½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1443928

¼¼°èÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ : ½ÃÀå Á¡À¯À² ºÐ¼®, »ê¾÷ µ¿Çâ ¹× Åë°è, ¼ºÀå ¿¹Ãø(2024-2029³â)

Global Viral Vector and Plasmid DNA Manufacturing - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2024 - 2029)

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Mordor Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¼¼°è ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå ±Ô¸ð´Â 2024³â 18¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. 2029³â¿¡´Â 60¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£(2024-2029³â) µ¿¾È 27.18%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.

¼¼°è ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê  ½ÃÀå

Äڷγª19 »çÅ´ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA »ý»ê ½ÃÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÓ»ó½ÃÇè¿¡ µé¾î°£ ÀϺΠÄڷγª19 ¹é½Å Èĺ¸¿¡´Â ¹ÙÀÌ·¯½º º¤ÅÍ ¹é½Åµµ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ÀÌµé ¹é½ÅÀº Àü ¼¼°èÀûÀ¸·Î »ç¿ëÀÌ ½ÂÀÎµÈ Äڷγª19 ¹é½Å Áß Çϳª°¡ µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. À̵é Áß »ó´ç¼ö´Â ½ÂÀÎÀ» ¹Þ¾Ò°Å³ª ½ÂÀÎ ´Ü°è¿¡ ÀÖ½À´Ï´Ù. 2021³â 1¿ù, Á¸½¼¾ØµåÁ¸½¼Àº Äڷγª19¿¡ ´ëÇÑ ¾Öµå¹é ¹é½Å Ç÷§ÆûÀ» »ç¿ëÇÑ 3»ó ENSEMBLE ÀÓ»ó½ÃÇèÀÇ ¾çÈ£ÇÑ À¯È¿¼º ¹× ¾ÈÀü¼º µ¥ÀÌÅ͸¦ ¹ßÇ¥ÇÏ¿´½À´Ï´Ù. ÇöÀç Janssen Pharmaceutical Companies¿¡¼­ °³¹ß ÁßÀÎ ´Üȸ Á¢Á¾ Äڷγª19 ¹é½ÅÀº ¸ðµç ÀüÁ¦Á¶°Ç°ú ¸ñÇ¥¸¦ ÃæÁ·Çß½À´Ï´Ù. AdVac ¹ÙÀÌ·¯½º º¤ÅÍ ±â¼úÀº ½Åü¿¡ °­·ÂÇÏ°í ¿À·¡ Áö¼ÓµÇ´Â ü¾×¼º ¹× ¼¼Æ÷¼º ¸é¿ª ¹ÝÀÀÀ» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀϺΠ½ÂÀÎÀ» ¹ÞÀº ¶Ç ´Ù¸¥ ¹ÙÀÌ·¯½º º¤ÅÍ ±â¹Ý ¹é½ÅÀº Oxford-AstraZeneca COVID-19 ¹é½ÅÀÔ´Ï´Ù. ÀÌ ¹é½ÅÀº 2020³â11 ¿ù¿¡ óÀ½ ¹ß°ßµÇ¾úÀ¸¸ç ±× ÀÌÈÄ·Î »ç¶÷µé¿¡°Ô ¹é½ÅÀ» Á¢Á¾Çϱâ À§ÇØ ´ë·® »ý»êµÇ¾úÀ¸¸ç, COVID-19 ¹ÙÀÌ·¯½º º¤ÅÍ ¹é½ÅÀº º¹Á¦µÇÁö ¾ÊÀº ¹ÙÀÌ·¯½º º¤Å͸¦ »ç¿ëÇÏ¿© Àü ¼¼°èÀûÀ¸·Î °³¹ß ÁßÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹é½ÅÀÇ ¸é¿ª ¹ÝÀÀÀº À¯»çÇÑ ÆÐÅÏÀ» µû¸¨´Ï´Ù. Áï, Ç×ü¸¦ »ý¼ºÇÏ´Â B¼¼Æ÷¿Í T¼¼Æ÷°¡ Æ÷ÇԵǾî ü³»ÀÇ °¨¿°µÈ ¼¼Æ÷¸¦ ã¾Æ Æı«ÇÏ°í Àå±âÀûÀ¸·Î Áö¼ÓµÇ´Â ¸é¿ªÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ºÐ¾ß¿¡ ´ëÇÑ ´õ ¸¹Àº ¿¬±¸¿Í ÅõÀÚ Áõ°¡´Â ¹é½Å °³¹ß¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

À¯ÀüÀÚ Ä¡·áÁ¦ °³¹ßÀÇ ¼ºÀåÀ¸·Î Çö󽺹̵å DNA¿¡ ´ëÇÑ ¼ö¿ä°¡ ²ÙÁØÈ÷ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. pDNA´Â AAV(Adeno-Associated Virus), ·»Æ¼ ¹ÙÀÌ·¯½º ¹× ±âŸ ¹ÙÀÌ·¯½º º¤ÅÍ Ç÷§ÆûÀ» »ý¼ºÇϱâÀ§ÇÑ ÀüÁ¦Á¶°ÇÀÔ´Ï´Ù. ¶ÇÇÑ ÀϺΠÀ¯Àü¼º Áúȯ°ú ¼ö¸¹Àº »ý¸íÀ» À§ÇùÇÏ´Â Áúº´, ƯÈ÷ ½ÉÀ庴, ¿¡ÀÌÁî, ³¶Æ÷¼º ¼¶À¯Áõ, ³ëÈ­ °ü·Ã Áúº´µµ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¹Ì±¹ Áúº´ÅëÁ¦¿¹¹æ¼¾ÅÍ 2021³âÆÇ¿¡ µû¸£¸é °íÇ÷¾ÐÀº ½ÉÇ÷°ü ÁúȯÀÇ ÁÖ¿ä À§Çè ¿äÀÎÀ¸·Î ¸Å³â Àü ¼¼°èÀûÀ¸·Î ¾à 1,000¸¸ ¸íÀÌ »ç¸ÁÇÏ´Â °ÍÀ¸·Î Ãß»êµË´Ï´Ù. ÀÌ Åë°è´Â Àü ¼¼°è »ç¸ÁÀÚ ¼öÀÇ 35%¿¡ ÇØ´çÇÕ´Ï´Ù. ¹ÙÀÌ·¯½º º¤Å͸¦ ÀÌ¿ëÇÑ À¯ÀüÀÚ Ä¡·á´Â ´Ù¸¥ Ä¡·á¹ýÀÌ Áõ»óÀ» ¿ÏÈ­ÇÏ´Â µ¥ ±×Ä¡Áö ¾Ê°í, À¯Àü¼º Áúȯ ¹× ±âŸ »ý¸íÀ» À§ÇùÇÏ´Â Áúº´À» ¾Î°í Àִ ȯÀڵ鿡°Ô ¿ÏÀüÇÑ Ä¡À¯¸¦ °¡Á®´ÙÁÝ´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ¿Í Çö󽺹̵å DNAÀÇ »ý»ê¿¡ ´ëÇÑ ¿©·¯ ÀÓ»ó ¿¬±¸°¡ ¼öÇàµÇ°í ÀÖÀ¸¸ç, Áß¿äÇÑ ÀÇ·á ¼ö¿ä¸¦ ÇØ°áÇϱâ À§ÇÑ À¯ÀüÀÚ Ä¡·áÀÇ ÀáÀç·ÂÀ» °­Á¶ÇÏ°í ÀÖ½À´Ï´Ù.

Á¦¾àȸ»ç, À§Å¹»ý»ê Á¶Á÷, ¿¬±¸±â°ü, ºñ¿µ¸®´Üü µî ¿©·¯ °ü°èÀÚµéÀÌ ÀÌ·¯ÇÑ º¤ÅÍÀÇ °³¹ß°ú »ý»ê¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ°í ÀÖ½À´Ï´Ù. 2021³â 4¿ù, ¿µ±¹ÀÇ ÀÓ»ó½ÃÇè¿¡ ÁßÁ¡À» µÐ ¹ÙÀÌ·¯½º º¤ÅÍ Á¦Á¶¾÷üÀÎ ViroCell Biologics°¡ ¹ÙÀÌ·¯½º º¤Å͸¦ Ãâ½ÃÇß½À´Ï´Ù. À̹ø Ãâ½Ã¸¦ ÅëÇØ È¸»ç´Â ÀÓ»ó½ÃÇè¿¡ µé¾î°¡´Â ¹ø¿ª ¼¼Æ÷ Ä¡·á ¹× À¯ÀüÀÚ Ä¡·á¸¦À§ÇÑ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í À¯ÀüÀÚ º¯Çü ¼¼Æ÷¸¦ ÇÐ°è ¹× ±â¾÷ °í°´¿¡°Ô °ø±ÞÇÒ ¿¹Á¤ÀÔ´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀå µ¿Çâ

¿ëµµº°·Î´Â ¾Ï ºÐ¾ß°¡ °ßÁ¶ÇÑ ¼ºÀå¼¼¸¦ ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼¼°è ¾Ï ¹ßº´·üÀÇ ±Þ°ÝÇÑ Áõ°¡¿Í ÃֽŠÀÇ·á½Ã¼³ÀÌ ÀÌ ºÐ¾ß ¼ºÀåÀÇ ÁÖ¿ä ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. GLOBOCAN 2020¿¡ µû¸£¸é, 2020³â ½Å±Ô ¾Ï ¹ßº´ °Ç¼ö´Â 1,9,292,789°ÇÀ̸ç, 2040³â±îÁö 2,8887,940°ÇÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶ÇÇÑ, ¾ÏÀ» Ä¡·áÇϱâ À§ÇØ °³¹ßµÈ À¯ÀüÀÚ Ä¡·á Àü·«µµ ¸¹ÀÌ ÀÖ½À´Ï´Ù. ÀÚ»ì À¯ÀüÀÚ Ä¡·á, Á¾¾ç¿ëÇؼº ¹ÙÀÌ·¯½º ¿ä¹ý, Ç×Ç÷°ü ½Å»ý, Ä¡·á¿ë À¯ÀüÀÚ ¹é½Å µî ´Ù¾çÇÑ ¾Ï¿¡ ´ëÀÀÇÕ´Ï´Ù.

2019³â ¹ßÇ¥µÈ ¿¬±¸ ³í¹® 'įÅäÅ×½ÅÀ» ÀÌ¿ëÇÑ È­ÇÐ ¹ÙÀÌ·¯½º Ä¡·á´Â Á¾¾ç ¿ëÇؼº È«¿ª ¹ÙÀÌ·¯½º ¸Å°³ À¯¹æ¾Ï ¼¼Æ÷ »ç¸êÀ» ÃËÁøÇÑ´Ù(Chemovirotherapeutic Treatment Using Camptothecin Enhances Oncolytic Measles Virus-Mediated Killing of Breast Cancer Cells)'¿¡ µû¸£¸é, Á¾¾ç¿ëÇؼº ¹ÙÀÌ·¯½º ¿ä¹ý´Â Ç×¾Ï Ä¡·áÀÇ »õ·Î¿î ¹ßÀüÀÔ´Ï´Ù. À¯¹æ¾ÏÀ» Æ÷ÇÔÇÑ ´Ù¾çÇÑ ¾Ï¿¡ ´ëÇÑ ½ÃÇèÀÌ ÁøÇà ÁßÀÌÁö¸¸, ´Üµ¶ ¿ä¹ýÀ¸·Î Àü´ÞµÇ´Â Á¾¾ç ¿ëÇؼº ¹ÙÀÌ·¯½º º¤ÅÍÀÇ È¿´ÉÀº Á¦ÇÑÀûÀÔ´Ï´Ù. Á¾¾ç¿ëÇؼº ¹ÙÀÌ·¯½º ¿ä¹ý´Â Á¤»ó ¼¼Æ÷ÀÇ ¼Õ»óÀ» ÃÖ¼ÒÈ­Çϸ鼭 ¾Ï Á¶Á÷À» ¼±ÅÃÀûÀ¸·Î Ç¥ÀûÈ­ÇÏ¿© Æı«ÇÒ ¼ö ÀÖ´Â À¯¸ÁÇÑ Ä¡·á¹ýÀÔ´Ï´Ù.

ÇöÀç ³ú, ÇǺÎ, °£, °áÀå, À¯¹æ, ½ÅÀå µî ´Ù¾çÇÑ À¯ÇüÀÇ ¾ÏÀ» Ä¡·áÇϱâ À§ÇÑ ¹ÙÀÌ·¯½º º¤ÅÍ¿Í °ü·ÃµÈ ¼ö¸¹Àº 1»ó ¹× 2»ó ÀÓ»ó½ÃÇèÀÌ Çмú¼¾ÅÍ¿Í »ý¸í°øÇÐ ±â¾÷¿¡¼­ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ¹ÙÀÌ·¯½º º¤Å͸¦ ±â¹ÝÀ¸·Î ÇÑ À¯ÀüÀÚ Ä¡·á´Â ÃÖ±Ù ¾Ï ºÐ¾ß¿¡¼­ ²ÙÁØÇÑ ÁøÀüÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. ¿¹¹æ¿ë°ú Ä¡·á¿ëÀ¸·Î ¼³°èµÈ ¹ÙÀÌ·¯½º º¤ÅÍ°¡ ¸¹ÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå Âü¿©Àڵ鵵 »õ·Î¿î Á¦Ç°À» °³¹ßÇϱâ À§ÇØ ´Ù¾çÇÑ ½ÃÀå Àü·«À» äÅÃÇÏ°í ÀÖ½À´Ï´Ù.

ºÏ¹Ì, ¼öÀÍ Ãø¸é¿¡¼­ ½ÃÀå µ¶½Ä

ÇöÀç ºÏ¹ÌÀÇ ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ ½ÃÀåÀº ºü¸£°Ô ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ±â¾÷µéÀº ¹ÙÀÌ·¯½º º¤ÅÍ¿¡ ´ëÇÑ »õ·Î¿î Á¦Ç° Á¢±Ù ¹æ½ÄÀ» Çõ½ÅÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2018³â 4¿ù ¹Ì±¹¿¡ º»»ç¸¦ µÐ GEÇコÄɾî´Â ¹ÙÀÌ·¯½º º¤ÅÍ ¹é½Å, Á¾¾ç ¿ëÇؼº ¹ÙÀÌ·¯½º, À¯ÀüÀÚ ¹× ¼¼Æ÷ Ä¡·áÁ¦¿Í °°Àº ¹ÙÀÌ·¯½º º¤ÅÍ ±â¹Ý ÀǾàÇ°À» »ý»êÇÒ ¼ö ÀÖ´Â 'ÆÑÅ丮 ÀÎ ¾î ¹Ú½º(Factory-in-a-box)' ½Ã¼³À» ¼³¸³Çß½À´Ï´Ù. ¸¹Àº ±â¾÷µéµµ »ý»ê ¼³ºñ¸¦ °­È­ÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2020³â 1¿ù Genopis Inc.´Â Çѱ¹¿¡ ±â¹ÝÀ» µÐ ÆÄÆ®³Ê»çÀÎ Helixmith¿Í ÇÔ²² ¹Ì±¹¿¡¼­ Çö󽺹̵å DNA »ý»ê À§Å¹»ý»ê »ç¾÷À» ±¸ÃàÇÑ´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. 2021³â 1¿ù, ¹Ì±¹¿¡ º»»ç¸¦ µÐ Äڱ׳×ÀÌÆ® ¹ÙÀÌ¿À¼­ºñ½º ±×·ì(Cognate BioServices Group)ÀÇ À¯ÀüÀÚ Ä¡·á ºÎ¹®ÀÎ ÄÚºê¶ó ¹ÙÀÌ¿À·ÎÁ÷½º(Cobra Biologics)´Â ¹ÙÀÌ·¯½º º¤ÅÍ¿ë À¯ÀüÀÚ Ä¡·á ¼­ºñ½º È®´ë ÇÁ·ÎÁ§Æ®ÀÇ ÀÏȯÀ¸·Î Çö󽺹̵å DNA ¼­ºñ½º¸¦ ´Ü°èÀûÀ¸·Î Áõ°¡½ÃÅ°±â ½ÃÀÛÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ¹ßÇ¥Çß½À´Ï´Ù.

ij³ª´Ù¿¡¼­µµ À¯ÀüÀÚ Ä¡·á°¡ ºü¸£°Ô È®»êµÇ°í ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ Áúº´À» Ä¡·áÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù. ¿¹¸¦ µé¾î, Å°¹Ì¸®¾Æ´Â 2018³â 9¿ù ij³ª´Ù¿¡¼­ ¾Ï Ä¡·áÁ¦·Î ½ÂÀÎµÈ ÃÖÃÊÀÇ À¯ÀüÀÚ Ä¡·áÁ¦ÀÔ´Ï´Ù. ij³ª´Ù º¸°ÇºÎ´Â ¼Ò¾Æ, û¼Ò³â, ¼ºÀΠȯÀÚµéÀ» À§ÇØ ³ë¹ÙƼ½º Å°¹Ì¸®¾Æ¸¦ ½ÂÀÎÇß½À´Ï´Ù.

2019³â 2¿ù ij³ª´Ù º¸°ÇºÎ´Â Ä«ÀÌÆ® Æĸ¶½´Æ¼Äýº(Kite Pharmaceuticals)°¡ »ý»êÇÑ ¿¹½ºÄ«¸£Å¸(Yescarta)¶ó´Â ¶Ç ´Ù¸¥ À¯ÀüÀÚ Ä¡·á Á¦Ç°À» ¾Ç¼ºµµ°¡ ³ôÀº ºñÈ£ÁöŲ¸²ÇÁÁ¾¿¡ ´ëÇØ ½ÂÀÎÇß½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍÀÇ ¼³°è ¹× Á¦Á¶ °ü¸®´Â º¹Á¦ ´É·Â, º¤ÅÍ ÅëÇÕ ¹× º¤ÅÍ ¹èÃâ°ú °°Àº ¹®Á¦·Î ÀÎÇØ Àüü Á¦Ç°ÀÇ Ç°Áú, ¾ÈÀü¼º ¹× ȯÀÚ¿¡¼­ÀÇ È¿À²¼º¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. »õ·Î¿î ¹ÙÀÌ·¯½º º¤ÅÍÀÇ °³¹ßÀº Å« ÁøÀüÀ» ÀÌ·ç¾úÀ¸¸ç, ¸î¸î ¿¬±¸ÀÚµéÀº º´¿ø¼º À¯ÀüÀÚ¸¦ Ä¡·á¿ë DNA·Î ´ëüÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ÇöÀç ºñº´¿ø¼º, º¹Á¦ °áÇÔ, Àΰ£ ģȭÀûÀÎ ¹ÙÀÌ·¯½º º¤ÅÍ°¡ À¯ÀüÀÚ Ä¡·á ÀÓ»ó½ÃÇè¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵忡 ´ëÇÑ ´õ ¸¹Àº ¿¬±¸°¡ ÁøÇàµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ·¯ÇÑ °³¹ßÀº ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.

¹ÙÀÌ·¯½º º¤ÅÍ ¹× Çö󽺹̵å DNA Á¦Á¶ »ê¾÷ °³¿ä

½ÃÀåÀº ¾ÆÁ÷ Ãʱ⠴ܰ迡 ÀÖ½À´Ï´Ù. µû¶ó¼­ ÁÖ·Î Çõ½ÅÀûÀÎ Á¦Ç° °³¹ß¿¡ °ü½ÉÀÌ ÁýÁߵǰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ½ÃÀå ±â¾÷·Î´Â Cobra Biologics, Fujifilm Diosynth Biotechnologies, SIRION Biotech, Merck KGaA Inc. ¹× Thermo Fisher ScientificÀÌ ÀÖ½À´Ï´Ù.

±¹³» ±â¾÷µéÀº ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇØ ¿¬±¸°³¹ß, ÀμöÇÕº´, Á¦Ç° Ãâ½Ã µî ´Ù¾çÇÑ Àü·«À» äÅÃÇÏ°í ÀÖ½À´Ï´Ù. 2020³â 12¿ù, CHA¹ÙÀÌ¿ÀÅØÀº Åػ罺ÁÖ Ä®¸®Áö½ºÅ×À̼ǿ¡ ¹ÙÀÌ·¯½º º¤ÅÍ »ý»ê ½Ã¼³À» °Ç¼³Çϱâ À§ÇØ ¸¶Æ¼Ä«¹ÙÀÌ¿À¿Í ÀÓ´ë °è¾àÀ» ü°áÇß½À´Ï´Ù. 25,000Æò¹æÇÇÆ® ±Ô¸ðÀÇ ½Ã¼³ °Ç¼³Àº 2020³â 4ºÐ±â¿¡ ½ÃÀ۵Ǿú½À´Ï´Ù. ¼¼Æ÷Ä¡·áÁ¦, À¯ÀüÀÚÄ¡·áÁ¦, ¹é½Å, Á¾¾ç¿ëÇؼº Á¦Ç°¿¡ »ç¿ëµÇ´Â ¹ÙÀÌ·¯½º º¤Å͸¦ Àü¹®ÀûÀ¸·Î »ý»êÇÒ ¿¹Á¤ÀÔ´Ï´Ù. 2021³â 3ºÐ±â¿¡ ¹®À» ¿­ ¿¹Á¤ÀÔ´Ï´Ù.

±âŸ ÇýÅÃ

  • ¿¢¼¿ Çü½Ä ½ÃÀå ¿¹Ãø(ME) ½ÃÆ®
  • 3°³¿ù°£ ¾Ö³Î¸®½ºÆ® Áö¿ø

¸ñÂ÷

Á¦1Àå ¼­·Ð

  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç°ú ½ÃÀåÀÇ Á¤ÀÇ
  • Á¶»ç ¹üÀ§

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ½ÃÀå °³¿ä
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
  • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
  • PorterÀÇ Five Forces ºÐ¼®
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ´ëü Á¦Ç°ÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀïµµ

Á¦5Àå ½ÃÀå ¼¼ºÐÈ­

  • Á¦Ç° À¯Çüº°
    • Çö󽺹̵å DNA
    • ¹ÙÀÌ·¯½º º¤ÅÍ
    • ºñ¹ÙÀÌ·¯½º º¤ÅÍ
  • ¿ëµµº°
    • ¾Ï
    • À¯Àü¼º Áúȯ
    • °¨¿°Áõ
    • ±âŸ ¿ëµµ
  • Áö¿ª
    • ºÏ¹Ì
      • ¹Ì±¹
      • ij³ª´Ù
      • ¸ß½ÃÄÚ
    • À¯·´
      • ¿µ±¹
      • µ¶ÀÏ
      • ÇÁ¶û½º
      • ÀÌÅ»¸®¾Æ
      • ½ºÆäÀÎ
      • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
      • Áß±¹
      • ÀϺ»
      • Àεµ
      • È£ÁÖ
      • Çѱ¹
      • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
      • GCC
      • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
      • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ³²¹Ì
      • ºê¶óÁú
      • ¾Æ¸£ÇîƼ³ª
      • ±âŸ ³²¹Ì

Á¦6Àå °æÀï ±¸µµ

  • ±â¾÷ °³¿ä
    • Oxford Biomedica
    • Cognate BioServices Inc.(Cobra Biologics)
    • Cell and Gene Therapy Catapult
    • FinVector Vision Therapies
    • Fujifilm Holdings Corporation(Fujifilm Diosynth Biotechnologies)
    • MassBiologics
    • SIRION Biotech
    • Merck KGaA Inc.
    • Thermo Fisher Scientific
    • Uniqure NV
    • Catalent Inc.

Á¦7Àå ½ÃÀå ±âȸ¿Í ÇâÈÄ µ¿Çâ

LSH 24.03.13

The Global Viral Vector and Plasmid DNA Manufacturing Market size is estimated at USD 1.82 billion in 2024, and is expected to reach USD 6.05 billion by 2029, growing at a CAGR of 27.18% during the forecast period (2024-2029).

Global Viral Vector and Plasmid DNA Manufacturing - Market

The COVID-19 outbreak is expected to positively impact the viral vector and plasmid DNA manufacturing market. Several COVID-19 vaccine candidates entering clinical trials also include viral vector vaccines. These vaccines are likely to be among the COVID-19 vaccines authorized for use worldwide. Many of them have also received or are in the final stages of receiving approval. In January 2021, Johnson & Johnson announced favorable efficacy and safety data from its Phase 3 ENSEMBLE clinical trial using its AdVac vaccine platform for COVID-19. Its single-dose COVID-19 vaccine, currently under development at its Janssen Pharmaceutical Companies, met all preconditions and targets. The AdVac viral vector technology could provide a potent and long-lasting humoral and cellular immune response to the body. Another viral vector-based vaccine, which has received several approvals, is the Oxford-AstraZeneca COVID-19 vaccine. The vaccine was first discovered in November 2020 and has since been mass-produced to vaccinate people. The COVID-19 viral vector vaccines are under development worldwide using non-replicating viral vectors. The immune response of these vaccines follows a similar pattern, i.e., it includes antibody-producing B cells and T cells, which seek out and destroy infected cells in the body, providing long-lasting immunity. Further research and increased investment in this field are expected to positively affect vaccine development.

Demand for plasmid DNA is growing steadily due to growth in gene therapy development. pDNA is a prerequisite for producing AAV (adeno-associated virus), lentivirus, and other viral vector platforms. There is also an increase in several genetic disorders and numerous life-threatening disorders, especially heart diseases, AIDS, cystic fibrosis, and age-related disorders. For instance, as per the Centers for Disease Control and Prevention, 2021, hypertension, or high blood pressure, is a leading risk factor for cardiovascular disease and causes an estimated 10 million deaths worldwide each year. These statistics represent 35% of global deaths. Gene therapy with viral vectors provides a complete cure to patients suffering from genetic disorders and other life-threatening disorders rather than ease symptoms with other treatments. Several clinical studies are being conducted on viral vectors and plasmid DNA manufacturing, emphasizing the potential of gene therapy to address important medical needs.

Several players, including pharmaceutical companies, contract manufacturing organizations, research institutes, and non-profit organizations, are playing a critical role in the development and production of these vectors. In April 2021, ViroCell Biologics, the UK clinical trial-focused viral vector manufacturer, launched its viral vectors. Through this launch, the company will supply viral vectors and gene-modified cells to academic and corporate clients for translational cell and gene therapies going into clinical trials.

Viral Vector & Plasmid DNA Manufacturing Market Trends

By Application, Cancer Segment is Expected to Register Robust Growth.

The upsurge in the global incidence of cancer and modern healthcare facilities are acting as major drivers for the segment growth. According to GLOBOCAN 2020, there were 1,92,92,789 new cancer cases in 2020, and it is projected to increase to 2,88,87,940 cases by 2040.. Additionally, there are also many gene therapy strategies that have been developed to treat a wide range of cancers, including suicide gene therapy, oncolytic virotherapy, anti-angiogenesis, and therapeutic gene vaccines.

According to a 2019 research article 'Chemovirotherapeutic Treatment Using Camptothecin Enhances Oncolytic Measles Virus-Mediated Killing of Breast Cancer Cells', oncolytic virotherapy represents an emerging development in anticancer therapy. Although it has been tested against a variety of cancers, including breast cancer, the efficacy of oncolytic viral vectors delivered as monotherapy is limited. Oncolytic virotherapy is a promising treatment that selectively targets and destroys cancer tissues with minimal damage to normal cells.

Currently, there are numerous Phase I and Phase II clinical trials related to viral vectors for the treatment of various types of cancers, such as brain, skin, liver, colon, breast, and kidney, among others, which are being conducted in academic centers and biotechnology companies.

Moreover, gene therapy based on viral vectors has established steady progress in the area of cancers recently. There is a mass of viral vectors that have been engineered for both preventive and therapeutic applications. Market players are also adopting various market strategies in developing novel products.

North America Dominated the Market in Terms of Revenue Generated

Currently, the North American viral vector and plasmid DNA manufacturing market is witnessing rapid growth. Companies in the region are innovating new product approaches for viral vectors. For example, in April 2018, United States-based GE Healthcare created a 'factory-in-a-box' facility to produce viral vector-based drugs, including viral vector vaccines, oncolytic viruses, and gene and cell therapies. Many companies are also increasing their production facilities. For example, in January 2020, Genopis Inc. announced to build a contract manufacturing business for plasmid DNA production in the United States with its South Korea-based partner Helixmith. In January 2021, United States-headquartered Cobra Biologics, the gene therapy division of the Cognate BioServices Group, announced that it had begun a multi-phase increase in its plasmid DNA services as a continuation of its gene therapy services' expansion project for viral vectors and plasmid DNA.

Gene therapy in Canada is also rising rapidly. It is used for the treatment of various diseases. For instance, Kymriah was the first gene therapy product approved in Canada in September 2018 for treating cancer. Health Canada approved Novartis Kymriah for pediatric, young adult, and adult patients.

In February 2019, Health Canada also approved another gene therapy product called Yescarta, manufactured by Kite Pharmaceuticals for an aggressive kind of non-Hodgkins lymphoma. Viral vector design and manufacturing control are critically important for the overall product quality, safety, and efficiency in patients through concerns such as replication competence, vector integration, and vector shedding. There are significant advancements in developing novel viral vectors, and several researchers are focusing on substituting pathogenic genes with therapeutic DNA. Nowadays, non-pathogenic, replication-defective, and human-friendly viral vectors are being widely used in clinical trials for gene therapy. As more research is expected to be conducted on viral vectors and plasmid DNA, these developments may positively impact market growth.

Viral Vector & Plasmid DNA Manufacturing Industry Overview

The market is still in the nascent stage. Hence, increasing focus is mainly on the development of innovative products. Key market players include Cobra Biologics, Fujifilm Diosynth Biotechnologies, SIRION Biotech, Merck KGaA Inc., and Thermo Fisher Scientific.

Various strategies, such as research and development, mergers and acquisitions, and product launches, are being adopted by domestic companies to strengthen their market position. In December 2020, CHA Biotech signed a lease agreement with Matica Bio to construct a viral vector production facility in College Station, Texas. The construction of the 25,000 sq. ft facility started in Q4 2020. It is expected to be dedicated to producing viral vectors used in cell and gene therapies, vaccines, and oncolytic products. It was scheduled to open in Q3 2021.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Rising Prevalence of Genetic Disorders, Cancer, and Infectious Diseases
    • 4.2.2 Increasing Number of Clinical Studies and Availability of Funding for Gene Therapy Development
    • 4.2.3 Potential Applications in Novel Drug Delivery Approaches
  • 4.3 Market Restraints
    • 4.3.1 High Cost of Gene Therapies
    • 4.3.2 Challenges in Viral Vector Manufacturing Capacity
  • 4.4 Porter's Five Forces Analysis
    • 4.4.1 Threat of New Entrants
    • 4.4.2 Bargaining Power of Buyers/Consumers
    • 4.4.3 Bargaining Power of Suppliers
    • 4.4.4 Threat of Substitute Products
    • 4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION (Market Size by Value - USD million)

  • 5.1 By Product Type
    • 5.1.1 Plasmid DNA
    • 5.1.2 Viral Vector
    • 5.1.3 Non-viral Vector
  • 5.2 By Application
    • 5.2.1 Cancer
    • 5.2.2 Genetic Disorder
    • 5.2.3 Infectious Disease
    • 5.2.4 Other Applications
  • 5.3 Geography
    • 5.3.1 North America
      • 5.3.1.1 United States
      • 5.3.1.2 Canada
      • 5.3.1.3 Mexico
    • 5.3.2 Europe
      • 5.3.2.1 United Kingdom
      • 5.3.2.2 Germany
      • 5.3.2.3 France
      • 5.3.2.4 Italy
      • 5.3.2.5 Spain
      • 5.3.2.6 Rest of Europe
    • 5.3.3 Asia-Pacific
      • 5.3.3.1 China
      • 5.3.3.2 Japan
      • 5.3.3.3 India
      • 5.3.3.4 Australia
      • 5.3.3.5 South Korea
      • 5.3.3.6 Rest of Asia-Pacific
    • 5.3.4 Middle-East and Africa
      • 5.3.4.1 GCC
      • 5.3.4.2 South Africa
      • 5.3.4.3 Rest of Middle-East and Africa
    • 5.3.5 South America
      • 5.3.5.1 Brazil
      • 5.3.5.2 Argentina
      • 5.3.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 Oxford Biomedica
    • 6.1.2 Cognate BioServices Inc. (Cobra Biologics)
    • 6.1.3 Cell and Gene Therapy Catapult
    • 6.1.4 FinVector Vision Therapies
    • 6.1.5 Fujifilm Holdings Corporation (Fujifilm Diosynth Biotechnologies)
    • 6.1.6 MassBiologics
    • 6.1.7 SIRION Biotech
    • 6.1.8 Merck KGaA Inc.
    • 6.1.9 Thermo Fisher Scientific
    • 6.1.10 Uniqure NV
    • 6.1.11 Catalent Inc.

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦