎÅͺä, ¹®Çå ÅëÇÕ, °ËÁõ, ½Å·Úµµ ³ôÀº ÀÇ»ç°áÁ¤ Áö¿øÀ» À§ÇÑ ½Ã³ª¸®¿À ºÐ¼®À» °áÇÕÇÑ Åõ¸íÇÏ°í ¿ËÈ£ÇÒ ¼ö Àִ ȥÇÕµÈ ¹æ¹ý·Ðº° Á¶»ç Á¢±Ù ¹æ½Ä

º» ºÐ¼®À» Áö¿øÇÏ´Â Á¶»ç¹æ¹ýÀº 1Â÷ Á¶»ç¿Í 2Â÷ Á¶»ç ¹æ½ÄÀ» ÅëÇÕÇÏ¿© °ß°í¼º, »ï°¢Ãø·®, ½Ç¿ëÀû Ÿ´ç¼ºÀ» È®º¸Çß½À´Ï´Ù. 1Â÷ Á¶»ç¿¡´Â ÇÁ·Î¼¼½º °³¹ß, Á¦Á¶, ǰÁú º¸Áõ, ±ÔÁ¦ °ü·Ã ¾÷¹«¿¡ °ÉÄ£ ÁÖÁ¦º° Àü¹®°¡¿ÍÀÇ ±¸Á¶È­µÈ ÀÎÅͺ䰡 Æ÷ÇԵ˴ϴÙ. ÀÌ Á¶»ç¸¦ ÅëÇØ ½ºÆù¼­, ¼­ºñ½º ÇÁ·Î¹ÙÀÌ´õ, ¿¬±¸±â°üÀÇ °üÁ¡¿¡¼­ º´¸ñÇö»ó, ¿ª·® °ÝÂ÷, Àü·«Àû ¿ì¼±¼øÀ§¿¡ ´ëÇÑ ÁúÀû ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ¾ú½À´Ï´Ù. 2Â÷ Á¶»ç¿¡¼­´Â ±â¼ú µ¿Çâ°ú Á¤Ã¥ °³¹ßÀÇ ¹è°æÀ» ÆÄ¾ÇÇϱâ À§ÇØ, ½É»ç°¡ ¿Ï·áµÈ ¹®Çå, ±ÔÁ¦ Áöħ, ±â¼ú ¹é¼­, ÀϹݿ¡ °ø°³µÈ Á¤º¸ µîÀ» ÅëÇÕÇÏ¿© Á¶»çÇß½À´Ï´Ù.

½Å·ÚÇÒ ¼ö ÀÖ´Â ÇÁ·Î±×·¥ ÃßÁøÀ» À§ÇØ °úÇÐÀû Çõ½Å, Á¦Á¶ÀÇ ¾ö°Ý¼º, ±ÔÁ¦¿ÍÀÇ Á¤ÇÕ¼º ÅëÇÕÀ» °­Á¶ÇÏ´Â Àü·«Àû Çʼö »çÇ×

ÀÌ ºÐ¼®Àº ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Ä¡·áÁ¦¸¦ °³¹ßÇÏ´Â Á¶Á÷¿¡°Ô ¿ì¼öÇÑ Á¦Á¶°¡ Àü·«Àû Çʼö ¿ä¼ÒÀÓÀ» °­Á¶ÇÕ´Ï´Ù. ÇÁ·Î¼¼½º ¼±ÅÃ, Ç÷§Æû Àü·«, ±ÔÁ¦¿¡ ´ëÇÑ Áغñ´Â ÇÁ·Î±×·¥ÀÌ ÀÓ»ó °³¹ß¿¡¼­ »ó¾÷Àû °ø±ÞÀ¸·Î È¿À²ÀûÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ´ÂÁö ¿©ºÎ¸¦ °áÁ¤ÇÏ´Â »óÈ£ ¿¬°üµÈ ¿ä¼ÒÀÔ´Ï´Ù. ±â¼úÀû ¼º¼÷Àº ¾÷¹« Çõ½Å, ºÐ¼®, ÀÎÀç À°¼º¿¡ ´ëÇÑ ÁýÁßÀûÀÎ ÅõÀÚ¿Í ÇÔ²² ±â¾÷ÀÌ º¯µ¿¼ºÀ» ÁÙÀ̰í ÀÓ»ó±îÁö °É¸®´Â ½Ã°£À» ´ÜÃàÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå °³¿ä

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ¿ªÇÐ

Á¦6Àå ½ÃÀå ÀλçÀÌÆ®

  • Porter's Five Forces ºÐ¼®
  • PESTEL ºÐ¼®

Á¦7Àå ¹Ì±¹ °ü¼¼ÀÇ ´©Àû ¿µÇâ 2025

Á¦8Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Çö󽺹̵å DNA
  • ¹ÙÀÌ·¯½º º¤ÅÍ
    • ¾Æµ¥³ë¿¬°ü¹ÙÀÌ·¯½º º¤ÅÍ
    • ¾Æµ¥³ë¹ÙÀÌ·¯½º º¤ÅÍ
    • ´Ü¼ø Ç츣Æä½º ¹ÙÀÌ·¯½º(HSV) º¤ÅÍ
    • ·»Æ¼¹ÙÀÌ·¯½º º¤ÅÍ
    • ·¹Æ®·Î¹ÙÀÌ·¯½º º¤ÅÍ

Á¦9Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¼­ºñ½º À¯Çüº°

  • ºÐ¼® ½ÃÇè
  • Á¦Á¶¾÷
  • ÇÁ·Î¼¼½º °³¹ß
    • ´Ù¿î½ºÆ®¸² ÃÖÀûÈ­
    • ó¹æ °³¹ß
    • ½ºÄÉÀϾ÷/±â¼ú ÀÌÀü
    • ¾÷½ºÆ®¸² ÃÖÀûÈ­
  • ±ÔÁ¦ ¹× CMC Áö¿ø

Á¦10Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¿öÅ©ÇÃ·Î¿ì ½ºÅ×ÀÌÁöº°

  • ´Ù¿î½ºÆ®¸² ó¸®
    • Æ÷ȹ
    • û¡ȭ
    • ³óÃà/¿ÏÃæ¾× ±³È¯
    • Áß°£ Á¤Á¦
    • ¿¬¸¶
  • Fill & Finish
  • ¸±¸®½º¿Í ¾ÈÁ¤¼º Å×½ºÆ®
  • ¾÷½ºÆ®¸² ó¸®
    • ¹ÙÀÌ¿À¸®¾×ÅÍ »ý»ê
    • ¼¼Æ÷ Áõ½Ä
    • Æ®·£½ºÆå¼Ç/ÇüÁúµµÀÔ(Transduction)

Á¦11Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : »ý»ê Ç÷§Æûº°

  • ¼¼±Õ¼º
  • ¹«¼¼Æ÷ ½Ã½ºÅÛ
  • °ïÃæ
  • Æ÷À¯·ù
  • È¿¸ð

Á¦12Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¹ÙÀÌ¿ÀÇÁ·Î¼¼½º ¸ðµå

  • ¹èÄ¡
  • ¹è¾ç Æ÷¸Ë
    • °íÂø
    • ¼­½ºÆæ¼Ç
  • Æäµå ¹èÄ¡
  • °ü·ù

Á¦13Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¼Ò½ºº°

  • »ç³» Á¦Á¶
  • ¾Æ¿ô¼Ò½Ì/CDMO

Á¦14Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ¿ëµµº°

  • ¼¼Æ÷Ä¡·á
  • À¯ÀüÀÚ ÆíÁý
  • À¯ÀüÀÚ Ä¡·á
  • Á¾¾ç¿ëÇØ¼º ¹ÙÀÌ·¯½º ¿ä¹ý
  • ¿¬±¸°³¹ß
  • ¹é½Å °³¹ß

Á¦15Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¹ÙÀÌ¿ÀÀǾàǰ ±â¾÷
  • ¼öŹ °³¹ß Á¦Á¶ Á¶Á÷(CDMO)
  • ¼öŹ ¿¬±¸±â°ü(CRO)
  • ¿¬±¸±â°ü

Á¦16Àå ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå : Áúȯ ¿µ¿ªº°

  • ½ÉÇ÷°ü°è
  • °£Áúȯ
  • °¨¿°Áõ
  • ´ë»ç/³»ºÐºñ
  • ±Ù°ñ°Ý
  • ½Å°æÇÐ
  • Á¾¾çÇÐ
  • ¾È°ú
  • Èñ¼Ò À¯Àü¼º Áúȯ

Á¦17Àå ¾Æ¸Þ¸®Ä«ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • ¹Ì±¹
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ºê¶óÁú
  • ¾Æ¸£ÇîÆ¼³ª

Á¦18Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • ¿µ±¹
  • µ¶ÀÏ
  • ÇÁ¶û½º
  • ·¯½Ã¾Æ
  • ÀÌÅ»¸®¾Æ
  • ½ºÆäÀÎ
  • ¾Æ¶ø¿¡¹Ì¸®Æ®
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • µ§¸¶Å©
  • ³×´ú¶õµå
  • īŸ¸£
  • Çɶõµå
  • ½º¿þµ§
  • ³ªÀÌÁö¸®¾Æ
  • ÀÌÁýÆ®
  • Æ¢¸£Å°¿¹
  • À̽º¶ó¿¤
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • ½ºÀ§½º

Á¦19Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå

  • Áß±¹
  • Àεµ
  • ÀϺ»
  • È£ÁÖ
  • Çѱ¹
  • Àεµ³×½Ã¾Æ
  • ű¹
  • Çʸ®ÇÉ
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • º£Æ®³²
  • ´ë¸¸

Á¦20Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®, 2024
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º, 2024
  • °æÀï ºÐ¼®
    • Lonza Group Ltd.
    • Merck KGaA
    • Advanced BioScience Laboratories, Inc.
    • Akron Biotech
    • Avid Bioservices, Inc.
    • Batavia Biosciences B.V.
    • BioNTech IMFS GmbH
    • Biovian Oy
    • c-LEcta GmbH
    • Charles River Laboratories International, Inc.
    • FILTROX AG
    • Creative Biogene
    • Forge Biologics By Ajinomoto Co., Inc.
    • FUJIFILM Diosynth Biotechnologies Inc.
    • GE HealthCare Technologies, Inc.
    • GeneOne Life Science, Inc.
    • Genezen Laboratories, Inc.
    • Kaneka Eurogentec S.A.
    • Miltenyi Biotec B.V. & Co. KG
    • Revvity, Inc.
    • REGENXBIO Inc.
    • Genentech, Inc.
    • Takara Bio Inc.
    • Thermo Fisher Scientific Inc.
    • uniQure N.V.
    • Wuxi AppTec Co., Ltd.
    • Catalent, Inc.
    • Oxford Biomedica plc
    • Aldevron, LLC
    • GenScript Biotech Corporation
    • POLYPLUS TRANSFECTION S.A.
    • Hillgene Biopharma Co., Ltd.
    • BioSpace, Inc.
    • Twist Bioscience Corporation
    • Cytiva by Danaher Corporation

Á¦21Àå ¸®¼­Ä¡ AI

Á¦22Àå ¸®¼­Ä¡ Åë°è

Á¦23Àå ¸®¼­Ä¡ ÄÁÅÃ

Á¦24Àå ¸®¼­Ä¡ ±â»ç

Á¦25Àå ºÎ·Ï

KSA

The Viral Vector & Plasmid DNA Manufacturing Market was valued at USD 4.51 billion in 2024 and is projected to grow to USD 5.24 billion in 2025, with a CAGR of 16.40%, reaching USD 11.24 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 4.51 billion
Estimated Year [2025] USD 5.24 billion
Forecast Year [2030] USD 11.24 billion
CAGR (%) 16.40%

A strategic introduction describing how manufacturing robustness, regulatory alignment, and platform selection determine clinical and commercial success in advanced biologics

The development and manufacture of viral vectors and plasmid DNA now underpin a rapidly expanding set of therapeutic modalities, from gene therapies and cell therapies to oncolytic virotherapies and advanced vaccines. The industry is moving beyond proof-of-concept activity and toward production-scale realities, with an emphasis on reproducibility, regulatory compliance, and supply chain resilience. Investors, developers, and manufacturers must therefore view process development, analytical rigor, and manufacturability as strategic determinants of program success rather than downstream obstacles.

Recent technological progress has reduced some historical barriers to entry, yet it has also introduced new complexities. Advances in vector design and plasmid construct engineering have amplified demands on upstream and downstream processing, while heightened regulatory expectations have elevated the importance of quality systems and CMC documentation. Consequently, leaders must navigate a landscape where scientific innovation, manufacturing capability, and regulatory strategy converge to determine clinical and commercial viability.

Transitioning from laboratory-scale production to consistent clinical and commercial supply requires deliberate planning across platform selection, workforce competencies, and vendor ecosystems. As programs advance to later-stage clinical development, manufacturers must align process robustness with regulatory engagement, while anticipating capacity constraints and capital needs. This introduction sets the stage for a deeper examination of structural shifts, policy impacts, segmentation nuance, and actionable recommendations for organizations operating within this dynamic field.

An in-depth examination of paradigm-shifting technological, regulatory, and operational trends that are redefining the manufacturing landscape for advanced gene modalities

The last several years have seen transformative shifts that are reshaping how viral vectors and plasmid DNA are conceived, developed, and produced. Technology platforms have matured from fragmented, lab-scale processes into more modular, scalable systems, enabling faster translation from bench to clinic. Single-use technologies, advanced bioreactor designs, and improvements in transfection efficiency or viral production have driven process intensification and greater batch consistency. At the same time, analytical capabilities have evolved to provide deeper molecular and functional characterization, thereby enabling tighter release criteria and improved lot-to-lot comparability.

Concurrently, regulatory frameworks and industry expectations have moved toward greater harmonization and early engagement. Regulators increasingly emphasize control strategies, comparability demonstrations, and the use of orthogonal analytical methods to support product quality. In parallel, the growth of outsourced manufacturing and CDMO specialization is shifting strategic investment decisions: sponsors must balance in-house capabilities with the agility and scale offered by external partners. This dynamic environment is also seeing digitalization of manufacturing operations and adoption of data-driven quality systems, which together improve process control and facilitate regulatory submissions.

As a result, organizations that invest in adaptable platforms, robust analytics, and collaborative regulatory strategies are better positioned to capture the opportunities created by novel therapeutic modalities. The convergence of technological, regulatory, and commercial forces is creating an era in which manufacturing strategy is integral to therapeutic differentiation rather than a mere operational consideration.

A strategic analysis of how new tariff policies in 2025 are reshaping procurement, capital planning, and supply chain resilience for biologics manufacturing programs

Policy measures implemented in 2025 introduced a new variable into global supply chains for biologics manufacturing, with tariffs affecting reagents, consumables, and specialized equipment that are critical to viral vector and plasmid DNA production. The cumulative impact of these tariffs has rippled through procurement strategies, capital planning, and partner selection, prompting organizations to reassess sourcing models and contract structures. For many, the immediate effect has been a recalibration of supplier risk profiles and an examination of nearshoring versus diversification to protect program timelines and margins.

Beyond procurement, tariffs have influenced investment decisions around facility build-outs and equipment acquisition. Longer lead times and increased costs for certain imported components have caused some sponsors and CDMOs to reprioritize modular, flexible assets that accommodate multiple product types. In addition, contractual dynamics have shifted as buyers negotiate longer-term agreements or volume commitments to secure supply and mitigate price volatility. Fiscal unpredictability has underscored the importance of scenario planning and stress-testing supply chains against policy shocks.

To adapt, forward-looking organizations are developing mitigation strategies that include multi-sourcing critical reagents, increasing local inventory buffers for high-risk components, and collaborating more closely with suppliers to co-develop contingency plans. Engaging proactively with regulators and trade authorities also helps clarify compliance pathways for alternative materials. Ultimately, success in this environment requires a disciplined approach to procurement strategy, capital allocation, and cross-functional coordination to maintain program momentum in the face of evolving trade policy.

Comprehensive segmentation-driven insights connecting product types, services, workflow stages, platforms, process modes, sourcing, applications, users, and disease targets for strategic clarity

Understanding market dynamics requires a granular view across product types, service offerings, workflow stages, platforms, process modes, sourcing strategies, applications, end users, and therapeutic areas. From a product type perspective, distinctions between plasmid DNA and viral vectors are foundational; viral vectors themselves encompass adeno-associated viral vectors, adenoviral vectors, herpes simplex virus vectors, lentiviral vectors, and retroviral vectors, each with distinct process and regulatory considerations that shape manufacturing decision-making. Service portfolios reflect the industry's lifecycle needs: analytical testing, manufacturing, process development, and regulatory and CMC support all play complementary roles, with process development spanning downstream optimization, formulation development, scale-up and technology transfer, and upstream optimization to bridge early discovery and reliable commercial production.

The workflow stage segmentation-encompassing downstream processing, fill and finish, release and stability testing, and upstream processing-reveals opportunities and constraints that vary across process steps. Downstream activities such as capture, clarification, concentration and buffer exchange, intermediate purification, and polishing are technically demanding and often bottleneck-prone, while upstream activities like bioreactor production, cell expansion, and transfection or transduction determine yield and product quality early in the chain. Production platform choice-whether bacterial, cell-free systems, insect, mammalian, or yeast-further informs equipment selection, contamination control, and regulatory strategy.

Bioprocess mode choices including batch, culture format, fed-batch, and perfusion, with culture formats split into adherent and suspension systems, influence scale-up complexity and cost structure. Meanwhile, decisions around source-whether in-house manufacturing or outsourced CDMO partnerships-shape capital intensity and operational flexibility. Application areas from cell therapy, gene editing, gene therapy, oncolytic virotherapy, research and development, to vaccine development impose divergent quality, throughput, and timeline expectations. End users such as biopharmaceutical companies, CDMOs, CROs, and research institutions each require tailored service models, and disease area focus-spanning cardiovascular, hepatic, infectious, metabolic or endocrine, musculoskeletal, neurology, oncology, ophthalmology, and rare genetic disorders-affects regulatory pathways and commercial strategies. Synthesizing these segments reveals that technical choices and commercial models must be aligned with therapeutic goals to optimize development timelines and long-term sustainability.

Regional strategic perspectives detailing how distinct regulatory regimes, talent pools, and capacity dynamics across the Americas, EMEA, and Asia-Pacific influence manufacturing strategy

Regional dynamics exert a major influence on capability development, regulatory engagement, and commercial strategy across the viral vector and plasmid DNA ecosystem. In the Americas, robust venture activity and a dense concentration of clinical programs drive strong demand for CDMO capacity and advanced analytics, while regulatory agencies continue to emphasize early dialogue and clear CMC expectations. The region benefits from deep talent pools in bioprocess engineering and translational science, yet it also faces competition for skilled labor and the need to modernize infrastructure to support process intensification.

Europe, Middle East & Africa presents a heterogeneous landscape where established manufacturing hubs coexist with emerging centers of excellence. Regulatory regimes across the region vary, creating both opportunities for local innovation and challenges for cross-border program harmonization. Many organizations are developing regional strategies that leverage Europe's strong regulatory science base and specialized manufacturing expertise, while simultaneously managing logistics and compliance complexities that arise from multi-jurisdictional operations.

Asia-Pacific is characterized by rapidly expanding capacity, significant government support for biomanufacturing, and a growing number of specialized service providers. The region's manufacturing ecosystems are evolving quickly, with investments in both large-scale facilities and niche capabilities. As a result, Asia-Pacific is increasingly integrated into global supply chains, offering attractive options for cost-effective manufacturing, though companies must navigate differing regulatory expectations and quality assurance practices. Across all regions, successful players adapt their strategies to local strengths while maintaining global standards of quality and regulatory compliance.

Actionable corporate strategy insights revealing how specialization, partnerships, and operational flexibility are being deployed to secure manufacturing advantage

Leading organizations in the viral vector and plasmid DNA space are pursuing a range of strategic moves to secure competitive advantage, including platform specialization, targeted capacity expansion, and selective vertical integration. Some players focus on building deep expertise around particular vector classes or process steps, developing proprietary process know-how and analytical toolkits that reduce time to clinic. Others prioritize flexibility, investing in modular facilities and multi-product lines that support diverse programs and reduce changeover timelines.

Strategic partnerships and alliances are common, as sponsors collaborate with service providers to access capacity, regulatory expertise, and specialized technologies without committing to full-scale capital investments. Mergers and acquisitions have also emerged as a mechanism to accelerate capability acquisition and geographic expansion, particularly when time-to-market is critical. In parallel, investment in digital process control, quality systems modernization, and advanced analytics is helping organizations reduce variability and improve decision-making.

Collectively, these trends suggest that successful companies balance deep technical differentiation with operational elasticity. They combine scientific leadership in vector design or plasmid engineering with disciplined manufacturing and quality practices to support consistent supply. Firms that cultivate strong supplier relationships, invest in workforce development, and align commercial strategy with manufacturing capability are better positioned to support complex clinical programs and scale reliably into commercial markets.

A pragmatic set of prioritised recommendations for technology investment, supply chain resilience, regulatory engagement, and workforce development to secure manufacturing continuity

Industry leaders should adopt a set of practical, high-impact measures to navigate technological complexity, policy uncertainty, and competitive pressures. First, prioritize platform investments that enable modularity and multiproduct runs, thereby preserving agility when program pipelines shift. Second, diversify supplier relationships for critical reagents and equipment while developing verified secondary sources to reduce single-point-of-failure risks. Third, embed advanced analytics and digital quality systems across development and manufacturing to accelerate process understanding and support regulatory submissions.

Additionally, organizations should strengthen regulatory engagement by initiating early scientific advice and by validating orthogonal analytical methods that provide robust evidence of product quality. Strategic use of outsourcing for non-core functions can accelerate timelines, but it must be governed by rigorous vendor qualification and joint governance frameworks to ensure alignment on timelines and quality standards. Workforce development is equally essential; invest in targeted training that spans process development, quality, and data analytics to close skill gaps.

Finally, incorporate scenario planning into strategic reviews to stress-test programs against policy changes, supply disruptions, and shifts in demand. By combining operational resilience with focused technological investment and proactive regulatory dialogue, leaders can reduce program risk and create a foundation for sustainable growth in a rapidly evolving sector.

A transparent and defensible mixed-methods research approach combining expert interviews, literature synthesis, validation, and scenario analysis for reliable decision support

The research methodology underpinning this analysis integrates both primary and secondary approaches to ensure robustness, triangulation, and practical relevance. Primary research included structured interviews with subject-matter experts across process development, manufacturing operations, quality assurance, and regulatory affairs. These engagements provided qualitative insights into bottlenecks, capability gaps, and strategic priorities from the perspectives of sponsors, service providers, and research institutions. Secondary research synthesized peer-reviewed literature, regulatory guidance, technical white papers, and publicly available disclosures to contextualize technological trends and policy developments.

Data validation relied on cross-referencing interview findings with published process methods and regulatory precedents to confirm consistency and identify areas of divergence. Scenario analysis was used to examine the implications of policy shifts-such as tariff changes-and to model how different sourcing and capital strategies could affect program risk. The research also incorporated a review of advanced analytics and process control technologies to assess readiness for scale-up and regulatory submission.

Limitations include variability in proprietary process details and the evolving regulatory environment, which may alter guidance over time. To mitigate this, the methodology emphasizes transparency in assumptions and recommends periodic updates to reflect technological advancements and policy changes. The combined approach provides a defensible foundation for decision-making while remaining adaptable to new information.

A concise synthesis of strategic imperatives emphasizing the integration of scientific innovation, manufacturing rigor, and regulatory alignment to enable reliable program advancement

This analysis highlights that manufacturing excellence is now a strategic imperative for organizations developing viral vector and plasmid DNA therapeutics. Process selection, platform strategy, and regulatory preparedness are intertwined factors that determine whether programs can move efficiently through clinical development and into commercial supply. Technological maturation, coupled with operational innovation and targeted investments in analytics and workforce development, enables organizations to reduce variability and accelerate time to clinic.

Equally important is the need for adaptive supply chain strategies and proactive regulatory dialogue to manage external shocks such as policy changes or component shortages. Organizations that combine flexible manufacturing approaches with robust quality systems and strategic partnerships are better positioned to sustain program momentum and respond to evolving market demands. In conclusion, success in this domain will favor those who integrate scientific excellence with manufacturing pragmatism, embrace collaborative sourcing and regulatory strategies, and commit to continuous improvement of both processes and people.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Advances in single-use bioreactor technology for scalable viral vector production
  • 5.2. Implementation of quality by design frameworks in plasmid DNA manufacturing processes
  • 5.3. Adoption of continuous manufacturing platforms to streamline viral vector production timelines
  • 5.4. Integration of AI-driven process analytical technology for real-time viral vector monitoring
  • 5.5. Development of high-fidelity plasmid backbone constructs to enhance gene therapy potency
  • 5.6. Expansion of customized lentiviral vector capacity through strategic CMO and biotech partnerships
  • 5.7. Optimization of plasmid DNA purification with single-use tangential flow filtration systems
  • 5.8. Regulatory harmonization efforts shaping global supply chains for clinical-grade viral vectors
  • 5.9. Increased vertical integration by gene therapy sponsors to secure viral vector and plasmid capacity and compress CMC timelines
  • 5.10. Evolving intellectual property and royalty structures for novel capsids and producer lines influencing make-versus-buy decisions

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Viral Vector & Plasmid DNA Manufacturing Market, by Product Type

  • 8.1. Introduction
  • 8.2. Plasmid DNA
  • 8.3. Viral Vector
    • 8.3.1. Adeno-Associated Viral Vectors
    • 8.3.2. Adenoviral Vectors
    • 8.3.3. Herpes Simplex Virus (HSV) Vectors
    • 8.3.4. Lentiviral Vectors
    • 8.3.5. Retroviral Vectors

9. Viral Vector & Plasmid DNA Manufacturing Market, by Service Type

  • 9.1. Introduction
  • 9.2. Analytical Testing
  • 9.3. Manufacturing
  • 9.4. Process Development
    • 9.4.1. Downstream Optimization
    • 9.4.2. Formulation Development
    • 9.4.3. Scale-Up/Technology Transfer
    • 9.4.4. Upstream Optimization
  • 9.5. Regulatory & CMC Support

10. Viral Vector & Plasmid DNA Manufacturing Market, by Workflow Stage

  • 10.1. Introduction
  • 10.2. Downstream Processing
    • 10.2.1. Capture
    • 10.2.2. Clarification
    • 10.2.3. Concentration/Buffer Exchange
    • 10.2.4. Intermediate Purification
    • 10.2.5. Polishing
  • 10.3. Fill & Finish
  • 10.4. Release & Stability Testing
  • 10.5. Upstream Processing
    • 10.5.1. Bioreactor Production
    • 10.5.2. Cell Expansion
    • 10.5.3. Transfection/Transduction

11. Viral Vector & Plasmid DNA Manufacturing Market, by Production Platform

  • 11.1. Introduction
  • 11.2. Bacterial
  • 11.3. Cell-Free Systems
  • 11.4. Insect
  • 11.5. Mammalian
  • 11.6. Yeast

12. Viral Vector & Plasmid DNA Manufacturing Market, by Bioprocess Mode

  • 12.1. Introduction
  • 12.2. Batch
  • 12.3. Culture Format
    • 12.3.1. Adherent
    • 12.3.2. Suspension
  • 12.4. Fed-Batch
  • 12.5. Perfusion

13. Viral Vector & Plasmid DNA Manufacturing Market, by Source

  • 13.1. Introduction
  • 13.2. In-House Manufacturing
  • 13.3. Outsourced/CDMO

14. Viral Vector & Plasmid DNA Manufacturing Market, by Application

  • 14.1. Introduction
  • 14.2. Cell Therapy
  • 14.3. Gene Editing
  • 14.4. Gene Therapy
  • 14.5. Oncolytic Virotherapy
  • 14.6. Research & Developement
  • 14.7. Vaccine Development

15. Viral Vector & Plasmid DNA Manufacturing Market, by End User

  • 15.1. Introduction
  • 15.2. Biopharmaceutical Companies
  • 15.3. Contract Development & Manufacturing Organizations (CDMOs)
  • 15.4. Contract Research Organizations (CROs)
  • 15.5. Research Institutions

16. Viral Vector & Plasmid DNA Manufacturing Market, by Disease Area

  • 16.1. Introduction
  • 16.2. Cardiovascular
  • 16.3. Hepatic Diseases
  • 16.4. Infectious Diseases
  • 16.5. Metabolic/Endocrine
  • 16.6. Musculoskeletal
  • 16.7. Neurology
  • 16.8. Oncology
  • 16.9. Ophthalmology
  • 16.10. Rare Genetic Disorders

17. Americas Viral Vector & Plasmid DNA Manufacturing Market

  • 17.1. Introduction
  • 17.2. United States
  • 17.3. Canada
  • 17.4. Mexico
  • 17.5. Brazil
  • 17.6. Argentina

18. Europe, Middle East & Africa Viral Vector & Plasmid DNA Manufacturing Market

  • 18.1. Introduction
  • 18.2. United Kingdom
  • 18.3. Germany
  • 18.4. France
  • 18.5. Russia
  • 18.6. Italy
  • 18.7. Spain
  • 18.8. United Arab Emirates
  • 18.9. Saudi Arabia
  • 18.10. South Africa
  • 18.11. Denmark
  • 18.12. Netherlands
  • 18.13. Qatar
  • 18.14. Finland
  • 18.15. Sweden
  • 18.16. Nigeria
  • 18.17. Egypt
  • 18.18. Turkey
  • 18.19. Israel
  • 18.20. Norway
  • 18.21. Poland
  • 18.22. Switzerland

19. Asia-Pacific Viral Vector & Plasmid DNA Manufacturing Market

  • 19.1. Introduction
  • 19.2. China
  • 19.3. India
  • 19.4. Japan
  • 19.5. Australia
  • 19.6. South Korea
  • 19.7. Indonesia
  • 19.8. Thailand
  • 19.9. Philippines
  • 19.10. Malaysia
  • 19.11. Singapore
  • 19.12. Vietnam
  • 19.13. Taiwan

20. Competitive Landscape

  • 20.1. Market Share Analysis, 2024
  • 20.2. FPNV Positioning Matrix, 2024
  • 20.3. Competitive Analysis
    • 20.3.1. Lonza Group Ltd.
    • 20.3.2. Merck KGaA
    • 20.3.3. Advanced BioScience Laboratories, Inc.
    • 20.3.4. Akron Biotech
    • 20.3.5. Avid Bioservices, Inc.
    • 20.3.6. Batavia Biosciences B.V.
    • 20.3.7. BioNTech IMFS GmbH
    • 20.3.8. Biovian Oy
    • 20.3.9. c-LEcta GmbH
    • 20.3.10. Charles River Laboratories International, Inc.
    • 20.3.11. FILTROX AG
    • 20.3.12. Creative Biogene
    • 20.3.13. Forge Biologics By Ajinomoto Co., Inc.
    • 20.3.14. FUJIFILM Diosynth Biotechnologies Inc.
    • 20.3.15. GE HealthCare Technologies, Inc.
    • 20.3.16. GeneOne Life Science, Inc.
    • 20.3.17. Genezen Laboratories, Inc.
    • 20.3.18. Kaneka Eurogentec S.A.
    • 20.3.19. Miltenyi Biotec B.V. & Co. KG
    • 20.3.20. Revvity, Inc.
    • 20.3.21. REGENXBIO Inc.
    • 20.3.22. Genentech, Inc.
    • 20.3.23. Takara Bio Inc.
    • 20.3.24. Thermo Fisher Scientific Inc.
    • 20.3.25. uniQure N.V.
    • 20.3.26. Wuxi AppTec Co., Ltd.
    • 20.3.27. Catalent, Inc.
    • 20.3.28. Oxford Biomedica plc
    • 20.3.29. Aldevron, LLC
    • 20.3.30. GenScript Biotech Corporation
    • 20.3.31. POLYPLUS TRANSFECTION S.A.
    • 20.3.32. Hillgene Biopharma Co., Ltd.
    • 20.3.33. BioSpace, Inc.
    • 20.3.34. Twist Bioscience Corporation
    • 20.3.35. Cytiva by Danaher Corporation

21. ResearchAI

22. ResearchStatistics

23. ResearchContacts

24. ResearchArticles

25. Appendix

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦